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Abstract  Newton’s method for solving variational inequalities is known to be locally quadratically con-
vergent. By incorporating a line search strategy for the regularized gap function, Taji et al. (Mathematical
Programming, 1993) have proposed a modification of a Newton’s method which is globally convergent and
whose rate of convergence is quadratic. But the quadratic convergence has been shown only under the
assumptions that the constraint set is polyhedral convex and the strict complementarity condition holds
at the solution. In this paper, we show that the quadratic rate of convergence is also achieved without
both the polyhedral convex assumption and the strict complementarity condition. Moreover, the line search
procedure is simplified.
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1. Introduction
The variational inequality problem, denoted by VIP, is to find a vector x* € S such that

(F(z*),x —2*) > 0 for all x € S, (1.1)

where F' : " — R" is a mapping and S is a nonempty closed convex subset of R". The
symbol (-, -} denotes the inner product in R". The variational inequality problem is theoret-
ically and practically useful, and has been used to study and formulate various equilibrium
problems arising in economics and engineerings [2].

Newton’s method, applied to VIPs, generates a sequence {z*}, where 27! € S is a
solution to the linearized VIP

<F(xk) + VF (") (o — 2%, 2 — a:k“> >0 for all z € S. (1.2)

It is well known that, under suitable assumptions, Newton’s method converges to a solution
quadratically, provided that an initial point 2° is chosen to be sufficiently close to a solution
[2,4]. Also, by incorporating line search to a merit function, Newton’s method has shown to
be modified to have globally convergent property [3,7]. In particular, the globally convergent
Newton method (GNEW), proposed by Taji et al.[7], makes use of the regularized gap
function proposed by Fukushima [1] as a merit function and allows inexact line search
of Armijo type. While, under the strongly monotone assumption, the method has been
shown to be globally convergent, the quadratic rate of convergence has been shown under
limited assumptions that the constraint set S is polyhedral convex and that the strict
complementarity holds at a solution. These two assumptions are not necessary for quadratic
convergence of the naive Newton’s method (1.2).
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In this paper, we show that the quadratic convergence of GNEW is established without
both the polyhedral convex constraint and the strict complementarity. Furthermore, though
the method originally uses two-step line search procedure to obtain quadratic convergence,
we also show that a slightly simplified line search procedure is sufficient for both global and
quadratic convergence.

We summarize several notations frequently used in this paper. The symbol (-, -) denotes

the inner product in ®", and ||-|| denotes the Fuclidean norm in R" defined by ||z|| = +/(z, x)
or the induced matrix norm. For an n X n symmetric positive definite matrix G, we define
the G-norm by ||z|l¢ = /(z,Gx). Projgs(v) represents the projection under the G-norm
onto S, which is the unique solution to the problem

minimize ||y — z|¢ subject to y € S.

2. Preliminaries

In this section, we first introduce the regularized gap function and summarize its basic
properties. Then we present a globally convergent Newton method for solving the varia-
tional inequality problem (1.1) and its convergent properties. We also introduce the strict
complementarity condition.

For an arbitrarily chosen positive definite symmetric nxn matrix G, the regularized gap
function, introduced by Fukushima [1], f: R®" — R for a variational inequality problem
(1.1) is defined as

$() = max { ~(F(),y = 2) — 5 ly— 2. Gly— ) | ye 5} 2.1)
= —(F(«'E%H(m)—x)—;(H(Jf)—%G(H(ﬂﬁ)—x)% (2.2)

where the mapping H: R" — R" is defined by
H(z) = Projg q(z — G~ F(x)). (2.3)

We note that, by the positive definiteness of GG, the maximum in (2.1) is uniquely attained
at y = H(x). It is known that the mapping H is nonexpansive, and x is a solution to (1.1)
if and only if H(z) = =.
It is known [1] that f(z) > 0 for all x € S, and that f(z) = 0 and = € S if and only if
x is a solution to (1.1). Hence the problem (1.1) is equivalent to find a solution z* to the
optimization problem:
minimize f(z) subject to z€ S

with f(z*) = 0. It is also known [1] that the regularized gap function f is continuously
differentiable whenever so is the mapping F', and its gradient is given by

Vf(z) = F(x) = [VF(z) = G](H(x) — ). (2.4)
Moreover, when the mapping F' is strongly monotone with modulus p on S, that is,
(Fy) = F(a),y —z) > plly — f* for all 2,y € S,
then f satisfies the inequality [7, Proposition 3.4]
1
f(z) > (M - 2||G||> |z — 2*| for all = € 5. (2.5)

The globally convergent Newton method for variational inequalities (1.1) proposed by
[7] is the following.
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GNEW

Step 0 Choose 2° € S,0< 3 <1,0<~v<1,0< 0 <1, and a symmetric positive definite
matrix G. Let k := 0.

Step 1 Find the unique solution z* € S that solves

<F(mk) + VE (@M (35 — 2%), 0 — Ek> >0 forallze S.

Let d* := zF — 2*.
Step 2a If f(z* + d*) < v f(2*), then set a; := 1 and go to Step 3.
Step 2b Otherwise set oy, := 8% where [, is the smallest nonnegative integer [ such that

f(@*) = @+ BdF) > —op (V f(ah), dF).
Step 3 Set z¥! := 2% + ad*. Let k := k + 1. Return to Step 1.

The algorithm GNEW is shown [7] to be globally convergent under the assumptions that
the mapping F' is continuously differentiable and strongly monotone and that the matrix
G is chosen sufficiently small to satisfy || G || < 2u. The rate of convergence of GNEW
is also shown [7] to be quadratic, but it is proved with the two-step line search Step 2a
and only under the assumptions that the set S is polyhedral and that the following strict
complementarity condition originally introduced by [3] holds.

Definition 2.1 Suppose that S is polyhedral and that problem (1.1) has a unique solution

x*. Let S* denote the minimal face of S containing x*. Then we say that the strict
complementarity holds at z* if x€ S and (F(z*),z — 2*) = 0 imply z € S*.

3. Main Results

In this section, we consider the behavior of the regularized gap function around the solution.
For this purpose, we assume that the mapping F' is continuously differentiable and that the
transposed Jacobian V F' is positive definite at a solution x*. Hence, there is a neighborhood
X of the solution x* such that the mapping F is strongly monotone with modulus g on X
and Lipschitz continuous with modulus L on X, that is,

I1F(y) = F(o)]| < Llly — z| for all z,y € X.

Furthermore, we can assume without loss of generality that X is sufficiently small and
Newton’s method (1.2) is convergent quadratically on X, hence there exists a ¢ > 0 such
that

IN(z) = 2*[| < (Jla —27|]*, N(z)€X (3.1)

holds for all x € X, where N(z) € S denotes the solution of the linearized variational
inequality:
(F(z)+ VF(2)"(N(z) — ),y = N(z)) > 0 for all y € S. (3.2)

We note that N(z) € SN X for all z € X and X is assumed to be small enough to satisfy
X Cc{z eR"|{||lr —z*| < 1}.

We first show the next lemma.
Lemma 3.1 Suppose that the mapping F is (not necessarily differentiable) Lipschitz con-
tinuous on some neighborhood X of a solution x* to (1.1). Then there exists an L > 0 such
that the following inequality holds for all x € X:

f(z) < (F(z*),z — %) + L||lz — z*||. (3.3)
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Proof. From the definition of the regularized gap function (2.2), we have

f(x) = (F(2"),z —z7)
= (P(). H(x) ~ ) {H() — 2, G(H() — 2)) ~ (F).2 — ")
< (F(z") = F(x),2" —x) + (F(x),2" — H(z)) — ;(H(JC) —z,G(H(z) — x))
+(F(z"), H(z) — 2%)
< (F(z*) = F(x),2" —z) + (F(z) — F(2), 2" — H(z)), (3.4)

where the first inequality follows from the fact that #* is a solution to (1.1) and H(z) € S.
It follows from H(z*) = x* and the nonexpansiveness of projection mapping that

o~ H@)lo = [H@) - H@llo
< o= 67rEn) - (fﬂ - G‘1F< e
< e =zl + G @)
< (IG)" + e lul/?) Hx -, 3.5

where the last inequality follows from the Lipschitz continuity of F. Thus we have from
(3.4) and (3.5) that

fz) = (F(z%), 2 = a7)
< [[F@") = F)llla” = =l + |F () = F(a")llg- 2" = H(z)ll
< Lla® —alf + LG (1612 + LI Y?) fla* - o

= (L+LIGTHMIGI + LG [|la* — x|,

which shows the lemma. O

Remark 3.1 The same result has also obtained in the proof of [7, Theorem 5.1]. However,
the theorem assumes that VF' is Lipschitz continuous in the neighborhood of a solution x*,
which is stronger than that assumed in this lemma. We also remark that this lemma does
not need the differentiability of the mapping F'. O
The next theorem is the main result of this section. The theorem shows that the Newton
step N (x) bounds the regularized gap function in cubic order.
Theorem 3.1 Suppose that the mapping F is continuously differentiable and V F' s positive
definite on the neighborhood X of the solution x* of the variational inequality (1.1). Suppose
also that Newton’s method is quadratically convergent on X, and hence (3.1) holds for all
x € X. Then there exists an L' > 0 such that the reqularized gap function (2.2) satisfies

f(N(z)) < L'||x — 2*|® for all v € X. (3.6)

Proof. First, it follows from the assumptions that there is a constant M > 0 such that
|VF(x)|| < M for all x € X. From Lemma 3.1 and the fact that N(x) is in X and is a
solution to (3.2), we have
f(N(z)) < (F(2"),N(z) — ") + L||N(z) — 2"|* i
= (F(a") = F(x),N(z) — 2") + (F(2), N(z) — 2") + L||N(2) — 27|
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< |IF() = F@)[[IN(z) = 2| + (VF(2)" (N(2) = 2),2" = N(x))
+L||N(z) — 2| )

< Llje” = 2[IN(z) — || + M||N(2) — 2|2 = N(@)]| + L[| N(x) — 2|

< ((L+M)|lz" =zl + (M + L) IN(2) — 27|} [N (z) — 27|

< C((LA+M)+¢(M+L) o—2"]) Iz — 2|

< ¢(@+ M)+ (M+L))|z-a"|°.

This shows the theorem with L' = ((L+2M + L) (in the last inequality, ||z — 2*|| < 1 was
used). O

From this theorem, we can show that the algorithm GNEW is locally quadratically
convergent without the assumptions that the set S is polyhedral convex and that the strict
complementarity holds (Definition 2.1). The next corollary guarantees that the step size ay
of Step 2a of the algorithm GNEW is equal to one for sufficiently large k.

Corollary 3.1 Suppose that the assumptions of Theorem 3.1 hold. Suppose also that the
matriz G is chosen such that ||G|| < 2u. Then for any positive parameter v < 1, there is a
neighborhood X' of the solution x* such that f(N(x)) < ~vf(x) holds for all x € SN X".
Proof. Since, from the assumptions, the inequalities (2.5) and (3.6) hold on S N X, then
we have forallz € SN X

JN@) < Dle—a|?
2L ||x — z*||
< e 1@

2 — |G|

2L/

The next corollary enables us to replace the two-step line search procedure, Steps 2a
and 2b of the algorithm GNEW, with the following Armijo-type line search procedure:

Therefore, the result holds for z sufficiently close to z*, such as ||z — z*|| <

Step 2’ Set «y, := (' where [, is the smallest nonnegative integer [ such that
1
£ = fat + 5a) = o8 (u = 1G] ) )P (37)
We note that the global convergence theorem can be shown in a way similar to the proof

of [7, Theorem 4.1] for the simpler version of GNEW with Step 2’.

Remark 3.2 Practically, the cost of implementing Step 2’ is equivalent to that of Steps
2a and 2b rather than using a parameter . However, there is a theoretical benefit in
introducing Step 2’ in that Step 2b is not shown to guarantee the acceptance of unit step
size even if the iterate z* is sufficiently close to a solution, while Step 2’ must accept unit
step size when the iterate is close to a region. O

Corollary 3.2 Suppose that all the assumptions of Corollary 3.1 hold. Then there is a
neighborhood X" of x* such that
1
f(@) = FN@) 2 7 (1= SIG1) [N () ol

holds for all x € SN X", and hence ay, = 1 holds for sufficiently large k.
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Proof. Since from the assumptions, the inequalities (2.5), (3.1) and (3.6) hold on SN X,
then we have for all z € SN X

) ING) ol

Ve =212+ (= 5161 ) (ING) = 2+ flo = )2
Ve =22+ (= 161 (clle = 2 + = 1)
[ == (1= 5161) + o (1= S161) (e = 7l + 10} o = 27|

Therefore, because 2u > ||G]| and 0 < ¢ < 1, we have

f(N(z))

1
+o (n=5lGI
, 1
< Ua—a = (1= 31|

1
< Lz =2’ = (p=5lGl

IN

* 1 1 * 2
Ll =l = (1= 5161) + o (1= 5161 €lle = 2°| +1)* < 0
for x sufficiently close to x*, and hence, the result holds for z sufficiently close to z*. O

4. Concluding Remarks

In this paper, we have modified and completed the globally convergent Newton method
(GNEW) for variational inequalities in two ways. One is to establish quadratic conver-
gence without both the polyhedral assumption and the strict complementarity assumption.
Another is to provide a simplified line search procedure.

There are some issues in implementing GNEW. Solving a linearized variational inequal-
ity (1.2) is not easy unless the constraint set S is simple such as polyhedral convex. To
overcome this, we have already proposed [6], for solving a general convex constrained prob-
lem, another Newton method in which not only the mapping F' but also convex constraints
are linearized. The method is shown to be globally and superlinearly convergent, but the
proof of superlinear convergence has not been satisfactory. We are preparing the next paper
giving a rigorous proof of superlinear convergence of the Newton’s method in [6] based on
the idea of this paper.

Another issue is to know strongly monotone modulus g in advance. In general, to
estimate the strongly monotone modulus p is not easy, even if the mapping F' is known to
be strongly monotone. The author hopes that the algorithm GNEW is incorporated into a
proximal point algorithm [5], which is one of the promising method for solving monotone
variational inequalities. In this case, subproblems are strongly monotone and its modulus
is already known.
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