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Abstract In this paper, we design a new projection-type alternating direction method which is an attractive
method for solving variational inequality problems, and its application range covers linear programming,
semidefinite programming etc. In each iteration, it just solves a linear equation and implements three
orthogonal projections to closed convex sets. Under the conditions of monotonicity and Lipschitz continuity
of f(x) involved in the variational inequality problems, we prove the global convergence of the new method.
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1. Introduction

Let S ⊂ Rn be a nonempty closed convex subset and let f be a continuous, monotone
mapping from Rn into itself. Throughout the paper, we discuss the variational inequality
problem: to find a vector x∗ ∈ S, such that

(x− x∗)>f(x∗) ≥ 0 ∀x ∈ S . (1.1)

We use VI(f, S) to denote the above problem. VI(f, S) covers linear programming by
setting f = c, a constant vector, and S = {x ∈ Rn : Ax = b, x ≥ 0}. This problem
has several important applications in many fields, such as linear programming, semidefinite
programming, network economics, traffic assignment, game theoretic problems, etc.[1,2,3].

There are many methods for VI(f, S). Among these methods, the projection type meth-
ods are attractive for their simplicity and efficiency, especially when the feasible set S has
some special structure (e.g., S is the nonnegative orthant, or more generally, a box). Most
recently, Han[4] proposed an efficient alternating direction method for cocoercive nonlinear
variational inequality that

S = {x ∈ Rn|Ax = b, x ∈ X},
where A ∈ Rm×n,b ∈ Rm, and X is a simple closed convex subset of Rn. In [5], Han proposed
a proximal decomposition algorithm for a special form of VI(f, S) where S has the following
structure:

S = S1 = {x ∈ Rn|Ax = b, x ≥ 0},
or

S = S2 = {x ∈ Rn|Ax ≥ b, x ≥ 0}.
In [5], by introducing a Lagrange multiplier y ∈ Rm to the linear constraint Ax = b, Han
obtained an equivalent form of (1.1) for the special S (denoted by VI(F ,Ω)): find u ∈ Ω
such that

(u− u∗)>F (u∗) ≥ 0, ∀u ∈ Ω, (1.2)
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where u =

(
x
y

)
, F (u) =

(
f(x)− A>y

Ax− b

)
, Ω = X ×Rm.

In [5], the proximal decomposition algorithm searches the solution of (1.2) by an iterative
method. At each iteration, it solves a system of linear equations approximately and executes
a projection step to generate a temporary point, and then uses the current point and the
temporary point to produce a descent direction and a step-size. The methods of Han[4,5]
are attractive for their simplicity since each iteration requires only one projection to a simple
convex set (or a linear equation) and some function evaluations. It would be beneficial to
extend the approach[4,5] to more general VI(F ,Ω) which has been studied in [6], that is,
find u ∈ Ω such that

(u− u∗)>F (u∗) ≥ 0, ∀u ∈ Ω,

where u =

(
x
y

)
, F (u) =

(
f(x)− A>y

Ax− b

)
, Ω = X × Y , X ⊆ Rn and Y ⊆ Rm be

given simple nonempty closed convex subset. Obviously, the variational inequality problems
discussed in [4,5] are special cases of the above VI(F ,Ω). VI(F, Ω) has attracted much
attention not only from optimization community, but also from application fields, because
its numerous applications in operations research, economics, transportation equilibrium and
so on can be explained by this model[1,3]. When X and Y are simple closed convex sets, the
computational load of projection is tiny, which makes projection-type alternating direction
method applicable in practice.

Note that the above VI(F ,Ω) can be expressed as follows, which is denoted by VI(Q,W )[6]:
find a point w∗ ∈ W such that

(w − w∗)>Q(w∗) ≥ 0 ∀w ∈ W , (1.3)

where w =




x
y
z


, Q(w) =




f(x)− A>y
z

Ax− z − b


, W = X×Y ×Rm. To solve VI(Q, W ), Wang

et. al.[6] proposed a decomposition method, but Han mentioned in [4], obtaining an exact
solution of the subproblem included in [6] itself is difficult.

Using the iteration technique in [5], we propose a new alternating direction method for
VI(Q,W ). At each iteration, the new method only has to solve a system of linear equation
and perform three projections. The step-sizes are bounded away from zero if the mapping
f(x) is Lipschitz continuous.

The paper is organized as follows. In Section 2, we summarize some basic definitions
and properties used in this paper, then we formally propose the new alternating direction,
and the global convergence of the method is proved under the condition that f is Lipschitz
continuous on X. In Section 3, we report some preliminary computational results of the
proposed method. Section 4 gives some concluding remarks.

2. Algorithm and Convergence

We first give some basic properties and related definitions used in this paper. We denote
‖ · ‖ and 〈·〉 as the Euclidean norm and inner product, respectively. We use PW (·) to denote
the orthogonal projection mapping from Rn+2m onto W , that is

PW (w) = PW




x
y
z


 =




PX(x)
PY (y)

z


 , w = (x, y, z) ∈ Rn+2m.
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It is well known that VI(Q,W ) is equivalent to the projection equation

w = PW [w − βQ(w)],

where β is an arbitrary positive constant[3,4]. Let

e(w, β) =




e1(w, β)
e2(w, β)
e3(w, β)


 = w − PW [w − βQ(w)] =




x− PX [x− β(f(x)− A>y)]
y − PY [y − βz]
β(Ax− z − b)




denote the residual function of the projection equation. VI(Q, W ) is equivalent to finding
a zero point of e(w, β)[3,4]. For the closed convex set W , a basic property of the projection
mapping PW is

(w − PW (w))>(v − PW (w)) ≤ 0, ∀w ∈ Rn+2m,∀v ∈ W. (2.1)

From (2.1) and the Cauchy-Schwartz inequality we can see that the projection operator PW

is nonexpansive, namely

||PW (v)− PW (w)|| ≤ ||v − w||, ∀v, w ∈ Rn+2m.

We need the following definitions concerning the functions.
Definition 2.1.

(a) A mapping f : Rn → Rn is said to be Lipschitz continuous if there exists a constant
L > 0 such that

||f(x)− f(y)|| ≤ L||x− y||, ∀x, y ∈ Rn.

(b) A mapping f : Rn → Rn is said to be monotone if

(x− y)>(f(x)− f(y)) ≥ 0, ∀x, y ∈ Rn.

In the paper we always assume that the underlying function f(·) is Lipschitz continuous
and monotone, and that the solution set of VI(Q,W ), denoted by W ∗, is nonempty.

We are now in the position to describe our method formally.
Algorithm 2.1
Step 0. Choose an arbitrary point w0 = (x0, y0, z0) ∈ W , and set a small number ε > 0
for the solution accuracy, σ ∈ (0, 1), 0 < β < min{1, 2σ2, 1/(L + ‖A‖2/2)},where ‖A‖ =

max{‖Ax‖
‖x‖ |‖x‖ 6= 0}. Set k:=0.

Step 1. Find z̄k by solving the following system of linear equations

σ(Axk − z̄k − b) + (z̄k − zk) = 0. (2.2)

Step 2. Set
ȳk = PY [yk − βz̄k], (2.3)

x̄k = PX [xk − β(f(xk)− A>ȳk)]. (2.4)

If ‖wk − w̄k‖2 ≤ ε, then stop.
Step 3. Set

g(wk) =




xk − x̄k + β(f(x̄k)− f(xk)) + σ2A>(Axk − zk − b)/(1− σ)2

yk − ȳk + β(Ax̄k − z̄k − b)
−σ2(Axk − zk − b)/(1− σ)2


 . (2.5)
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Then compute αk by
αk = (1− τ)‖wk − w̄k‖2/‖g(wk)‖2, (2.6)

where τ is a parameter which will be specialized later.
Step 4. Compute wk+1 = (xk+1, yk+1, zk+1) via

wk+1 = PW [wk − αkg(wk)]. (2.7)

Set k := k + 1 and goto Step 1.

First, we consider the stopping criteria in Step 2.
Lemma 2.1. For any β > 0, we have ‖wk − w̄k‖2 = 0 ⇐⇒ ‖e(wk, β)‖ = 0.

Proof. If ‖wk − w̄k‖2 = 0, then

xk = x̄k, yk = ȳk, zk = z̄k.

By zk = z̄k and (2.2), we have: Axk−zk−b = 0, i.e. e3(w
k, β) = 0. By xk = x̄k and yk = ȳk,

(2.3) and (2.4) indicate e1(w
k, β) = 0 and e2(w

k, β) = 0,respectively. Thus, ‖e(wk, β)‖ = 0.
If ‖e(wk, β)‖ = 0, then we have Axk − zk − b = 0 and PY [yk − βzk] = yk, PX [xk −

β(f(xk)− A>yk)] = xk. By (2.1), we have

z̄k − zk = −σ(Axk − zk − b)/(1− σ) = 0.

By (2.2), we have
ȳk = PY [yk − βz̄k] = PY [yk − βzk] = yk.

By (2.3), we have

x̄k = PX [xk − β(f(xk)− A>ȳk)] = PX [xk − β(f(xk)− A>yk)] = xk.

Thus, ‖wk − w̄k‖2 = 0. Q.E.D.
We thus can use ‖wk− w̄k‖ as a measure to evaluate how far wk leaves from the solution

set of VI(Q,W ). Therefore the stopping criterion in Step 2 is reasonable.

Theorem 2.1. Suppose that f(x) is monotone and Lipschitz continuous with a constant
modulus L > 0, {wk} and {w̄k} are the sequences generated by the above algorithm. Let
w∗ be an arbitrary solution of VI(Q,W ). Then, we have

(wk − w∗)>g(wk) ≥ (1− τ)‖wk − w̄k‖2, (2.8)

where τ ∈ (0, 1) is a parameter in (2.6).

Proof. By the property (2.1) of the projection and x∗ ∈ X, y∗ ∈ Y , we have

(yk − βz̄k − ȳk)>(ȳk − y∗) ≥ 0, (2.9)

{xk − β(f(xk)− A>ȳk)− x̄k}>(x̄k − x∗) ≥ 0. (2.10)

Since w∗ is the solution of VI(Q,W ) and Lemma 2 in[7], we have

(x̄k − x∗)>(f(x∗)− A>y∗) ≥ 0, (2.11)

(ȳk − y∗)>z∗ ≥ 0, (2.12)
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Ax∗ − z∗ − b = 0. (2.13)

By the monotonicity of f , we have

(f(x̄k)− f(x∗))>(x̄k − x∗) ≥ 0. (2.14)

Computing (2.10)+β(2.11)+β(2.14) leads us to

{xk − β(f(xk)− f(x̄k)) + βA>(ȳk − y∗)− x̄k}>(x̄k − x∗) ≥ 0,

i.e.,
(xk − x∗)>(xk − x̄k) + β(x̄k − x∗)>A>(ȳk − y∗)

+ β(x̄k − x∗)>{f(x̄k)− f(xk)} ≥ ‖xk − x̄k‖2.
(2.15)

Computing (2.9)+β(2.12), we have

(yk − y∗)>(yk − ȳk)− β(ȳk − y∗)>(z̄k − z∗) ≥ ‖yk − ȳk‖2. (2.16)

By (2.13)+(2.15)+(2.16), we have

(
xk − x∗

yk − y∗

)> (
xk − x̄k + βf(x̄k)− βf(xk)
yk − ȳk + β(Ax̄k − z̄k − b)

)

≥
∥∥∥∥∥

xk − x̄k

yk − ȳk

∥∥∥∥∥
2

− β(xk − x̄k)>{f(xk)− f(x̄k)}
−β(ȳk − yk)>(Ax̄k − z̄k − b).

(2.17)

On the other hand, by the equalities (2.2) and (2.13), we have

(1− σ)2‖z̄k − zk‖2/σ2

= ‖Axk − zk − b‖2

= (Axk − zk − Ax∗ + z∗)>(Axk − zk − b)
= (xk − x∗)>A>(Axk − zk − b)− (zk − z∗)>(Axk − zk − b).

(2.18)

By (2.2) again, we have

β(ȳk − yk)>(Ax̄k − z̄k − b)
≤ β‖ȳk − yk‖‖Ax̄k − z̄k − b‖
≤ β‖A‖‖ȳk − yk‖‖x̄k − xk‖+ β‖ȳk − yk‖‖z̄k − zk‖/σ
≤ β‖ȳk − yk‖2 + β‖A‖2‖x̄k − xk‖2/2 + β‖z̄k − zk‖2/2σ2.

(2.19)

where the last equality is deduced by 2ab ≤ a2 + b2. From (2.17)−σ2(2.18)/(1−σ)2 and the
Lipschitz continuity of f , we have

(wk − w∗)>g(wk) ≥ ‖wk − w̄k‖2 − βL‖xk − x̄k‖2

− β(ȳk − yk)>(Ax̄k − z̄k − b),

then from (2.19), we can get

(wk − w∗)>g(wk) ≥ ‖wk − w̄k‖2 − β(L + ‖A‖2/2)‖xk − x̄k‖2

− β‖ȳk − yk‖2 − β‖z̄k − zk‖2/2σ2.

Set max{β, β(L + ‖A‖2/2), β/2σ2} ≤ τ < 1. From the above inequality, we get
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6 S. Min

(wk − w∗)>g(wk) ≥ (1− τ)‖wk − w̄k‖2.
Q.E.D.

From Theorem 2.1, −g(wk) is a descent direction of the function 1
2
||wk−w∗||2 whenever

wk ∈ W is not a solution of VI(Q,W ).

In the following, we assume that the Algorithm generates an infinite sequence.
Theorem 2.2. Suppose that the conditions in Theorem 2.1 hold, then

(a). ∃ε > 0, such that αk ≥ ε, ∀k ≥ 0.
(b). The two sequences {wk} and {w̄k} generated by the algorithm are bounded.
(c). lim

k→∞
‖wk − w̄k‖ = 0.

Proof. (a). From (2.2) we have

σ(Axk − z̄k − b) = −(z̄k − zk). (2.20)

The first part of g(wk) can be rewritten as

xk − x̄k + β(f(x̄k)− f(xk)) + σ2A>(Axk − zk − b)/(1− σ)2

= (xk − x̄k) + β(f(x̄k)− f(xk)) + σ2A>(Axk − z̄k − b)/(1− σ)2

+σ2A>(z̄k − zk)/(1− σ)2.

then by (2.20) and the Lipschitz continuity of f , we have

‖xk − x̄k + β(f(x̄k)− f(xk)) + σ2A>(Axk − zk − b)/(1− σ)2‖
≤ ‖xk − x̄k‖+ βL‖xk − x̄k‖+ (1 + σ)σ‖A‖‖zk − z̄k‖/(1− σ)2

≤ [1 + βL + (1 + σ)σ‖A‖/(1− σ)2]‖wk − w̄k‖.
The second part of g(wk) can be rewritten as

yk − ȳk + β(Ax̄k − z̄k − b) = yk − ȳk + β[A(x̄k − xk) + Axk − z̄k − b],

then by (2.20) again, we have

‖yk − ȳk + β(Ax̄k − z̄k − b)‖
≤ ‖yk − ȳk‖+ β(‖A‖‖x̄k − xk‖+ ‖z̄k − zk‖/σ)

≤ (1 + β‖A‖+ β/σ)‖wk − w̄k‖.
Similarly, the third part of g(wk)

‖ − σ2(Axk − zk − b)/(1− σ)2‖ ≤ (σ + σ2)‖wk − w̄k‖/(1− σ)2.

From the above analysis and (2.6), it is easy to deduce that (a) holds.
(b). Let w∗ = (x∗, y∗, z∗) be an arbitrary solution of VI(Q,W ). By (2.7),w∗ ∈ W and

the nonexpansive of the projection operator, we have

‖wk+1 − w∗‖2 ≤ ‖wk − w∗ − αkg(wk)‖2

= ‖wk − w∗‖2 − 2αk(w
k − w∗)>g(wk) + α2

k‖g(wk)‖2

≤ ‖wk − w∗‖2 − 2αk(1− τ)‖wk − w̄k‖2 + αk(1− τ)‖wk − w̄k‖2

= ‖wk − w∗‖2 − αk(1− τ)‖wk − w̄k‖2

≤ ‖wk − w∗‖2 − ε(1− τ)‖wk − w̄k‖2.

c© Operations Research Society of JapanJORSJ (2009) 52-1
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Because τ ∈ (0, 1), from the above inequality, we have

‖wk+1 − w∗‖ ≤ ‖wk − w∗‖ ≤ ... ≤ ‖w0 − w∗‖. (2.21)

and

∞∑

k=0

‖wk − w̄k‖2 < lim
N→∞

1

ε(1− τ)
(‖w0 − w∗‖2 − ‖wN − w∗‖2)

≤ 1

ε(1− τ)
‖w0 − w∗‖2 < +∞.

Thus {wk} and {w̄k} are bounded.

(c). We can get assertion (c) immediately from
∑∞

k=0 ‖wk − w̄k‖2 < +∞. Q.E.D.

Theorem 2.3. Suppose that the conditions in Theorem 2.1 hold, then the whole sequence
{wk} generated by the algorithm converges to a solution of VI(Q,W ) globally.

Proof. It follows from Theorem 2.2 that {wk} is bounded, thus it has at least one cluster
point. Let w∗ = (x∗, y∗, z∗) be a cluster of {wk} and {wkj} be the corresponding subsequence
converging to w∗.

Taking limit in (2.2),(2.3),(2.4) along the subsequence and using the continuity of f and
the projection operator PX and PY , we have

Ax∗ − z∗ − b = 0,

y∗ = PY [y∗ − βz∗],

x∗ = PX [x∗ − β(f(x∗)− A>y∗)],

which mean that w∗ ∈ W is a solution of VI(Q,W ). In the following we prove that the
sequence {wk} has exactly one cluster point. Assume that ŵ is another cluster point of
{wk}. Then we have

δ := ‖w∗ − ŵ‖ > 0.

Because w∗ is a cluster point of the sequence {wk}, there is a k0 > 0 such that

‖wk0 − w∗‖ ≤ δ

2
.

On the other hand, since {‖wk − w∗‖} is monotonically non-increasing (since (2.21) and
that w∗ is a solution of VI(Q,W )), we have ‖wk − w∗‖ ≤ ‖wk0 − w∗‖ for all k ≥ k0, and it
follows that

‖wk − ŵ‖ ≥ ‖w∗ − ŵ‖ − ‖wk − w∗‖ ≥ δ

2
,∀k ≥ k0,

which contradicts the fact that ŵ is a cluster point of {wk}. This contradiction assures that
the sequence {wk} converges to its unique cluster point wk, which is a solution of VI(Q,W ).

Q.E.D.
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3. Preliminary Computational Results

First, we discuss how to estimate the Lipschitz constant L of f(x). There are some estimates
Lk for the Lipschitz constant L[8]:

Given L0 > 0,in the kth iteration we can take the Lipschitz constant as

Lk = max{Lk−1, ‖f(xk)− f(xk−1)‖/‖xk − xk−1‖}, k = 1, 2, · · · ,

or

Lk = max{Lk−1, (f(xk)− f(xk−1))
>(xk − xk−1)/‖xk − xk−1‖}, k = 1, 2, · · · .

We implemented Algorithm 2.1 in Matlab and tested it on a PC. The constraint set S
and the mapping f are taken respectively as

S = {x ∈ R5|
5∑

i=1

xi ≥ 10, xi ≥ 0, i = 1, 2, ..., 5}

and

f(x) = Mx + ρ arctan(x− 2) + q,

where M is a 5× 5 matrix whose entries are randomly generated in the interval (−1, 1) and
arctan(x−2) = (arctan(x1−2), arctan(x2−2), · · · , arctan(x5−2))

′
. The parameter ρ is used

to vary the degree of asymmetry and nonlinearity, and q ∈ R5 is generated from a uniform
distribution in the interval (−500, 500). Other parameters used in the algorithm are set as
σ = 0.75; β = 0.2; τ = 0.3. We choose ||wk − w̄k|| ≤ 10−6 as the stop criterion. Table 1
gives the numerical results by Algorithm 2.1 with different initial point, where TOTAL is
the total CPU time , PROJ is the CPU time occupied by the projections, and I.P. denotes
the initial point, Iter. denotes the iteration number when the algorithm terminates.

Table 1: Numerical results for different initial point
I.P. Iter. TOTAL(s) PROJ(s) ||wk − w̄k||

(2,0,0,0,0) 25 0.12 0.03 2.12×10−7

(10,0,0,0,0) 32 0.18 0.04 2.53×10−7

(0,2.5,2.5,2.5,2) 22 0.11 0.03 1.80×10−8

The results in the Table 1 indicate that the new alternating direction method is available.
Though the iterative number is large, the total TOTAL time is small. The reason is that
at each iteration the algorithm needs not to execute linear search and only need to make
some projections and function evaluations. PROJ indicates that the CPU time occupied by
projections is nearly one forth of the total CPU time, and this is acceptable.

To show the advantage of the new alternating direction method for large scale problems,
we implement it to a set of spatial price equilibrium problems. The details of these problems
can be found in [5], as follows:

min
m∑

i=1

n∑

j=1

(cijxij +
1

2
hijx

2
ij).

s.t.
n∑

j=1

xij = si, i = 1, 2, · · · ,m,

c© Operations Research Society of JapanJORSJ (2009) 52-1



An Alternating Direction Method for VI 9

m∑

i=1

xij = dj, j = 1, 2, · · · , n,

xij ≥ 0.

where si is the supply amount on the ith supply market, i = 1, · · · ,m and dj the demand
amount on the jth demand market, j = 1, · · · , n. cij ∈ (1, 100), hij ∈ (0.005, 0.01), sj and
dj are generated randomly in (0, 100) for all i = 1, · · · , m and j = 1, · · · , n, and the other
parameters are set as the first example. The initial point w0 = 0 and stopped for some
prescribed ε > 0. The computational results are given in Table 2 for some m and n.

Table 2: Number of iterations for different scale and precisions
m n m×n ε = 0.1 ε = 10−2 ε = 10−3 ε = 10−4

5 20 100 22 25 93 261
20 25 500 26 72 165 379
50 60 3000 29 82 195 530

The numerical results given in Table 2 show that the new alternating direction method
is relatively efficient, and it is attractive from a computational point of view.

4. Conclusion

In this paper, we proposed a new projection-type alternating direction method for monotone
VI(Q,W ). The new method is easy to execute and the generated step-sizes are bounded
away from zero. Under the Lipschitz continuity and monotonicity of f , we proved the
global convergence of the method. Some preliminary computational results illustrated the
efficiency of the algorithm.
Acknowledgements The author would like to thank two anonymous referees for their
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