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Abstract  Data envelopment analysis (DEA), a useful assessment tool, has been used to solve the problem
of preference voting and aggregation which require the determination of the weights associated with different
ranking places. Instead of applying the same externally imposed weighting scheme to all candidates, DEA
models allow each candidate to choose his/her own weights in order to maximize his/her own overall ratings
subject to certain conditions. It is evident that competition exists among the candidates in a preferential
election, while there is no literature considering the factor of competition. This paper proposes an approach
to rank candidates based on DEA game cross efficiency model, in which each candidate is viewed as a player
who seeks to maximize its own efficiency, under the condition that the cross efficiencies of each of other
DMU'’s does not deteriorate. The game cross efficiency score is obtained when the DMU’s own maximized
efficiencies are averaged. The obtained game cross efficiency scores constitute a Nash Equilibrium point.
Therefore, the results and orders based upon game cross efficiency analysis are more reliable and will benefit
the decision-maker.

Keywords: DEA, preference voting, preference aggregation, cross efficiency, game

1. Introduction

In a preferential voting system, each voter selects a subset of the candidates and places
them in a ranked order. The key issue of the preference aggregation in a preferential voting
system is how to determine the weights associated with different ranking places. To avoid
the subjectivity in determining the weights, data envelopment analysis (DEA) is used in
Cook and Kress [1] to determine the most favorable weights for each candidate. Different
candidates utilize different sets of weights to calculate their total scores, which are referred
to as the best relative total scores and are all restricted to be less than or equal to one.
The candidate with the biggest relative total score of one is said to be DEA efficient and
may be considered as a winner. This approach proves to be effective, but very often leads
to more than one candidate to be DEA efficient. To choose a winner from among the
DEA-efficient candidates, Cook and Kress [1] suggest maximizing the gap between the
weights so that only one candidate is left as DEA efficient. Green, Doyle and Cook [2]
suggest using the cross-efficiency evaluation method in DEA to choose the winner. Noguchi,
Ogawa and Ishii [3] also utilize cross-efficiency evaluation technique to select the winner,
but present a strong ordering constraint on the weights. Hashimoto [4] proposes the use of
the DEA exclusion model (i.e. super-efficiency model) to identify the winner. Obata and
Ishii [5] suggest excluding non-DEA-efficient candidates and using normalized weights to
discriminate the DEA-efficient candidates. Their method is subsequently extended to rank
non-DEA-efficient candidates by Foroughi and Tamiz [6] and Foroughi, Jones and Tamiz [7].
Recently, Wang, Chin and Yang [8] also propose three new models to assess the weights and
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rank the candidates. In fact, candidates in a preferential election setting can be viewed as
DMUs, and competition is obviously present among the candidates. Unfortunately, there
is no literature discussed above considering this topic. In this paper, DEA game cross
efficiency model, a useful assessment tool for considering the factor of competition, will
be used to rank the candidates in a preferential election setting. The rest of the paper
unfolds as follows: in section 2, the original models for preferential voting and aggregation
are presented, and the approach based on DEA game cross efficiency model is proposed. A
numerical example is illustrated in Section 3 and concluding remarks are given in Section 4.

2. Model

In the preferential voting framework each candidates i=1,...,n receives some number v,
of first place votes, v;y of second place votes..., v;, of mth place votes. The problem is
to use these votes in a reasonable manner to obtain an overall desirability index Z; for
each candidate. In fact, for any predetermined set of weights wy,...,w,, on each candidate’s
standing, the composite score, Z;, of candidate ¢ would be defined by:

Zi = ijvij (21)
j=1

Cook and Kress [1] propose a DEA model that allowed all candidates to choose his/her own
weights in order to maximize his/her own desirability indez subject to certain reasonable
constraints on the desirabilities of all candidates. For candidate i of n candidates, the model
of Cook and Kress [1] can be written as:

m
maXZu-: E wijyij
i=1

m
st. Zig = Zwiquj <l,g=1,...,n,
j=1

Wij — Wi(j+1) Zd(jag)ajzlw"vm_l’ (2'2)
Wim 2 d(ma€)7
d(-,g),g > Oa d(,O) = O’

where d(-, ) is called the discrimination intensity function, monotonic increasing in e, and
the parameter ¢ is called the discriminating factor. This model is solved for each candidate
i(i =1,...,n), and the resulting score Z}; represents the preference score of the candidate i.

In model (2.2), the choice of form for d(-,e) and the value of € are two existing issues.
For the discrimination intensity function d(-, ), Cook and Kress [1] investigate three special
cases of d(-,¢) : d(-,e) = g,d(-,e) = ¢/j and d(-,¢) = ¢/j!. Each of them leads to a
different winner. Noguchi et al. [3] examine the six special cases of the discriminating factor
e e = 0,0.01,0.05,0.055,0.06,0.07. These cases also resulted in different winners. To
avoid the difficulties in determining the discrimination intensity function d(-,¢) and the
discrimination intensity factor €, Noguchi et al. [3] suggest a strong ordering DEA model
as follows:

m
maxZii: E WijVij
J=1
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m
s.t. Ziy = Zwiquj <l,g=1,...,n, (2.3)
j=1
Wil = 2Wig 2 ... 2 MW,

se— 2

- Nm(m +1)
where N is the number of voters. In our view, the strong ordering constraint w;; > 2w;o >
. > mw;,, makes sense because it satisfies w;; > wi > ... > mw;, and w; — wip >
Wig — Wiz > ... > Wiim—1) — Wim- It also makes the choice of the discrimination intensity

function d(-,e) unnecessary. Especially, as indicated in Noguchi et al. [3], the weights of
each rank are determined in allowable region, and from the result of votes, the above strong
ordering in Noguchi et al. [3] is superior to the method by Green et al. [2]. So, this strong
ordering constraint will be adopted in the new models to be developed.

For each DMU;(i = 1,...,n) under evaluation of model (2.3), we obtain a set of optimal
weights (wfj, wh, ..., er) Usmg this set, the i-cross efficiency for any DMU,(p =1,...,n),
is then calculated as: .

Elp:waijj,i,p: 1,2,...n (2.4)
j=1

For DMU,(p =1,...,n), the average of all E;,(i =1,...,n), namely

— 1

can be used to determine the cross efficiency score for DMU,,.

In what follows, we will present our new model, which is based on the DEA game cross
efficiency model presented in Liang, Wu, Cook and Zhu [9]. The new model is given as
follows:

m
d _ d
max Zj;; = g W Vi

st. Zig = wavqj <l,g=1,.

7=1

Zig = szdjl/dj > ag (2.6)

m == N m(m + 1)
where oy < 1 is a parameter. In the algorithm to be developed, this a4 initially takes the

value given by the average original cross efficiency of DMU,;. We refer to model (2.6) as
the DEA game d-cross efficiency model. Note that model (2.6) maximizes the efficiency of

DMU; under the condition that the efficiency of a given DMUy, namely Z wd iVdj», 18 ot

less than a given value (). Thus, the efficiency of DMU; is further constralned by the
requirement that the ratio efficiency of DMU; is not less than its original average cross
efficiency.
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Model (2.6) is solved n times for each DMU;, one for each d = 1, ..., n. the optimal value
to model (2.6) actually represents a game cross efficiency with respect to DM U, (d-game
cross efficiency). We have:

Definition: Let wi () be an optimal solution to model (2.6). For each DMU;, oy =

%dzl Zl wfl]*(ad)l/ij is called the average game cross efficiency for that DMU.
— ]:

Note that the average game cross efficiency no longer represents a regular DEA cross-
efficiency value. Liang, Wu, Cook and Zhu [9] presented a procedure for determining the
final game cross efficiency for DMU;.

Step 1: Solve model (2.3) and obtain a set of original average DEA cross efficiency scores
defined in (2.5). Let t =1 and oy = o = E,.

Step 2: Solve model (2.6). Let af = 3> 3~ w*(a})v;; or in a general format,

1 m
1 d
a;tt = - > wih(ahv (2.7)
d=1 j=1
where wi*(af;) represents the optimal value of w{* in model (2.6) when ay = af.

Step 3: If |a!*! — al| > 6 for some i, where 6 is a specified small positive value, then let
ag = o4t and go to step 2. If [al™ — af| < § for some 4, then stop. o/ is the final game
cross efficiency given to DMU;.

As for the above algorithm, some remarks should be indicated as follows: In Step 1, the
B, represent traditional (average) cross-efficiency scores for DMUy,d = 1,2,...,n, and are
the initial values for a4(denoted as o) in model (2.6). Also, the notation oy = af,t > 1,
given in Step 2, means that in model (2.6), aq is replaced with . Step 3 is used to indicate
when to terminate the process of executing model (2.6).

In Liang, Wu, Cook and Zhu [9], this algorithm has been proven to be convergent and
the game cross efficiency determined by the solution from the proposed algorithm above
is a Nash Equilibrium point to the DEA game in which DMU is viewed as player and the
game cross efficiencies are considered as the payoffs. The game cross efficiency score is a
Nash equilibrium solution and therefore is a stable solution. Thus, the results and decisions
based upon game cross efficiency analysis are reliable.

3. Numerical Example

In this section, we examine a numerical example using the proposed models to illustrate
their use and show their capabilities of choosing the winner and ranking candidates.

We consider the example discussed in Cook and Kress [1], in which 20 voters are asked
to rank four out of six candidates A-F on a ballot. For example, candidate “a” receives 3
first, 3 second, 4 third and 3 fourth-placed votes. The votes each candidate receives are
shown in Table 1.

For this example, n = 6, m = 4 and N = 20, so the parameter of ¢ in model (2.6) is
equal to 0.005. For the value of § in the algorithm, we set 6 = 0.0001 and we use the
regular cross efficiency defined in (2.4) as the starting point for our game cross efficiency
scores. Cross efficiency is not unique and can be calculated by imposing a secondary goal.
For example, we can use an aggressive strategy which not only obtains the maximum DEA
efficiency for a DMU as the primary goal, but also as a secondary goal, minimizes the other
DMUS’ cross efficiencies (Sexton, Silkman and Hogan [10]). We can also use a benevolent
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Table 1: Votes received by six candidates
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Candidate First place Second place  Third place  Fourth place
A 3 4 4 3
B 4 5 6 2
C 6 2 3 2
D 6 2 2 6
E 0 4 3 4
F 1 4 3 3

strategy which not only obtains the maximum DEA efficiency but also maximizes the other
DMUS’ cross efficiencies (Doyle and Green [11]). The cross-efficiency calculated without
imposing the secondary goal is referred to as an arbitrary strategy, as defined in (2.4). The

Table 2: Scores and rankings of the six candidates by different models

Efficiency in

Cross Efficiency in (2.5)

Game cross

Model(2.3) efficiency
Candidate Score Rank Aggressive Rank Arbitrary Rank Benevolent Rank Score Rank
A 0.7376 4 0.6785 4 0.7229 4 0.7332 4 0.7359 4
B 1.0000 1 0.9172 3 0.9749 2 0.9909 2 0.9964 2
C 1.0000 1 0.9658 2 0.9692 3 0.9813 3 0.9876 3
D 1.0000 1 0.9901 1 0.9995 1 1 1 1 1
E 0.4364 6 0.3196 6 0.4034 6 0.4175 6 0.4241 6
F 0.5198 5 0.4366 5 0.5055 5 0.5162 5 0.5185 5

results of model (2.3) in Noguchi et al. [3] are reported in the second column of Table 2.
The results of the cross-efficiency under three strategies are listed in the third column of
Table 2. The game cross efficiency is shown in the last column. All these cross-efficiency
scores lead to the same game cross efficiency scores. Figure 1 shows the solution process for

(Fame cross efficienc

=

e

ca
1

=

[Fe)

=Y
|

=

[Fe)

I=
|

=

[Fe)

(]
|

=
[Fe)

1

2 34 5% P B % 101 121314157165 17.18

—w— A goressive

i

——Aghitraty  —&—Benevolent

Figure 1: Achieving the game cross efficiency for candidate B
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candidate B. If one views the candidates as competitive, it is noted that in a cooperative
sense each “player” has an improved score over that which it received under the usual cross
efficiency models (except in the case of the 100% efficient candidate D).

Figure 2 shows after 17 iterations, the proposed algorithm finds the game cross efficiency
scores for the six candidates and it can be seen that the game cross efficiency score increases
when ¢ becomes an even number and decreases when ¢ becomes an odd number.

[
2.9 1
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Uy 5 g —e——e—4—8—6—8 o= oo
04 ==—rF—"TF+ T
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17
4 =B C£D=EAF

Figure 2: Game cross efficiency calculation for six candidates

We should point out that this example is chosen only for illustrative purposes and for
better understanding of the principles of the proposed approach. The contribution of our
approach lies in the fact that we find a solution that is a Nash Equilibrium and the solution
is not affected by the multiple optimal solutions in the DEA models.

4. Conclusions

This paper has considered a preferential voting system using DEA game cross efficiency
model, in which each candidate is viewed as a player that seeks to maximize its own efficiency,
under the condition that the cross efficiencies of each of other DMU’s does not deteriorate.
In DEA game cross efficiency model, the game cross efficiency scores obtained are fixed and
constitute a Nash Equilibrium point. Therefore, it is considered that the approach proposed
provides an alternative method for determining an ordering of candidates in the preferential
voting system.
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