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Abstract This paper attempts to determine economic order quantity for deteriorating items under the
conditions of permissible delay in payments, in which the supplier offers the retailer a permissible delay
period and the retailer in turn provides a maximal trade credit period to their customers in a supply chain
system. A theorem is developed to determine the optimal ordering policies for the retailer under above
conditions. These results help the retailer’s decision makers to determine accurately the optimal cost. A
numerical example demonstrates the applicability of the proposed method. Moreover, sensitivity analysis
of the optimal solution with respect to major parameters is carried out. Finally, the results in this paper
generalize some already published results.
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1. Introduction

A supply chain (Chopra and Meindl [3]) consists of all stages involved, directly or indirectly,
in fulfilling a customer request. The supply chain not only includes the manufacturers and
suppliers, but also transporters, warehouses, retailers and customers themselves. So, the
supply chain management (Levi et al. [23]) is a set of approaches utilized to efficiently
integrate them so that merchandiser is produced and distributed at the right quantities, to
the right location and at the right time, in order to minimize systemwide costs.

Goyal [11] is the first to establish an economic order quantity model under the condition
of permissible delay in payments. He assumes that the supplier would offer the retailer a
fixed delay period and the retailer could sell the goods and accumulate revenue and earn
interest within the trade credit period. Goyal [11] implicitly assumes that the customer
would pay for the items as soon as the items are received from the retailer. That is,
Goyal [11] assumed that the supplier would offer the retailer a delay period but the retailer
would not offer the trade credit period to customers. In most business transactions, this
assumption is debatable. Huang [15] defines this situation as one level of trade credit.
Huang [13] extends Goyal [11] to provide a fixed trade credit period M between the supplier
and the retailer and a maximal trade credit period N (M > N) between the retailer and the
customer. Basically, the inventory model of Goyal [11] is a supply chain of two stages (the
supplier and the retailer). Huang [13] generalizes Goyal [11] to the supply chain of three
stages [the supplier, the retailer and customers]. Huang [15] names the above situation two
levels of trade credit.

On the other hand, Ghare and Schrader [10] are pioneers to develop an EOQ model
by negative exponential distribution which investigation assumes that the instantaneous
deterioration rate is constant. Combining Ghare and Schrader [10] and Goyal [11], numerous
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studies dealing with the inventory models for deteriorating items under the trade credit can
be found in Jaggi and Aggrawal [16], Aggarwal and Jaggi [1], Arcelus et al. [2], Chu et
al. [4], Chung and Liao [8, 9], Chung and Huang [7], Liao [18, 19], Tsao and Shreen [25] and
their references.

All the above papers mentioned do not consider deteriorating items and two levels of
trade credit together. So, the main purpose of this paper is to extend Huang [13] into the
inventory model under two levels of trade credit to more match a real life situation.

2. Model Formulation

The following notations are used throughout the whole paper:
Notations:

A: ordering cost per order
p: unit selling price per item
c: unit purchasing price per item.
D: demand rate per year
Ie: interest earned per $ per year
Ik: interest charged per $ in stock per year by the supplier
M : the retailer’s trade credit period offered by supplier in years
N : the maximal trade credit period for customers offered by retailer in years
h: unit stock holding cost per unit per year excluding interest charges
T : the cycle time in years
TV C(T ): the annual total relevant cost
T ∗: the optimal cycle time of TV C(T )

In addition, the following assumptions are used throughout:
Assumptions:

1. Demand rate is known and constant.
2. The shortages are not allowed.
3. Time period is infinite and replenishment lead time is zero.
4. The distribution of time to deterioration of the items follows exponential distribution

with parameter θ (constant rate of deterioration).
5. Ie ≤ Ik, M ≥ N and p ≥ c.
6. A supplier allows a fixed period, M , to settle the account. During this fixed period no

interest is changed by the supplier but beyond this period, interest Ik is charged by the
supplier under the terms and conditions agreed upon. The account is settled completely
either at the end of the credit period or at the end of the cycle.

7. A retailer allows a maximal trade credit period N for customers to settle the account.
If a customer buys one item from the retailer at time t belonging to (0,N ], then the
customer will have a trade credit period N − t and make the payment at time N .
Furthermore, the retailer can accumulate revenue and earn interest after the customer
pays for the amount of purchasing cost until the end of the trade credit period offered
by the supplier. That is, the retailer can accumulate revenue and earn interest during
the period N to M with rate Ie under the condition of trade credit.

Recently, Assumption (7) is rather prevalent. It has been adopted in a lot of papers such
as Huang [13–15], Teng and Chang [24], Liao [20], Ho et al. [12], Ouyang et al. [21], Jaggi
et al. [17] and their references.

Let Q(t) denote the on−hand inventory level at time t, which is depleted by the effects of
demand and deterioration, then the differential equation which describes the instantaneous
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states of Q(t) over (0, T ) is given as:

dQ(t)

dt
+ θQ(t) = −D, 0 ≤ t ≤ T (2.1)

then, with boundary condition Q(T ) = 0. The solution of equation (2.1) is given by

Q(t) =
D

θ
(eθ(T−t) − 1), 0 ≤ t ≤ T (2.2)

Noting that Q(0) = Q, then quantity ordered each replenishment cycle is

Q =
D

θ
(eθT − 1) (2.3)

Furthermore, the total relevant cost function per cycle is the sum of the ordering cost,
inventory holding cost, cost of deteriorated units and interest payable on stock held beyond
the permissible period, less the interest earned during the period of (N, M). From now on,
the individual cost is evaluated before they are grouped together.

1. Annual ordering cost= A
T

2. Annual inventory holding cost(excluding interest charges)

=
h

T

∫ T

0
Q(t)dt =

hD

θ2T
(eθT − θT − 1)

3. Annual cost of deteriorated units= c(Q−DT )
T

= cD
θT

(eθT − θT − 1)
4. Regarding interests charged and earned, we have the following three cases to discuss:

Case(I): T ≥ M , shown in Figure 1.
In this case, the sales revenue is utilized to earn interest Ie during the period of (N, M).

When the account is settled, the item still in inventory has to financed with annual rate Ik.
Therefore, the annual interest payable is

cIk

∫ T
M Q(t)dt

T
=

cIkD

θ2T
(eθ(T−M) − θ(T − M) − 1)

From Figure 1, it implied that the retailer sells products and deposits the revenue into an
account during period (0, N ], but getting money at time N. Therefore, sales revenue, pDN ,
is continuous accumulated from period (N,M) and the interest earned of this part is pIe,
multiplied by the area of NMY Z. In addition, the sales revenue from period (N, M) is
continuous accumulated, so the interest earned of this part is pIe multiplied by the area of
XY Z. Combining the above argument, the annual interest earned is

pIe

∫ M
N Dtdt

T
=

pIeD(M2 − N2)

2T
=

pIeD(M + N)(M − N)

2T

Case(II):N ≤ T < M , shown in Figure 2.
In this case, all the sales revenue is utilized to earn interest with annual rate Ie during

the period of (N, M) and pays no interest for the items kept in stock. Therefore, the annual
interest payable is 0, and the annual interest earned is

pIe[
∫ T

N Dtdt + DT (M − T )]

T
=

pIeD

2T
[2MT − N2 − T 2]
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Figure 1: The total accumulation of interest earned when M ≤ T

Figure 2: The total accumulation of interest earned when N ≤ T ≤ M

Case(III):T ≤ N , shown in Figure 3.
In this case, all the sales revenue is utilized to earn interest Ie during the period of

(N,M) and pays no interest for the items kept in stock as well. Therefore, the annual
interest payable is 0, and the annual interest earned is

pIe

∫ M
N DTdt

T
= pIeD(M − N)

Combining the above arguments, we obtain that the annual total relevant cost per unit
time is given by

TV C(T ) =


TV C1(T ) if M < T
TV C2(T ) if N < T ≤ M
TV C3(T ) if 0 < T ≤ N

(2.4)

where

TV C1(T ) =
A

T
+

D(cθ + h)

θ2T
(eθT −θT −1)+

cIkD

θ2T
(eθ(T−M)−θ(T −M)−1)− pIeD(M2 − N2)

2T
(2.5)

TV C2(T ) =
A

T
+

D(cθ + h)

θ2T
(eθT − θT − 1) − pIeD

2T
(2MT − N2 − T 2) (2.6)
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Figure 3: The total accumulation of interest earned when T ≤ N

and

TV C3(T ) =
A

T
+

D(cθ + h)

θ2T
(eθT − θT − 1) − pIeD(M − N) (2.7)

For convenience to discuss, we extend the domain of TV Ci(T ) (i = 1, 2, 3) and treat the
domain of TV Ci(T ) (i = 1, 2, 3) as (0,∞). Then, equation (2.5) yields

TV C ′
1(T ) = − A

T 2
+

D(cθ + h)

θ2T 2
(θTeθT − eθT + 1)

+
cIkD

θ2T 2
(θTeθ(T−M) − eθ(T−M) + 1 − θM) +

pIeD(M2 − N2)

2T 2
(2.8)

After rearrangement,

TV C ′
1(T ) =

1

θ2T 2

{
−Aθ2 + D(cθ + h)(θTeθT − eθT + 1)

+cIkD(θTeθ(T−M) − eθ(T−M) + 1 − θM) +
pIeD(M2 − N2)θ2

2

}

=
1

θ2T 2
f(T )

where

f(T ) = −Aθ2 + D(cθ + h)(θTeθT − eθT + 1)

+cIkD(θTeθ(T−M) − eθ(T−M) + 1 − θM) +
pIeD(M2 − N2)θ2

2

Since f ′(T ) = Dθ2T [(cθ + h)eθT + cIke
θ(T−M)] > 0 , so f(T ) is increasing on T > 0 . Let

T ∗
1 denote the root of TV C ′

1(T ) = 0. Since lim
T→∞

f(T ) = ∞ > 0, the following results hold.

(i) If f(M) < 0, then T ∗
1 > M .

(ii) If f(M) ≥ 0, then T ∗
1 = M .

On the other hand, equations (2.6) and (2.7) yield

TV C ′
2(T ) = − A

T 2
+

D(cθ + h)

θ2T 2
(θTeθT − eθT + 1) − pIeD

2T 2
(N2 − T 2), (2.9)
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TV C ′′
2 (T ) =

2A

T 3
+

2D(cθ + h)

θ2T 3

[
eθT

(
1 − θT +

1

2
θ2T 2

)
− 1

]
+

pIeDN2

T 3

>
2A

T 3
+

2D(cθ + h)

θ2T 3

[
eθT · e−θT − 1

]
+

pIeDN2

T 3

=
2A

T 3
+

pIeDN2

T 3
> 0, (2.10)

TV C ′
3(T ) = − A

T 2
+

D(cθ + h)

θ2T 2
(θTeθT − eθT + 1), (2.11)

and

TV C ′′
3 (T ) =

2A

T 3
+

2D(cθ + h)

θ2T 3

[
eθT

(
1 − θT +

θ2T 2

2

)
− 1

]

>
2A

T 3
+

2D(cθ + h)

θ2T 3

[
eθT · e−θT − 1

]
=

2A

T 3
> 0 (2.12)

Therefore, TV C2(T ) and TV C3(T ) is convex on (0,∞),respectively. Since TV C1(M) =
TV C2(M) and TV C2(N) = TV C3(N), TV C(T ) is continuous and well-defined.

3. Decision Rule Of The Optimal Cycle Time T ∗

Consider the following equations:

TV C ′
i(T ) = 0 (i = 1, 2, 3) (3.1)

If the root of equation (3.1) exists, then it is unique. Let T ∗
i (i = 1, 2, 3) denote the root

of equation (3.1). Further, equations (2.8), (2.9) and (2.11) yield that

TV C ′
1(M) = TV C ′

2(M)

= − A

M2
+

D(cθ + h)

θ2M2
(θMeθM − eθM + 1) +

pIeD(M2 − N2)

2M2
(3.2)

and

TV C ′
2(N) = TV C ′

3(N)

= − A

N2
+

D(cθ + h)

θ2N2
(θNeθN − eθN + 1) (3.3)

Since TV C2(T ) is convex on T > 0 which implies that TV C ′
2(M) > TV C ′

2(N).
For convenience, let

∆1 = − A

M2
+

D(cθ + h)

θ2M2
(θMeθM − eθM + 1) +

pIeD(M2 − N2)

2M2
(3.4)

and

∆2 = − A

N2
+

D(cθ + h)

θ2N2
(θNeθN − eθN + 1) (3.5)

Then ∆1 > ∆2. Moreover, equations (3.4) and (3.5) yield
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∆1 < 0 if and only if TV C ′
1(M) < 0 if and only if T ∗

1 > M .

∆1 < 0 if and only if TV C ′
2(M) < 0 if and only if T ∗

2 > M .

∆2 < 0 if and only if TV C ′
2(N) < 0 if and only if T ∗

2 > N .

∆2 < 0 if and only if TV C ′
3(N) < 0 if and only if T ∗

3 > N .
Furthermore, if ∆1 ≥ 0, then TV C1(T ) is increasing on [M,∞).The above arguments lead
to the following results.

Theorem 1

1. If ∆1 < 0, then TV C(T ∗) = TV C(T ∗
1 ). Hence T ∗ is T ∗

1 .
2. If ∆2 > 0, then TV C(T ∗) = TV C(T ∗

3 ). Hence T ∗ is T ∗
3 .

3. If ∆1 ≥ 0 and ∆2 < 0, then TV C(T ∗) = TV C(T ∗
2 ). Hence T ∗ is T ∗

2 .

Proof:

1. If ∆1 < 0, then ∆2 < 0 which implies that T ∗
1 > M , T ∗

2 > M , T ∗
2 > N and T ∗

3 > N ,
respectively. Furthermore, TV C(T ) has the minimum value at T = N when T ≤ N ,
TV C(T ) has the minimum value at T = M when N ≤ T ≤ M and TV C(T ) has the
minimum value at T = T ∗

1 when T ≥ M . Since TV C3(N) = TV C2(N) > TV C2(M)
and TV C2(M) = TV C1(M) > TV C1(T

∗
1 ), TV C(T ) has the minimum value at T ∗

1 for
T > 0. Hence, we conclude that TV C(T ∗) = TV C(T ∗

1 ). Consequently, T ∗ is T ∗
1 .

2. If ∆2 > 0, then ∆1 > 0 which implies that T ∗
2 < M , T ∗

2 < N , T ∗
3 < N and TV C1(T ) is

increasing on [M,∞). Furthermore, TV C(T ) has the minimum value at T = T ∗
3 when

T ≤ N , TV C(T ) has the minimum value at T = N when N ≤ T ≤ M and TV C(T )
has the minimum value at T = M when T ≥ M . Since TV C3(T

∗
3 ) < TV C3(N) =

TV C2(N) < TV C2(M) and TV C2(M) = TV C1(M), TV C(T ) has the minimum value
at T ∗

3 for T > 0. Hence, we conclude that TV C(T ∗) = TV C(T ∗
3 ). Consequently, T ∗

is T ∗
3 .

3. If ∆1 ≥ 0 and ∆2 < 0 which implies that T ∗
1 < M , T ∗

2 < M , T ∗
2 > N and T ∗

3 > N .
Furthermore, TV C(T ) has the minimum value at T = N when T ≤ N , TV C(T ) has
the minimum value at T = T ∗

2 when N ≤ T ≤ M and TV C(T ) has the minimum
value at T = M when T ≥ M . Since TV C3(N) = TV C2(N) > TV C2(T

∗
2 ) and

TV C2(T
∗
2 ) < TV C2(M) = TV C3(M). Hence, we conclude that TV C(T ∗) = TV C(T ∗

2 ).
Consequently, T ∗ is T ∗

2 .

Combining the above arguments, we have completed the proof.

4. Numerical Examples

In order to illustrate the above solution procedure, let us consider an inventory system with
the following data:

A = $200/order, h = $5/unit/year, c = $60/unit/year, p = $70/unit/year, Ik = 20%,
Ie = 12%, θ = 0.01, M = 0.3year and N = 0.2year.

Example 1:When D = 400 units/year, then ∆1 = −166.6464 < 0 and ∆2 = −3878.5 < 0.
Using Theorem 1(1), we get T ∗ = T ∗

1 = 0.307, the optimal order quantity is Q∗ = 122.9887
and TV C(T ∗) = TV C(T ∗

1 ) = 722.4254.

Example 2:When D = 1800 units/year, then ∆1 = 7027.9 > 0 and ∆2 = 46.7250 > 0.
Using Theorem 1(2), we get T ∗ = T ∗

3 = 0.1991, the optimal order quantity is Q∗ = 358.7370
and TV C(T ∗) = TV C(T ∗

3 ) = 496.6506.

Example 3:When D = 500 units/year, then ∆1 = 347.2476 > 0 and ∆2 = −3591.8 < 0.
Using Theorem 1(3), we get T ∗ = T ∗

2 = 0.2847, the optimal order quantity is Q∗ = 142.5528
and TV C(T ∗) = TV C(T ∗

2 ) = 734.3698.

From now on, we study the effects of changes in the system parameters A, c, θ, and N
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on the optimal length of order cycle T ∗ , the optimal order quantity per cycle Q∗ and the
minimum total relevant cost per unit time TV C(T ∗) of the following data:
A = $200/order, h = $5/unit/year, c = $60/unit/year, p = $70/unit/year, Ik = 20%,
Ie = 12%, D = 1000 units/year, θ = 0.01, M = 0.3year and N = 0.2year. The sensitivity
analysis is performed by changing each of the parameters by −25% and +25%, taking one
parameter at a time and keeping the remaining parameters unchanged. The results are
summary in Table 1.

Table 1: Sensitivity analysis

Parameter T ∗ Q∗ TV C(T ∗)
150 0.2131 213.3272 464.3812

A 200 0.2292 229.4629 690.4752
250 0.2443 244.5987 901.6684
45 0.2305 230.7659 673.2247

c 60 0.2292 229.4629 690.4752
75 0.2280 228.2601 707.6336
0.0075 0.2305 230.6994 673.1039

θ 0.0100 0.2292 229.4629 690.4752
0.0125 0.2280 228.3252 707.7583
0.150 0.2051 205.3105 351.9778

N 0.200 0.2292 229.4629 690.4752
0.250 0.2570 257.3305 1079.200
300 0.3364 101.0899 697.2368

D 400 0.3070 122.9887 722.4254
500 0.2847 142.5528 734.3698

Based on the results of Table 1, the following observation can be made.
1. A higher value of ordering cost A results in higher values of T ∗, Q∗ and TV C(T ∗).

Additionally, we find that TV C(T ∗) are highly sensitive to changes in A.
2. A higher value of retailer’s trade credit N results in higher values of T ∗, Q∗ and

TV C(T ∗). Additionally, we find that T ∗, Q∗ and TV C(T ∗) are highly sensitive to
the changes in N .

3. A higher value of purchasing price c results in a higher value of TV C(T ∗), but lower
values of T ∗ and Q∗. It indicates that if we increase the purchasing price, then the
optimal length of ordering cycle and the optimal ordering quantity will be decreased.

4. A higher value of deteriorating rate θ results in a higher value of TV C(T ∗), but lower
values of T ∗ and Q∗. It tells us that when the deteriorating rate increases, the optimal
length of ordering cycle and the optimal ordering quantity will be decreased.

5. A higher value of demand rate D results in higher values of TV C(T ∗) and Q∗, but a
lower value of T ∗.

5. Special Cases

In this section, there are the following cases to occur:
(i) Shah’ model

When N = 0 and p = c, we have

TV C(T ) =

{
TV CS

1 (T ) if M ≤ T,
TV CS

2 (T ) if M > T.
(5.1)
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where

TV CS
1 (T ) =

A

T
+

D(cθ + h)

θ2T
(eθT − θT − 1) +

cIkD

θ2T
(eθ(T−M) − θ(T − M) − 1) − cIeDM2

2T
(5.2)

and

TV CS
2 (T ) =

A

T
+

D(cθ + h)

θ2T
(eθT − θT − 1) − cIeD

2T
(2MT − T 2) (5.3)

Equations (5.2) and (5.3) are consistent with equations (13) and (10) in Shah [22], respec-
tively. Furthermore, we let

∆ =
D(cθ + h)(θMeθM − eθM + 1)

θ2M2
+

cIeD

2
− A

M2

Then, we have the following results.

Corollary 2

1. TV CS
1 (T ) is convex on [M,∞).

2. TV CS
2 (T ) is convex on (0,∞).

3. TV C(T ) is convex on (0,∞).

Corollary 3

1. If ∆ > 0, then T ∗ is T ∗
2 .

2. If ∆ < 0, then T ∗ is T ∗
3 .

3. If ∆ = 0, then T ∗ = T ∗
2 = T ∗

3 = M .

The results of Corollaries 2 and 3 have been discussed in Chung [6].
(ii) Goyal’s model

When θ → 0+, N = 0 and p = c, we have

TV C(T ) =

{
TV C1(T ) if M ≤ T,
TV C2(T ) if M > T.

(5.4)

where

TV C1(T ) =
A

T
+

DTh

2
+

cIkD(T − M)2

2T
− cIeDM2

2T
(5.5)

and

TV C2(T ) =
A

T
+

DTh

2
− cIeD(2MT − T 2)

2T
(5.6)

Equations (5.5), (5.6) are consistent with equations (1) and (4) in Goyal [11] ,respectively.
Furthermore, we let

∆∗ =
DM2(h + cIe) − 2A

2

Then, we have the following results.

Corollary 4

1. If ∆∗ > 0, then T ∗ is T ∗
2 .

2. If ∆∗ < 0, then T ∗ is T ∗
3 .

3. If ∆∗ = 0, then T ∗ = T ∗
2 = T ∗

3 = M .
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The results of Corollary 4 have been discussed in Chung [5].
(iii) Huang’s model

When θ → 0+ and p = c, we have

TV C(T ) =


TV C∗

1(T ) if M < T
TV C∗

2(T ) if N < T ≤ M
TV C∗

3(T ) if 0 < T ≤ N
(5.7)

where

TV C∗
1(T ) =

A

T
+

DTh

2
+

cIkD(T − M)2

2T
− cIeD(M2 − N2)

2T
(5.8)

TV C∗
2(T ) =

A

T
+

DTh

2
− cIeD(2MT − N2 − T 2)

2T
(5.9)

and

TV C∗
3(T ) =

A

T
+

DTh

2
− cIeD(M − N) (5.10)

Equations (5.8), (5.9) and (5.10) are consistent with equations (2), (3) and (4) in Huang [13],
respectively. Furthermore, we let

∆1 = −2A + DM2(h + cIe) − cDN2Ie

and

∆2 = −2A + DN2h

Then, we have the following results.

Corollary 5

1. If ∆1 < 0, then T ∗ is T ∗
1 .

2. If ∆2 > 0, then T ∗ is T ∗
3 .

3. If ∆1 > 0 and ∆2 < 0, then T ∗ is T ∗
2 .

The results of Corollary 5 have been discussed in Huang [13].

6. Summary

This paper considers a supply chain system consisting of one supplier, one retailer and
multiple customers to explore the optimal retailer’s replenishment decisions under the con-
ditions of permissible delay in payments, in which the supplier offers the retailer a fixed
delay period and the retailer in turn provides a maximal trade credit period to their cus-
tomers. Theorem 1 gives the solution procedure to find T ∗. Numerical examples are given to
illustrate Theorem 1. In addition, sensitivity analysis represents the following results: first,
T ∗, Q∗ and TV C(T ∗) increase with increase in the values of parameters A and N . Second,
T ∗ and Q∗ decrease while TV C(T ∗) increases with increase in the values of parameters c
and θ. Third, T ∗ decreases while Q∗ and TV C(T ∗) increase with increase in the value of
parameter D. Additionally, although the optimal cycle time cannot be expressed in a closed
form, it can be obtained through the use of the Intermediate Value Theorem [26]. More-
over, if N = 0 and p = c, Shah [22] can be treated as a special case of this paper. Finally,
if the deterioration is ignored, Equations (2.4) are reduced to Goyal [11] and Huang [13],
respectively.
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