Journal of the Operations Research
Society of Japan
2009, Vol. 52, No. 1, 35-45

AN LP-BASED APPROACH TO THE RING LOADING PROBLEM WITH
INTEGER DEMAND SPLITTING

Kyungchul Park Kyungsik Lee Sungsoo Park
Myongji University Hankuk University of Foreign Studies KAIST

(Received May 31, 2007; Revised August 5, 2008)

Abstract  We consider the Ring Loading Problem with integer demand splitting (RLP). The problem is
given with a ring network, in which a required traffic requirement between each selected node pair must be
routed on it. Each traffic requirement can be routed in both directions of the ring network while splitting
each traffic requirement in two directions only by integer is allowed. The problem is to find an optimal
routing of each traffic requirement which minimizes the maximum of traffic loads imposed on each link on
the network. By characterizing extreme points of the LP relaxation of an IP formulation, we analyze the
strength of the LP relaxation. Then we present a strengthened LP which provides enough information to
determine the optimal objective value of RLP. Finally, we give an LP-based polynomial-time algorithm for
the problem which can handle more general cases where nontrivial upper and lower bounds are imposed on
the amount of traffic routed in one direction for some node pairs.

Keywords: Network flow, discrete optimization, integer programming, ring loading
problem

1. Introduction

The advances in transmission technology can support dependable high speed telecommu-
nication services. Especially, the fiber-optic technology, combined with the new intelligent
synchronous digital network elements makes the networks highly reliable. Survivability,
which is the ability to restore traffic demand when a failure happens in the network, is an
important factor for the planning of reliable networks.

A ring network is a collection of nodes forming a closed loop, where each node is con-
nected via a duplex communications facility. A Self-Healing Ring (SHR) is a ring net-
work that provides redundant capacity and/or network equipment so disrupted services can
be automatically restored following network failures. The Synchronous Optical Network
(SONET) technology and associated high speed add/drop multiplexing technology make
SHR’s practical and economical for interoffice networking applications [6].

There are two types of SHR’s, unidirectional self-healing rings (USHR’s) and bidirec-
tional self-healing rings (BSHR’s). They both can restore 100% of traffic under single net-
work failure. In USHR'’s, working traffic is carried around the ring in one direction, while a
second communications ring is for protection only and transmits in the opposite direction
of the working ring. In BSHR'’s, working traffic travels in both directions around the ring.
BSHR’s are further divided into 2-fiber and 4-fiber BSHR’s. A 2-fiber BSHR uses half the
capacity of the fiber system for working traffic and reserves the other half for protection,
while a 4-fiber BSHR uses two separate fibers for working traffic and the other two fibers
for protection. We refer the reader to Wu [6] for more details.

For given required traffic (demand) between each selected node pair, the capacity re-
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quirement of a SHR is defined to be the maximum of traffic loads imposed on links of it.
The capacity requirement of a USHR is the sum of traffic requirements for all selected node
pairs on it, since the routing is fixed. As stated above, in a BSHR, each traffic requirement
can be routed in both directions around the ring. Hence, the capacity requirement of a
BSHR varies according to the routing of traffic requirements.

The problem that we study in this paper, which we call the Ring Loading Problem
with integer demand splitting (RLP), has been motivated by BSHR configuration. The
problem is given with a ring network, in which a required traffic requirement between each
selected node pair must be routed on it. Each traffic requirement can be routed in both
directions of the ring network while splitting each traffic requirement in two directions only
by integer is allowed. The problem is to find an optimal routing of each traffic requirement
which minimizes the capacity requirement. Here, the capacity requirement (the maximum
of traffic loads imposed on each link on the network).

RLP was previously studied by Lee and Chang [1], Myung [2], Vachani et al. [3], and
Wang [4]. Lee and Chang [1] proposed a heuristic algorithm for RLP and have not mentioned
the computational complexity of RLP. Vachani et al. [3] presented the first polynomial time
algorithm for RLP. The complexity of their algorithm is O(n?) , where n is the number of
nodes (links) of the given cycle. Myung [2] gave an improved O(n|K]|) algorithm, where
| K| is the number of selected node pairs. Very recently, Wang [4] presented a linear time
algorithm. The complexity of the algorithm is O(|K]|).

If there exists an efficient (polynomial time) algorithm for a discrete optimization prob-
lem, there also may exist an explicit description of the convex hull of the feasible solutions,
which in turn allows us to just solve a linear program to get an optimal solution to the
problem [5]. For example, it is known that the minimum spanning tree problem can be
solved in polynomial time, and the description of the convex hull of all spanning trees is
also explicitly known. In a sense, the existence of a polynomial time algorithm for a discrete
optimization problem is characterized by our ability to construct a linear program, with
a polynomial number of variables and constraints, which gives an optimal solution to the
discrete optimization problem. See chapter 3 of Wolsey [5] for more detailed theoretical
discussion.

Since RLP can be solved in polynomial time but the description of the convex hull of all
the feasible solutions to RLP is not known, it is natural to ask if there is a linear program
whose number of variables and constraints is bounded by a polynomial function of the size
of a given instance of RLP, and gives an optimal solution to RLP. In this paper, we give
an answer to an interesting question which is closely related to the above question. The
results presented in this paper are still valid in a more generalized case where nontrivial
integer-valued upper and lower bounds are imposed on the amount of traffic routed in one
direction of the given ring network for some selected node pairs, which is often the case
in practical telecommunication network planning process where planners want to evaluate
the capacity requirement of a ring network under various traffic scenarios and partial traffic
routing plan to simulate various what-if scenarios.

We first present an integer programming formulation of RLP in section 2. Let z;p and
zrrp be the optimal objective value of the LP relaxation of the formulation and that of RLP,
respectively. By characterizing extreme points of the LP relaxation of the formulation, we
show that zpp is equal to p or p+ 0.5, where p is a nonnegative integer. We also show that
the set of feasible solutions to the LP relaxation is an integral polyhedron in some special
cases. Further, we show that zzpp — 2.p < 1 by constructing a feasible solution to RLP,
whose corresponding objective value is less than or equal to |zpp] 4+ 1, from an optimal
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extreme point solution to the LP relaxation which has fractional coordinates. Therefore, it
is clear that zrrp = [2zrp] if zpp is equal to p 4+ 0.5, where p is a nonnegative integer. On
the other hand, if z;p is equal to p, then either zzrrp = zrp or zrrp = zrp + 1. In this
case, does there exist an LP which can tell if zgp = zpp or not ? Does there exists such an
LP whose size is bounded by a polynomial function of n and |K| 7 We give an affirmative
answer to these questions in section 3. Finally, we give concluding remarks in section 4
together with an LP-based polynomial time algorithm for RLP.

2. Analysis of LP Relaxation

The Ring Loading Problem with integer demand splitting (RLP) is defined on an undirected
ring G = (V,E) with V = {1,2,...,v} and E = {(1,2),(2,3),...,(v — 1,v),(v,1)}. The
following are additional notation and definitions to be used in the formulation of RLP.

K . set of selected node pairs (commodities),

ok, dp : two nodes of a commodity k, for each k € K, where o, < dy,

Tk . traffic requirement of commodity k, for each k € K, assumed to be a positive
integer,

P . set of links which are used by the clockwise path of k, for each k € K,
ie., {(Ok, or + 1), (Ok + 1,01 + 2), e (dk -1, dk)},

P . set of links which are used by the counter-clockwise path of k, for each k € K,
Le, E\ P,

Tk . decision variable that represents the amount of traffic requirement of commodity

k which are routed in the clockwise direction, for each k € K.

Note that telecommunication traffic is typically bidirectional. i.e., traffic requirement 7y
refers to traffic from oy to dy as well as from dj to og; the transmission technology also
typically allow for this amount of traffic requirement to be carried in both directions using
capacity 7. Hence, we only need to consider traffic requirements 7y, for o, < dj, [4].

If we route x;, units of traffic requirement of commodity & in the clockwise direction, for
each k € K, (ry — x)) units are routed in the counter-clockwise direction. Therefore, we can
formulate an integer program for RLP as follows :

(RLP) min =z (1)
st. xp <, forallk € K|
Z T + Z (rp —xp) <z, foralle € F, (2)
{keK|ee P} {k€Kl|ecP; }

xk, nonnegative integer, for all k € K.

Note that the objective function (1) is to minimize the maximum traffic loads imposed on
each link of the network. For ease of later expositions, let us rewrite constraints (2) as

follows:
I:—2+ Z Tp — Z zp < R,

{keK|ecP} {k€K|ecP; }

where R, = — Z{k€K|e€Pk_}T’€7 and let L.(z, z) be the left-hand-side of I.. For a feasible
solution (z*, z*), the value of the left-hand-side of I, is denoted by L.(z*, z*). If there exist
nontrivial integer-valued lower and upper bounds (I, and wuy, respectively) for some k € K,
then the corresponding bound constraints should be added in the above formulation.
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Now, we characterize extreme point solutions of the linear programming relaxation of
(RLP) and analyze the strength of it. Let (LP) be the linear programming relaxation of
(RLP), that is, (RLP) without integrality restrictions. Let P be the set of feasible solutions
to (LP) and (Z,y) be an extreme point of P. Let EQ(Z,y) be the set of defining inequalities
of P which are satisfied at equalities by (Z,7) and let E(z,y) = {e € E|L.(z,z) = R.}.
Further, define K(z) = {k € K|0 < Z) < rz}. Then by substituting the variables zy,
k € K\ K() into each inequality of EQ(Z, ), we can obtain the following system of linear
equations :

—z+ Z T — Z zp = R,, for all e € E(Z,7), (3)

{keK (z)lecP} {keK(z)lec Py }
where Re = Re = 3" e 0\ R(m)jeery ) Tk + Do (ke s\ R (@)ecr} Th

The following proposition characterizes every extreme point of P. We call an integer ¢
is even(odd) if the absolute value of ¢ is even(odd), from now on.

Proposition 1 Let (Z,7) € P be an extreme point of P, then Z; = [;/2 for all k € K,
where [, is a nonnegative integer which is less than or equal to 2r;.

Proof. See Appendix. [J

The above proposition means that every extreme point of P is half-integral. That is, if a
variable corresponding to an extreme point of P has a fractional value, its fractional part is
0.5. Myung [2] showed that there exists a half-integral optimal solution to (LP). This fact,
however, does not necessarily mean that every extreme point of P is half-integral.

Proposition 2 P is an integral polyhedron, that is every extreme point is integral, if all
R.’s are either even or odd.

Proof. See Appendix. [J

If r; is even for each k£ € K, the associated polyhedron P is integral by the above proposition
2. Now, we will analyze the strength of the bound of (LP). First, we need the following
definition.

Definition 1 Two commodities i, j € K are (mutually) independent if one of the following
two conditions holds, otherwise, i and j are dependent. i) P;* C P (or F;" D P}"), ii)
Pr C P;.

i j

Note that if two commodities are independent, then each of the two traffic requirements can
be routed without sharing a common link, i.e., if the condition 4) holds then Pt N P =10
(or P~ N P =), and if the condition #7) holds then P;" N P;" = 0.

We say that a set of commodities N C K is dependent, if ¢ and j are dependent, for
every pair of 7,7 € N. Now, we present some observations. First, note that PjJr UP  =E,
for every j € K.

Remark 1 For any pair of commodities i,j € K, the followings hold. i) P;" C P;r(P;r D
P) if and only if P~ D Py (P~ C Py ), i) P;” C Py if and only if P~ D P

J J

(© Operations Research Society of JapalORSJ (2009) 52-1



An LP-Based Approach to the Ring Loading Problem 39

Remark 2 If i, j € K are dependent, the followings hold. ) P;LHP;' # 0, 1) PfﬂPj_ # 0,
iii) P70 Py # 0.

Remark 3 Let N ={1,2,...,n} C K, where 0; < 0y < --- < 0,. If N is dependent, then
01 <09 < <o, <dy <dy<-+-<dp,.

Now, let (SP) be (RLP) with K = N and r; =1, foralli € N, where N = {1,2,...,n}is
dependent with 0; < 0y < --- < o0,. From remark 3, we have 01 < --- <0, < dy < --- < d,.
It can be easily shown that z; = 0.5, for all : € N with the corresponding objective value
zZ = n/2, where (Z, Z) is an optimal solution of the linear programming relaxation of (SP).
Now, consider the following feasible solution (2, 2’) to (SP) :

x, =1, if i is odd, for all i € N,z = 0, otherwise, (4)
7= maXeeE{Z{iemeeP;} i + Z{ieN\eeP;}(l —x;)}.

That is, if ¢ is odd, the traffic requirement of commodity 7 is routed in the clockwise direc-
tion, otherwise, it is routed in the counter-clockwise direction. The following proposition
characterizes the corresponding objective value of the solution (4).

Proposition 3 Let (2/, 2’) be a feasible solution to (SP) defined as (4). Then, 2’ = (n/2+1),
if n is even, and 2’ = (n/2 + 0.5), if n is odd.

Proof. See Appendix. [J

The following proposition and proposition 3 are keys to the analysis of the strength of
the bound of (LP).

Proposition 4 Let (Z,z) be an optimal extreme point solution to (LP), where FF C K
with |F| > 2 is the set of commodities which correspond to the variables whose values are
fractional. Then, if i, € F are independent, we can construct another optimal solution
(z',2) to (LP) in which zj, 2 are integral.

Proof. By proposition 1, 2, = p + 0.5,Z; = ¢ + 0.5, for some nonnegative integers
p <m;—1,q <r;—1. First, suppose that the condition ¢) of definition 1 holds. Without loss
of generality, assume that P;" C Pj+. Then, by remark 1, P, D P;. Consider a solution
2" in which 2] = p+ 1,2 = ¢ and all the other variables remain the same. It can be
easily shown that (2/,2') is a feasible solution to (LP) with 2’ = Z. Now, suppose that the
condition i) of definition 1 holds, i.e., ;" C P;. Then, P;" N P/ = (). So, consider the
following feasible solution z’ in which x{ = p+1, 2 = ¢+1 and all the other variables remain
the same. It can be also easily shown that (z/, 2/) is a feasible solution to (LP) with 2’ = z. [

Now, recall that z;p denotes the optimal objective value of (LP) and zgpp denotes that
of (RLP).

Theorem 1 zi p — z,p < 1 and the bound is tight.

Proof. Suppose that an optimal extreme point solution (z*,2*) to (LP) is given, where
2* = zpp. If o* is integral, zgrrp — zp = 0. So, assume that z* has some fractional
coordinates. From proposition 4, we can construct another optimal solution (2’, z2*) to (LP)
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by sequentially choosing a pair of independent commodities and changing values to integers.
Let F be the set of commodities which correspond to the variables whose values are fractional
in 2. If F =0, then zgrrp — 2r.p = 0. So, assume that F' # (). By the construction of x/, F
is dependent or has a single commodity.

Consider a modified instance of the given instance of (RLP), where the traffic requirement
for each k € F is set to rx — 1 but all the others remain the same. By proposition 1, the
following solution (Z, Z) is a feasible solution to this modified instance of (RLP) :

I, =x,forallk € K\ F,

T =), — 0.5, for all k € F,

z=zp — (|F]/2).
Then, consider an instance of (SP) with K = F. By proposition 3, we can construct a
feasible solution (z,Z2) to this instance of (SP) with z = (|F|/2 + 1) if |F| is even, and
Z=(|F|/240.5) if |F| is odd. Now, if we set T = ¥}, for all k € K\ F, and T} = %+ I for
all k € I, then (7, 2) is a feasible solution to the given instance of (RLP) whose objective
value z is less than or equal to :

zup = (IF1/2) + ([F|/2 +1) = zpp + 1, if [F is even,
zp — (|F]/2) + (|F|/2 +0.5) = zp + 0.5, if | F| is odd.

Therefore, zrrp — 2zpp < 1. Consider an instance of (RLP) with only two dependent com-
modities whose demands are all equal to 1. In this case, zpp = 1, 2zgp = 2. So, the bound
is tight. [

The fact that zgp— 2z p < 11is already known by the previous studies such as Myung [2].
However, we want to mention that the above theorem still holds in generalized cases where
nontrivial integer-valued upper and lower bounds are imposed on the decision variable xy,
for each k € D, where D C K.

From theorem 1, we can obtain an optimal solution of (RLP) if zpp = p + 0.5, for
some nonnegative integer p. On the other hand, if z p = p for some nonnegative integer
p, either zrrp = p or zgp = p + 1. Recall that z,p = 1 and zzrp = 2 in the example
instance given in the proof of theorem 1. Let us consider an instance of (RLP) defined on a
6-node ring network with £ = {(i,7+1)|i = 1,...,5}U{(1,6)} and four commodities whose
demands are all equal to 1, where {(ox,d)|k = 1,...,4} = {(1,4),(2,3),(2,5),(3,6)}. In
this example, it can be easily shown that zz;p = 2 and an optimal extreme point solution
to the corresponding LP relaxation is z, = 0.5,k =1,...,4, with z;p = 2. As in the proof
of theorem 1, we can construct a feasible solution (z, ) to (RLP) with zZ = 3 starting from
the fractional solution.

Suppose that z;p = p for some nonnegative integer p. Then, does there exist a linear
program whose number of variables and constraints is bounded by a polynomial function of
|E| and |K|, which can provide information to determine if zgr,p = p or not 7 In the next
section, we give an affirmative answer to this question.

3. A Strengthened Linear Program

For a pair of inequalities I, and Iy, if exactly one of R, and Ry is an odd number, we can
obtain the following valid inequality I.; to (RLP) :

Lp:—z+ Y x— Y.z < |[(Re+Ry)/2).

{keK|e,fePT} {keKle,feP; }
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Note that the right-hand-side of I.; is equal to (R.+ R)/2—0.5 and .y = If.. Let L.s(x, 2)
be the left-hand-side of I.;. Then, L.¢(z,2) = (Le(x, 2) + L¢(z, 2)) /2.

For ease of exposition, let @ = {(e, f)|exactly one of R, and R; is odd, for each pair of
e, f € E}. Let (LP’) be the LP relaxation of (RLP) obtained by adding all I, (e, f) € @
to (LP), which yields a stronger LP relaxation of (RLP) than (LP). We also use EQ(Z, z) to
denote the set of inequalities of (LP’) which are satisfied at equalities by a feasible solution

(z,z) to (LP").

Proposition 5 Let (7,Z) be a feasible solution to (LP’). If I, € EQ(Z,z) and I; €
EQ(z, z), then both R, and Ry are either odd or even.

Proof. Suppose that I, € EQ(Z, %) and I; € EQ(Z, Z), but exactly one of R, and Ry is
odd. Then, L.¢(Z,2) = (Le(Z, 2) + Ly(2,2))/2 = (Re + Ry)/2 > | (R + Ry)/2], thus, (z, 2)
violates I.y. [

Proposition 6 Let (z*,2*) be an extreme point solution to (LP’) with 2* = z;p. If I €
EQ(x*,z*), for some (e, f) € @, then exactly one of I, and I is in EQ(z*, 2*).

Proof. Suppose that I.; € EQ(z*,2*). Clearly, both I. and I; cannot be in EQ(x*, 2*).
Now, suppose that I. ¢ EQ(x*,2*) and Iy ¢ EQ(x*, 2*). Then the following hold :

Le(x*,2") 4+ Se = Re, Ly(2™,2") + sy = Ry and
Les(z*,2") = [(Re + Ry)/2], where s, > 0 and sy > 0.

From the construction of I.f, Lc(z,2) = Lep(x,2) + l(z) and Ly(x, 2) = Les(x, 2) — (),

Lo(x*,2") 4+ e = Leg(2*,2%) + 1(2) + s = R.,
Li(z*, 2") 4+ sf = Leg(a*,2") — (") + sy = Ry,
Lep(x",2") + (se + s¢)/2 = (Re + Ry) /2.

Therefore, s, 4+ sy = 1, where s, > 0 and sy > 0.

Now, we show that I, ¢ EQ(x*,2%), for all g € E'\ {e, f}. Suppose I, € EQ(z*, z*), for
some g € E'\{e, f}. Without loss of generality, assume that R, is odd and R, is even, then,
since 0 < s, < 1,

Leg(27,2%) = (Le(2", 27) + Ly(27, 27)) /2 = (Re + Ry) /2 — s5¢/2
> (Re + Rg)/2 = 1/2 = [(Re + Ry)/2].

It means (x*, 2*) violates I.,, which contradicts the supposition that I, € EQ(x*,z*), for
some g € E\ {e, f}.

Therefore, if I.; € EQ(x*, 2*) but I, ¢ EQ(z*, z*)and Iy ¢ EQ(x*, 2*), then Ly(x*, 2*) <
R, for all g € E. It means that there exists a feasible solution (z*,2’) to (LP) such that
2! < z*, which is impossible because (z*, z*) is an optimal solution to (LP). O

The following theorem characterizes the strength of bounds provided by (LP’).

Theorem 2 If there exists a feasible solution to (RLP) whose objective value is equal
to zpp, then an optimal extreme point solution (z,Z2) to (LP’) is integral with z = zyp.
Otherwise, (Z, 2) has possibly fractional coordinates with zZ > zpp.
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Proof. Suppose that there exists a feasible solution to (RLP) whose objective value is
equal to zrp. Then, there exists an optimal extreme point solution (Z,2) to (LP’) with
Z = zpp. Therefore, we have only to prove that (,2) is integral. By proposition 5, R.’s
have the same parity, for all I, € EQ(z, 2). Also by proposition 6, if I.; € EQ(z, 2), exactly
one of I, and Iy is in EQ(z,2). Let us assume that I,y € EQ(%,2) and I, € EQ(Z, 2).
Then, Ls(%,2) = Ry — 1. Also note that I.; is equal to an inequality (I + I})/2, where
Iy o Ly(w,2) < Ry — 1. Therefore, (%, 2) should be the unique solution to the following
system of linear equations :

rE =1y, for all k € K such that 2, = ry,

x, =0, for all £ € K such that 2, =0,

L.(x,z) = R, for all I, € EQ(z, 2), (5)
Ly(x,z) = Ry — 1, forall I.; € EQ(%,2) and I, € EQ(z, 2). (6)

Note that the right-hand-side values of all equations in (5) and (6) have the same parity.
Now, consider some k € K such that 2, = ;. Note that x; appears in all equations in (5)
and (6) with the coefficients 1 or -1. Therefore, the right-hand side values of all equations
in (5) and (6) after substituting &, = 7 into them also have the same parity. By repeating
the same process, finally, we can obtain a system of linear equations similar to (3) with the
right-hand sides of the same parity. Now, by proposition 2, (Z, 2) is integral. This completes
the first part of this theorem.

Now, suppose that zgrrp > zrp. Then Z > zpp, otherwise, as in the first part of this
proof, (Z, 2) is integral with Z = z;p, which contradicts zgrp > zpp. O

From the above theorem, (LP’) either gives an optimal integral solution to (RLP) if
ZRLP = ZLp Or proves zgrp > zrp When zpp = p for some nonnegative integer p. Moreover,
since ZRLP — RLP S 1, it is clear that Zrop — 2Lpr < 1, thus, ZRLP — [ZLPI—I, where ZLp! is
the optimal objective value of (LP’). The number of additional inequalities L, (e, f) € @,
is at most |E|?/4. Therefore, (LP’) has | K| variables and at most |E| + |E|*/4 constraints.

4. Concluding Remarks

In this paper, we present a strengthened linear program of which size is bounded by a
polynomial function of the number of nodes (links) and the number of selected node pairs,
which provides enough information to determine the optimal value of (RLP). Based on the
results, we have tried to find the complete inequality description of the convex hull of fea-
sible solutions of (RLP). For now, we just have partial results for that, however, we expect
the convex hull description can be found in the near future. One final remark is that an
LP-based polynomial time algorithm for (RLP) can be devised as follows by using theorem
2 and the proof of theorem 1 :

Algorithm A :

Step 1 : Solve (LP), let (z*, 2*) be the obtained solution to (LP). If (z*, 2*) is integral, it is
an optimal solution to (RLP) and stop.

Step 2 : Construct an integral solution (Z,z) as in the proof of theorem 1. If Z = 2* or
z=2z"+0.5, (Z,2) is optimal and stop.

Step 3 : Construct (LP’) and solve it. Let (Z,Z2) be the obtained optimal extreme point
solution of (LP’). If 2 = 2* (Z, 2) is integral by theorem 2 and it is optimal, stop. Oth-
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erwise, Z > 2%, zprp = 2" + 1 and (7, 2) is an optimal solution to (RLP).

Note that a linear program can be solved in polynomial time and we can construct (LP)
and (LP’) in polynomial time. Also note that the number of fractional coordinates of an
optimal solution to (LP) without z is at most |E| — 1, because the maximum rank of the
systems of linear equalities (3) is at most |E|. Hence, we can construct (Z, z) within O(|E|?)
time. Therefore, Algorithm A has a polynomial time complexity.

The above algorithm may be slower than the combinatorial algorithms [2—4] developed
so far. Since the theorems and propositions presented in section 2 and 3 hold in general-
ized cases where nontrivial integer-valued upper and lower bounds are imposed on decision
variables(zy’s), the above algorithm can be used in such cases. However, previously devel-
oped fast combinatorial algorithms in [2-4] may need to be modified to handle such cases.
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Appendix
Proof of Proposition 1. Let B be the left-hand-side coefficient matrix of (3). After
eliminating redundant equations, we can assume that B = [By, Ba, ..., By] is an m by m

nonsingular integral matrix and b is an m by 1 integral vector, where the first column of B,
By, corresponds to the variable z. Note that each column corresponding to the variable x;
of (LP), for all k € K, has one of the following two patterns :

1,...,1,=1,...,—1" and [-1,...,—-1,1,...,1,—1,..., —1]".
Hence, B;, for all 2 < ¢ < m, has one of the following three patterns :
m,...,1,—=1,..., =" [-1,...,—1,1,...,1]%, and [-1,...,—1,1,...,1,—1,..., —1]".
Since By = [—1,...,—1]T, B; cannot have [1,...,1]T or [-1,...,—1]T, for all 2 < i < m.

Let us apply Gaussian elimination procedure to (B : b). After the first step, B is changed

to B, where
_1 a(l)
1 —
o= |
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d=10,...,0]" is an (m — 1) x 1 vector, a®) is an 1 x (m — 1) vector each element of which
is either 1 or -1, and AM is an (m — 1) x (m — 1) matrix each column of which has one of
the following three patterns in which leading 0’s may be omitted :

0,...,0,—2,...,—2]",[0,...,0,2,...,2]", and [0,...,0,2,...,2,0,...,0]".

Note that b is changed to an m by 1 integral vector. We now only to apply Gaussian elimi-
nation procedure to A1, It can be easily shown that after completing Gaussian elimination
procedure to A, each nonzero element of the resulting upper-triangular matrix is either 2
or -2. Also the resulting right-hand-side vector is an integral vector. Note that we can use
only subtractions at each elimination step without row exchanges. But column exchanges
are possibly used. This proves proposition 1. []

Proof of Proposition 2. Suppose that b = [by, ..., b,]7 such that all b;’s are either even or
odd. After the first step of Gaussian elimination procedure as in the proof of proposition 1,
b is changed to ") = [by, by — b1, ..., by, — b1]7, where every b; — by is even, for all 2 < i < m.
Therefore, the result follows. [

Proof of Proposition 3. Recall that (SP) is a special case of (RLP) with K = N and r; =

1, for all i € N, where N = {1,2,...,n} is dependent with 0y < -+ < 0, < dj < -+ < d,.

Suppose that (2', 2) is a feasible solution to (SP) given in (4). z’ is equal to the maximum

number of commodities which pass through links of G. Let (i — j) be the set of commodities

which pass through the set of links between two nodes ¢ and j, where the set of links between

iand jis {(i,i4+1),...,(j—Lj)}ifi<jor{(i,i+1),....,(n,1),....,(5 —1,5)}if i > j.
i)if niseven: forall 1 <i<n-—1,

(0 Y= {2011 <1< (i+1)/2YU{2|(i +1)/2 <1< n/2}, if i odd,
(0 —0i41) ={20 — 1|1 <1 <i/2} U{2l|(i +2)/2 <1 <n/2},ifieven,
(di —dipr) ={2I1 <1< (i—1)/2} U{2l = 1|(i+3)/2 <1 < n/2}, if i odd,
(di —dipr) ={2l1 <1 <if2}U{20 —1|(i+2)/2 <1 <n/2},ifieven,
(0, —dy) =42l —1]1 <1< n/2}, and

(d, —o01) ={2l]1 <1 <n/2}. So,

|(0; = 0i41)| = (n/2) + 1, if i odd, otherwise n/2, forall 1 <i<mn—1,

(o — d1)] = |(dn — 01)| = /2, and

|(d; — diz1)| = (n/2) — 1, if ¢ odd, otherwise n/2, for all 1 <i<n—1.

Therefore 2’ = (n/2) + 1.
i1) if n is odd, in the same manner, we can get :

|(0; — 0i41)| = (n —1)/2+ 1, if i odd, otherwise (n —1)/2, forall 1 <i<n-—1,
(00 = di)| = (n = 1)/2+1,
(d — 01)] = (n — 1)/2, and
|(d; — dis1)| = (n—1)/2, if i odd, otherwise (n —1)/2+41, forall 1 <i<n—1.

Therefore 2/ = (n —1)/2+1=n/2+0.5. O
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