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Abstract  In this study, we deal with the optimal mutual inspection policies (OMIP) for a manufacturer
and its downstream member (buyer) under a quality contract subject to the probability of non-conforming
for each unit is transparent between the manufacturer and buyer. A game-theoretic framework is developed
for both parties to determine their OMIP. Main difference between this study and related previous works
is that in this research the full inspection policy will never be optimal for the manufacturer when a quality
contract is considered. Based on this OMIP, we show how the OMIP is incorporated into the determination
of optimal production lot size. To achieve an economical production under the defined contract, tradeoffs
between manufacturing cost, inventory holding cost and quality related cost must be analyzed. Some
properties for the optimal lot size are obtained. Numerical examples are performed to illustrate the optimal
production lot size and OMIP.

Keywords: Game theory, inspection, EMQ

1. Introduction

It is known that product quality, innovative design, service difference and production cost
are the major factors which determine whether a firm will win orders (e.g., see Martinich
[7]). Today, quality issues are particular important, e.g., Olhager and Selldin [10] studied
128 different companies in Sweden and found that quality is the most important factor for
firms in the selection of partners in supply chains, and that achieving cost minimization is
the overall main objective in designing supply chains.

Various methodologies for controlling output quality have been studied in the past few
decades, including the relationship between production lot size and the number of non-
conforming units with warranty (e.g., see Yeh et al. [13]), or the effects of inspection sched-
ules for imperfect production processes (e.g., see [2,3,5,6,16]), or the effects of inspecting
units and the disposition of non-conforming units (e.g., see Raz et al. [12]), or the effects
of improving process reliability by capital investment to reduce the likelihood of producing
non-conforming units (e.g., see Porteus [11]). When product inspection, which is the sub-
ject of this paper, is performed to control product quality, the associated actions, such as
disposition, salvage or rework are usually performed on the identified non-conforming units
to prevent them from reaching customers. Without considering the nature of process man-
ufacturing variability, Raz et al. [12] proposed an economic inspection/disposition model
subject to off-line quality control. In their model, a solution procedure with dynamic pro-
gramming is provided to obtain the optimal inspection policy. When the process possesses
manufacturing variability, Wang [18] proposed an integrated product inspection/repair and
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production policy, where inspections are performed only at the tail segment of the pro-
duction batch. In this policy, the solution procedure was proposed for the simultaneous
determination of the optimal production lot size and inspection policy.

Although Raz et al. [12] tried to optimize the manufacturer’s quality related control cost,
and Wang [18] attempted to optimize the manufacturer’s manufacturing cost, inventory
holding cost and quality related control cost, these actions still may not satisfy the buyer’s
requirements for confidence in the output quality. Since a quality contract is an effective way
of assuring buyers of output quality, Tapiero [15] developed a game theoretical model under
a quality contract to establish the optimal mutual sampling policies. Recently, Narasimhan
and Nair [9] found that the information shared between the supplier and buyer had a positive
impact on strategic alliance formation. One of the benefits of sharing information across
organizations is to reduce the “bullwhip effect” (e.g., see Simchi-Levi et al. [14]).

In this study, we used a game-theoretic model to study the effects of a quality contract
on the OMIP, where the probability of non-conforming for each unit is transparent between
the manufacturer (M) and buyer (B). Our objective is to determine the optimal production
lot size for M, and the OMIP for both parties through the application of game theory.

The rest of this paper is organized as follows. In the next section, we define a quality
contract that is used to guarantee product quality for the buyer. Under the quality contract,
we solve the OMIP. Then, the optimal production lot size is further determined. Properties
for the optimal production lot sizes are investigated. Numerical examples are given to
illustrate the OMIP and the optimal production lot size for the manufacturer. Finally,
some possible extensions of the model are brought up.

2. Quality Contract and Its Optimal Policy

We consider a process for producing a single item and discrete unit, where the process has
two states, in-control and out-of-control. Product quality is classified as conforming or non-
conforming. When the process is in the in-control (or the out-of-control) state, there is a
probability of 6, (or 6;) that the produced unit will be non-conforming and 1—6; (or 1 —6,)
that it will be conforming, where 0 < #; < 05 < 1. At the beginning of each production lot,
the process is setup including maintenance with joint cost K so that it is in the in-control
state. Let random variable Z represent the number of produced units when the process
transitions to the out-of-control state since the last setup. As in Wang and Sheu [17], let
P; = P(Z > j) represent the reliability that the first j units are produced in the in-control
state since the last setup. Once the process shifts to the out-of-control state, it will not be
restored until the beginning of the next production run. The probability that the jth unit
will be a non-conforming is readily obtained as

q; = 92 - (92 —Ql)Pj,

which is increasing in j.

To assure the buyers’ right of quality when a non-conforming unit is received, a quality
contract is considered. There are several types of quality contracts in the real world, e.g.,
Jones [4] studied the forms of contracts used in the UK and Republic of Ireland. The classic
style is the “fixed price” contract, where all non-conforming costs are entirely attributed to
the supplier. In this case, suppliers may hesitate to go forward with the contract since there
may be a problem if the number of non-conforming units is seriously underestimated. Fur-
thermore, the contract that entails an agreed proportion of the cost of the non-conforming
items that is defrayed by the buyers is called the “cost-plus” contract; however, the costs
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Table 1: (a). The random payoff matrix of the jth unit for M (B)

B: Inspection B: No inspection

M: Inspection T—cuy—cwp. 1l—¢q; @T—cy—crwp. 1—g;
(¢ —m—cp) (¢ —m)
™ —Cy —C —CRW.p. g T—Cpy —Cr—CRW.D. (gj
(¢ —7m—cp) (¢ —m)

M: No inspection m —cy w.p. 1 —g; T—cy wp. 1—gj
(¢ —7m—cp) (¢ —m)
T—cy— T w.p. g T — CMm W.p.
(T — 7 —cp) (p—7—cw)

Table 1: (b). The expected random payoff matrix of the jth unit for M (B)

B: Inspection B: No inspection
M: Inspection u}l =T —Cm — Cf — QjCR ujl-2 = ujl-1
(Ujl-lqu—’/T—CB) (v]m:gb—w)
. : : 20 _ — — 2 _
M: No inspection uj;" =7 — ¢y — ¢; T u;t =m—cy

(UJZI =q¢T+(1—q;)9—m— CB) (UJQ-Z =¢—m— qch>

may be exaggerated by suppliers. In our study, a penal contract subject to the probability
of non-conforming for each unit which was transparent between M and B was introduced
so that the risks for both parties mentioned in the above quality contracts were diminished.
The quality contract is defined as follows.

I. Suppose that M inspects the jth unit in a batch with a cost ¢; > 0. If it is non-conforming,
then it is repaired to be conforming, with repair cost cg.

II. When M does not inspect the jth unit, which is a non-conforming unit, the cost incurred
on M for the jth unit depends on the behavior of B upon receiving it:

(i) if B does not inspect it, then B will incur a warranty cost cy, when this unit reaches
the market. In this case, M does not pay any penalty to B.
(ii) If B inspects it with inspection cost ¢ and finds it to be non-conforming, M must
pay a penalty T to B. It is reasonable to assume that T' > 7 + cg, where 7 is the
selling price per unit for B.
ITI. M must share its quality information ¢; with B.
According to the contract mentioned above, a random payoff matrix for the jth unit is given
in Table 1(a), where ¢ is the selling price per unit for the market (end customer) and ¢, is
the manufacturing cost per unit for M. From Table 1(a), the value of the expected random
payoff matrix is obtained as shown in Table 1(b). Denote x; and y; as the probability that
the jth unit will be inspected by M and B, respectively. From Table 1(b), the expected
payoff of the jth unit for M and B under their inspection policies, (z;,y;), can be obtained
as follows:

Uj (2,951 95) = {Tq;y; — (c1 + crgy)  xj + 7 — ear — Tys0;, (1)
Vi(z,y5:q¢;) ={(6—cew —T)(x; —1)q; —cplty; + ¢ — 7+ cw (x; — 1) ¢, respectively.

Now we proceed to obtain the OMIP. When M incurs ¢y to inspect a unit, the maximum
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return, 1" — cg, occurs when the inspected unit is non-conforming and B inspects it. Denote
H = ¢;/(T'—cg) > 0 as the cost ratio for M, i.e., the “inspection” to “the possible maximum
return.” On the other hand, when B incurs cp to inspect a received unit, the maximum
return, 7" — (¢ — ey ), occurs when the inspected unit is non-conforming and M does not
inspect it. Denote G = ¢g/(T + cw — ¢) > 0 as the cost ratio for B, i.e., “inspection” to
“the possible maximum return.” Intuitively, if H (or G) is small, then M (or B) is prone to
inspect the unit. However, the OMIP should consider the non-conforming probability for a
unit and the inspection behaviors of the other side.
The discussed game for the OMIP is known as the “Stackelberg leadership model”

[13] where M is the “leader” and B is the “follower”, i.e., M inspects unit j first and
then B does. In addition, when a mutual inspection probability exists for unit j, the

solution (x;‘,yj*) for the OMIP can be found by solving 0 Zn: U; (:L'j,yj;qj)/axj = 0 and
j=1

0> Vi(z;,y;:95) / Oy; = 0, simultaneously, which is also known as the subgame perfect
j=1

Nash equilibrium (e.g., see Gibbons [1]). The OMIP for the jth unit is given in the following
property.

Property 1. Four mutually exclusive and exhaustively collected sets are defined as:
Ja=A{jle; < H,q; <G}, Jp = {jla; < H,q; > G}, Jo = {jlg; > H,¢; < G} and

Jp ={jl¢g; > H,q; > G}. The OMIP for the jth unit can be obtained as follows. When
j€Ja,j€Jp j€Joorje Jp, wehave (27,y5) = (0,0) , (0,1), (0,0) or

(1 —G/qj, (cr + gicr)/(q;T)), respectively.

Property 1 reveals that when j € J4 (the unit’s quality is possibly excellent, or equiv-
alently, the inspection costs for M and B are too high), neither M nor B will perform an
inspection. When j € Jg, it implies that M does not inspect unit j because of its high
inspection cost while B will inspect unit j since the inspection cost is relatively low. When
7 € Jgo, it indicates that B will not perform an inspection for unit because of the high
inspection cost, and M will not inspect unit j either, even though the inspection costs for
M are relatively low. This is because when M inspects unit j, it merely increases the in-
spection costs and there is no possible return from the inspection since B never inspects
unit j. Finally, when j € Jp, a mutual inspection probability exists for unit j since the
defined quality game follows the “Stackelberg leadership model” [13], and the OMIP can

be found by solving 0 i U; (xj,yj;qj)/&nj =0and 0 i Vi(xj,yj; qj)/(?yj = 0, simulta-
j=1 Jj=1

neously. The solution (azj, y;") = (1 - G/q;, (1 + gjcr)/(¢;T)) implicates that nobody has
incentive to unilaterally change his/her inspection probability on unit j. In this case, M
will focus on the units produced in the tail segment of the batch since they are prone to be
non-conforming, whereas, B will perform an inspection that focuses on the units produced
in the initial segment since M is less likely to inspect them.

From Property 1, we know that the inspection probability for the jth unit is increasing
in 7 for M, and a full inspection policy will never be optimal. Next, a simple decision rule
for the OMIP is obtained from Property 1 as follows.

Corollary 1.

Case 1. G < H: When ¢; <G, G < ¢; < H and H < ¢; < 1, we have the OMIP (z7,7)
are (0,0), (0,1) and (1 — G/qj, (c1 + gjcr)/(¢;T)), respectively.

(© Operations Research Society of Japan JORSJ (2008) 51-4



278 C.H. Wang

Case 2. G > H: When ¢; <G and G < ¢; < 1, we have the OMIP (z7,y;) are (0,0) and
(1—G/qj, (cr + qicr)/(gT)), respectively.

In Corollary 1, when the inspection cost for M and B are equal (e.g., M and B share the
same inspection equipments), if M’s repair cost for a non-conforming unit is greater than the
“gross revenue” of B when a non-conforming unit is sold in the market ( i.e., cg > ¢ — cw),
then we have G < H; otherwise, if cg < ¢ — ¢y, then we have G > H. Note that if B’s net
revenue ¢ — m — ¢y is not negative and the reworked cost cp is less than the selling price ,
then cgr < ¢ — ¢y holds.

Utilizing (77}, y;) obtained in Corollary 1, for a given lot of size n, the expected payoff

n
per unit of M is ng Uy / n, which reflects cost and is negative, where U7 = U (x},y}‘; %‘)-

Combining the setup cost and inventory holding cost, the expected total cost per unit for
M under the OMIP for the given quality contract is given as

n

ETC (n;{q;}) = K /n+hn/(2d) = Y Us /n, (2)

Jj=1

where h is the inventory carrying cost per unit product per unit time and the expected
inventory carrying cost is derived under the assumption that the production rate is relatively
larger than the demand rate, d. Now, we seek to find the optimal value n* by minimizing
the cost function given in Equation (2). The necessary condition for n* is to satisfy

ETC (n;{q;}) < ETC (n —1;{q;}) and ETC (n;{¢;}) < ETC (n+ 1;{q;}). (3)
Equation (3) can be rearranged as
©(n—1;{¢;}) < K and © (n;{q;}) > K where (4)
hn(n+1)/(2d) + i Ui —nUy .y, forn=1,2,--,
=1

© (n;:{q;}) = j
0, for n = 0.

(5)

The following property explicates the behavior Uy, and will be useful in determining n* for

the later analysis.

Property 2. If G < H, we have Uy = U7, for j < |J4| — 1, and U; > U7, , for

|Ja| < j < oo. On the other hand, if G > H, we have Uy = U}, , for j < [Ja| + [Jo| — 1,

and Uy > U?,,, for |Ja| + |Jo| < j < 0.

In Property 2 we saw that M’s expected payoff for the jth unit is decreasing in j under the

OMIP. Based on this property, we further develop the following property for n*.

Property 3. Let Qg = /2K d/h. The optimal production lot size (n*) can be uniquely

determined by Equations (4)-(5), and n* € [0, Qg| if |Ja| < QE, or n* = Qg if |Ja| > Qg,

for G < H. On the other hand, when G > H, if |J4| + |Jc| < @g, then we have

n* e [O, QE], or if |JA| -+ |Jc‘ Z QE; then n* = QE

Property 3 implicates that when the process reliability is good, no inspection is needed and

the optimal production lot size is equal to the classical economic order quantity (EOQ), Q.
We summarize the above findings in the following algorithm for n*, x7 and y; (note that

all the values with index j in Steps 1-3 are calculated from j = 1 to j = Qg + 1 since the

term U, ., in Step 3 maybe used for obtaining n*):
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Step 1. Input the model parameters and compute q; = 0, — (62 — 0;) P;, H = ¢ /(T — cg)
and G = cg/(T + cw — ¢).

Step 2. If G < H, then (xj,y;) is (0,0), (0,1) or (1 —G/qj, (e + qjcr)/(¢;T)) for ¢; <
G, G <qy < Hor H< q <1, respectively. If G > H, then (a:j,y;) is (0,0) or
(1—-G/q;, (cr + qicr)/(¢;T)) for ¢; < G or G < ¢q; < 1, respectively.

Step 3. If | Ja| > Qg for G < H, or if | J4|+]|Jc| > Qg for G > H, then n* = Qg. Otherwise,

n* can be found at the smallest n that satisfies hn (n 4+ 1)/24+ Zn: U; —nUy 4 > K. Stop.
j=1

A binary search algorithm can be used in Step 3 with the maximum number of iterations
Qg log (Qg) for n*.

Remark 1. In Porteus’s [11] model we know that the manufacturer performed full
inspection and all non-conforming units are reworked with a certain cost, but the
inspection cost is negligible. Setting 6; =0,0, =1, ¢y =0, 71 =0, =0, cyw =0, 2; =1,
y; = 0 and P; = p/ in Equation (2) gives

K hn (1 M)

ETC’(n;{qu:zﬂL?d—cR _n(l—p)

which is exactly the result obtained by Porteus [11]. In this case, it is easy to verify that
the condition given in Property 2 holds since Uy = uj* = —q;cg > U}, for all j.
Subsequently, we can apply Property 3 to confirm that Porteus’s [11] optimal lot size is
unique (also see Wang and Sheu [17]).

Remark 2. The main difference between our study and related previous studies (e.g.,
Porteus [11]) is that in our research the full inspection policy can never be optimal for the
manufacturer when a quality contract is considered.

Remark 3. Based on the OMIP, the optimal production lot size is shown to be less or
equal to the classic EOQ. This agrees with the results found by Porteus [11], but the
property may not hold for some existing production lot size models, where the restoration
cost (e.g., see Yeh et al. [19]) and/or the process inspection schedule is an additional
consideration (e.g., see Makis [6]). Thus, a larger production lot size than EOQ is needed
so that these costs can be balanced.

3. Numerical Examples

To illustrate the optimal solution, (x;‘, y]*) and n*, for the discussed problem, we carried out
a numerical example with the following nominal data: ¢; = 0.05, #; = 0.95, d = 250, m = 3,
=4, ¢cpy=05,¢cg=04, h=15,¢,=03,¢cg =05, cy =15, T =4 and K = 10. We
used a discrete Weibull distribution to represent the process life time distribution, which
is one of most widely used in reliability modeling. More precisely, we set P; = p/* (see
Nakagawa and Osaki [8]). Various combinations of parameter values « and p are selected
to investigate the changes in n*, 2 and y;, where p takes on the values 0.9, 0.95, and 0.97,
and a takes on the values on 0.7, 1.0, and 1.3 that represent the decreasing, constant and
increasing failure rates, respectively [8]. The results are summarized in Table 2, where n*
will be located in the interval [ny, ns], namely an effective production range, and all of the
production lot size belongs within the range which creates a negative cost that reflects a
positive payoff. This is because the cost function given in Equation (2) is convex from the
proof of Property 3.
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Table 2: The optimal production lot size for different process reliabilities

D 0.9 0.95 0.97 0.9 0.95 0.97 0.9 0.95 0.97
o) 1.3 1.3 1.3 1 1 1 0.7 0.7 0.7
n* 49 41 33 43 34 31 40 33 23
ETC* -1.433 -1479 -1.552 -1.474 -1.593 -1.708 -1.593 -1.773 -1.996
ny 5 3 ) ) ) 5 5 3 )
N 270 272 973 o71 275 279 7T 993 613

From Table 2, we know that for a fixed a (or p), the process probability is increasing
(or decreasing) in p (or «). We observe the effects of process reliability on the optimal
production lot size, expected total cost per unit and OMIP as follows.

(1) For a fixed « (or p), the number of uninspected units is increasing (or decreasing) in p
(or «v) for both parties. This is because the initial segment in a batch is more likely to
be conforming when the process possesses higher reliability.

(2) When a process has a higher reliability, it lowers the cost per unit, but allows a smaller
lot size to compensate for the setup cost.

(3) The plot of OMIP and cost function for p = 0.97 and o = 1.3 are given in Figures
1 and 2, respectively. The illustrated numerical example in this section corresponds to
the Case 2 of Corollary 1 since G > H. It is easy to see that Figure 1 corroborates the
results of the OMIP stated in Case 2 of Corollary 1, e.g., M will pay more attention to
the tail segment of the batch. Furthermore, under the OMIP, Figure 2 reveals the fact
that the total cost per unit is a convex function of the production lot size as shown in
the proof of the Property 3.

(4) Finally, ny and ny are insensitive to changes in process reliability.

4. Conclusions

This paper investigates the effect of a quality contract between Manufacturer (M) and Buyer
(B) in a supply chain on the optimal production lot size and mutual inspection policy. Main
difference between this study and related previous works (e.g., see Porteus [11]) is that in
this research the full inspection policy will never be optimal for the manufacturer when
a quality contract is considered. In addition, an algorithm with the maximum number
of iterations Qg log (Qg) is proposed based on three proofed properties to determine the
optimal inspections policy and the optimal production lot size. Extensions to this work
could consider the possible existence of inspection errors, and constraints on the average
probability for a non-conforming unit that will reach the market. It would also be interesting
to study how capital investment might enhance the process reliability so that inspection
does not need to be performed by either party. This will prevent inspection errors resulting
from tedious inspections, and save inspection time so that the unit can reach the market
sooner. It is also important to study the coordination of manufacturing/ordering quantity
and inspection policies between the manufacturer and buyer.
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Appendix

Proof of Property 1.

When ¢; > ¢; (T —cg), or equivalently, ¢; < H, we have u}* > u}* and u}' > uj'
This implies that z; = 0. Furthermore, when ¢; > ¢; (T — cg), we have y; = 0 if

cg > ¢ (T +cw — @), or equivalently, ¢; < G, and yi = 1if cg < ¢; (T +cw —gb)
These result in (i) and (ii). Next, when cg > ¢; (T + cw — ¢), we know that v3* > v3!

and vj? > vj'. This implies that y7 = 0. Furthermore, when cg > ¢; (T + cw — ¢), we
have x5 = 0 for ¢; > ¢; (T —cg) or ¢; < q; (T —cg). This shows (i) and (iii). In addi-
tion, when ¢y < ¢; (T'—cg) and cp < ¢; (T'+ ew — ¢), ¥} and y; can be found by solving

0 i Uj (xj,9;; qj)/(?xj =0 and 0 i V; (xj,yj;qj)/ayj = 0, simultaneously. Q.E.D.
i=1 i=1

Proof of Property 2.

We first consider the case that G < H. Recall that g¢; is increasing in j. When ¢; < G,
we have j € J4. This implies that U; = u?, for j = 1,2,3,--+,|Ja|. Further, when
G < ¢; < H, we have j € Jp. Using the monotonic property of ¢;, we have U} = u?" < u3?,
for j = |Jal +1,|Jal +2,---,|Ja| + |Jg|. When H < ¢;, we have j € JD Again using the
monotonic increasing property of ¢;, from Equation (1) we have Ui = u 1< uj since H < gj,
for j = |Ja| + |JB| +1, |JA| + |Jg| + 2, . In addition, it is easy to ver1fy that u3* = u7} |,
A > u?}rl and u > uJH, for all j. These imply that Uy = U, j =1,2,3,---,[Ja| — 1,
and Uy > U7y, j = |Jal, |[Jal +1,- Q.E.D.
Next, we show the case that G Z H as follows. When ¢; < H < G, we have j € Ja.
This implies that UF = u3?, for j < |Ja]. When H < ¢; < G, we have j € Jo. This implies
that U = u3?, for j = |Ja| + 1,[Jal + 2,- -+, |Ja| + |Jc|. Finally, when H < G < ¢;, we
have j € Jp. This implies that Uy = uj', for j > |Ja| + |Jo| + 1. Besides, we can verify
that u?* = u%l, ui® > uj' and uj' > ul}H, for all j. These conclude that U = Uj,,,
G=1,2,3, [ Jal + ol = 1, and Us > UZ,y, § > [ Jal + |Jel. Q.E.D.

Proof of Property 3.

Now we show the case that G < H. First note that © (0; {Pj}) =0 and © gQE, {Pj}) >
K. This implies that there is a local minimum solution that exists in the finite interval
[0, Qg]. Furthermore, from Properties 2 it is easy to see that © (n; {PJ}) is increasing in n,
since © (n +1; {15]}) -0 (n; {15]-}) =(n+1) (h/d—i— Ui — U;+2> > 0, for all n > 0. If
|Ja| > Qg, then from Equation (5), we have © (n; {]5]}) < K forn =1,2,---,|J4| since
Ut =0 for n < |Ja|. This implies that n* = Qg when |J4| > Qr. However, if |J4| < Qg,

then we only know that n* < Qg. In the similar manners, we can show the case of G > H.
Q.E.D.
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