
Journal of the Operations Research
Society of Japan

2008, Vol. 51, No. 3, 241-264

SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS

FOR CONVEX OPTIMIZATION PROBLEMS

Kazuhiro Kobayashi Sunyoung Kim∗ Masakazu Kojima
Tokyo Institute of Technology Ewha Women’s University Tokyo Institute of Technology

(Received February 21, 2008; Revised June 3, 2008)

Abstract Second order cone program (SOCP) formulations of convex optimization problems are stud-
ied. We show that various SOCP formulations can be obtained depending on how auxiliary variables are
introduced. An efficient SOCP formulation that increases the computational efficiency is presented by
investigating the relationship between the sparsity of an SOCP formulation and the sparsity of the Schur
complement matrix. Numerical results of selected test problems using SeDuMi and LANCELOT are included
to demonstrate the performance of the SOCP formulation.

Keywords: Optimization, convex optimization problem, second-order cone program,
correlative sparsity, primal-dual interior-point method, the Schur complement matrix

1. Introduction

We consider second order cone program (SOCP) approaches for convex optimization prob-
lems. SOCPs have received plenty of attention in recent studies of optimization for their
wide applicability and computational efficiency [1, 6, 7, 11, 13]. SOCP can be viewed as a
special case of semidefinite programming (SDP) in the sense that second order cone inequal-
ities can be represented as linear matrix inequalities. The computational efforts for solving
SDPs are, however, known to be far greater than for SOCPs. It is thus recommended to use
SOCP formulation for computational complexity concerns when an optimization problem
can be formulated as both an SDP and an SOCP [1].

Formulating optimization problems as SOCPs provides computational advantages: it
can be solved in polynomial-time, and the number of iterations required to find a solution is
not much affected by a choice of initial points in practice. Nesterov and Nemirovski [12, 13]
and Lobo et al. [11] showed that many kinds of problems could be formulated as SOCPs.
They introduced second order cone representable functions or sets for convex optimization
problems that can be formulated as SOCPs. For a convex optimization problem which can
be formulated as an SOCP, there usually exists more than one formulation that are all
equivalent. The computational complexity for solving the SOCPs thus varies depending on
the formulation.

Sparsity has been utilized in various ways for solving large-sized problems and studied
extensively. The correlative sparsity was introduced to handle the sparsity of polynomial
optimization problems (POPs) in [18]. An n × n symmetric matrix R, correlative spar-
sity pattern (csp) matrix, is constructed for the representation of the correlative sparsity
of a POP with each element Rij of the csp matrix R either 0 or ⋆ for a nonzero value.

∗The research of S. Kim was supported by KOSEF R01-2005-000-10271-0 and KRF-2006-312-C00062

241



242 K. Kobayashi, S. Kim & M. Kojima

The importance of the correlative sparsity lies in the fact that applying sparse Cholesky
factorization to the csp matrix R provides no fill-ins.

In the implementation of interior-point methods for SOCP, the sparsity of the Schur
complement matrix was exploited by splitting the matrix into sparse and dense parts, fac-
torizing the sparse part, and applying a low-rank update to the dense part [3, 15]. From this,
we see that the computational efficiency of solving SOCPs will be improved if the sparse
part of the Schur complement matrix contains less nonzero elements. In recent work [9], it
is shown that if optimization problems have the correlative sparsity, then the same spar-
sity pattern exists in the Schur complement matrix in primal-dual interior point methods
for LP, SOCP and SDP. However, SOCP formulation of a convex optimization problem is
not unique. SOCP formulations that increase computational efficiency in solving the Schur
complement equation have potential to perform better when solving large-sized problems.

The objective of this paper is to find SOCP formulations that increase the computational
efficiency in solving the Schur complement equation. For this purpose, we define second order
cone inequality (SOCI) representable sets and functions. We then investigate various SOCP
formulations in terms of correlative sparsity, and show that different ways of formulating
convex optimization problems with SOCI representable functions as SOCPs result in the
same sparsity pattern in the sparse part of the Schur complement matrix for the original
variables. The difference lies on the auxiliary variables introduced to formulate the convex
optimization problem as an SOCP and how they create nonzero elements in the sparse
part of the Schur complement matrix. We show that an efficient SOCP formulation can be
obtained by minimizing the number of auxiliary variables. This efficient SOCP formulation
has an SOCP inequality with the largest dimension among the various equivalent SOCP
formulations. We recommend this formulation to increase the computational efficiency.

Another objective of this paper is to compare the results of solving optimization prob-
lems by using SeDuMi with those by using LANCELOT. SOCPs formulated from optimiza-
tion problems can be solved by several available software packages based on primal-dual
interior-point methods such as SeDuMi [14], MOSEK [19], SDPT3 [16]. Convex optimiza-
tion problems with sparsity can also be solved with LANCELOT, which takes advantage of
sparsity from the partial separability of optimization problems. The partial separability
was introduced in connection with the efficient implementation of quasi-Newton methods
for solving large unconstrained optimization [5]. The Hessian matrix of the problems with
partial separability is sparse, and the LANCELOT optimization package [2] makes efficient
use of this sparsity. We compare the numerical results from the LANCELOT with those by
SeDuMi for SOCP formulations obtained by minimizing the number of auxiliary variables.

This paper is organized as follows: after introducing a brief description of an SOCI repre-
sentable set or function, notation, and basic definitions, the restricted hyperbolic constraint
are included in Section 2. Section 3 contains SOCP formulations of convex optimization
problems. Section 4 includes the discussion on the correlative sparsity of various SOCP
formulations and how efficient SOCP formulations can be obtained, based on SeDuMi’s
handling of the Schur complement matrix. Section 5 contains numerical experiments for
unconstrained and constrained optimization problems. For constrained problems, the de-
scription of generating constrained test problems using existing functions from CUTEr [4]
is included. Numerical results obtained using SeDuMi are compared with LANCELOT for
various sparse optimization problems. Finally, Section 6 is devoted to concluding remarks.

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 243

2. Preliminaries

2.1. Notation and definition

Let Sn be the second order cone defined as

Sn =

x = (x1, x2, . . . , xn) ∈ Rn| x1 ≥

(
n∑

i=2

x2
i

)1/2
 .

For every x ∈ Rn, x≽S0 denotes the second order cone (or quadratic cone) inequality, i.e.,

x≽S0 if and only if x1 ≥

(
n∑

i=2

x2
i

)1/2

.

We use x = (x1, x2) = (x1, x2, . . . , xn). We also let Sn
⋆ be the Cartesian product of several

second order cones, i.e., Sn
⋆ = Sk1 × Sk2 · · · × Skm where Ski ⊂ Rki is a second order cone.

If
∑m

i=1 ki = n and x ∈ Sn
⋆ , x can be expressed as (x1, x2, . . . , xm) where xi ∈ Ski . Since

Ski is a second order cone in Rki , x ∈ Sn
⋆ indicates that each subvector xi (i = 1, 2, . . . ,m)

of x satisfies the inequality

xi1 ≥

(
ki∑

j=2

x2
ij

)1/2

,

where xi = (xi1, xi2, . . . , xiki
) (1 ≤ i ≤ m). For every x = (x1, x2, . . . , xm) ∈ Rn, x≽S0 also

denotes a product of multiple second order cone inequalities, i.e., x≽S0 if and only if xi1 ≥(∑ki

j=2 x2
ij

)1/2

(i = 1, 2, . . . ,m) . Throughout the paper, for every convex subset K of Rn,

we let F(K) the set of real valued functions defined on an open neighborhood of K, F+(K) =
{f ∈ F(K) : f(x) ≥ 0 for every x ∈ K}, F++(K) = {f ∈ F(K) : f(x) > 0 for every x ∈
K}, Aff(K) = {f ∈ F(K) : f is affine on K}. Here we say that f is affine on K if f((1 −
λ)x + λy) = (1 − λ)f(x) + λf(y) for every x ∈ K, y ∈ K and λ ∈ [0, 1].

We call a subset C of Rn second order cone inequality (SOCI) representable if there exists
an affine map F : Rbm+n → Sq for which C = {z ∈ Rn : F (y, z)≽S0 for some y ∈ R bm}
holds , where we assume that m̂ ≥ 1.

Every SOCI representable subset of Rn is convex. We assume that the entire n-dimensional
space Rn is SOCI representable. In what follows, K denotes a fixed convex subset of Rn

which is SOCI representable; hence K = {x ∈ Rn : F K(y,x)≽S0 for some y ∈ Rbm}, where
F K : R bm+n → Sq is an affine map.

For every subset K of Rn and every f ∈ F(K), let

epi(f,K) =
{
(t,x) ∈ R1+n : t − f(x) ≥ 0 and x ∈ K

}
(the epigraph of f restricted to K),

hyp(f,K) =
{
(t,x) ∈ R1+n : t − f(x) ≤ 0 and x ∈ K

}
(the hypograph of f restricted to K).

Define

Sepi(K) = {f ∈ F(K) : epi(f,K) is SOCI representable},
Shyp(K) = {f ∈ F(K) : hyp(f,K) is SOCI representable}.

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



244 K. Kobayashi, S. Kim & M. Kojima

In addition, for f ∈ Sepi(K) or f ∈ Shyp(K), we call f an SOCI representable function.

When K = Rn, we often omit K and use the symbols F, F+, F++, Aff, epi(f), hyp(f), Sepi
and Shyp for F(K), F+(K), F++(K), Aff(K), epi(f,K), hyp(f,K), Sepi(K) and Shyp(K),
respectively.

We note that the discussion of SOCI representable functions and sets in [11–13] deals with
general concepts and representation. In this paper, we are more interested in computational
efficiency of various SOCPs formulated from SOCI representable functions.

2.2. The restricted hyperbolic constraint

When formulating a problem as a second order cone, we frequently use the restricted hyper-
bolic constraint:

zT z ≤ uv, u ≥ 0, v ≥ 0 ⇔
(

u + v, u − v, 2z
)T ≽S0,

where u ∈ R, v ∈ R and z ∈ Rp.

3. SOCP Formulation

We consider solving the following convex optimization problem by formulating it as an
SOCP. Let K = Rn.

min f0(x) subj. to fj(x) ≤ 0 (j = 1, 2, . . . , m̃). (1)

If fj ∈ Sepi, then (1) can be formulated as an SOCP by introducing auxiliary variables.

As mentioned in Section 2, fj ∈ Sepi implies that epi(fj) can be represented as an SOCI;
there exists an affine map F j : Rbm+1+n → Sq for which

epi(fj, K) = {(t, x) ∈ R1+n : F j(z, t,x)≽S0 for some z ∈ R bm}

holds. Thus, an inequality fj(x) ≤ 0 can be represented as

F j(z, 0, x)≽S0 for some z ∈ R bm. (2)

When a given optimization problem (1) described by SOCI representable functions is
formulated as an SOCP, we need to introduce auxiliary variables, for instance z in (2), for
affine maps. The way to represent an SOCI representable function as an SOCI is not unique
as we see in the following.

Let us consider

min f0(x) =
∑
i∈I

fi(x)2Pi (3)

where Pi = {0, 1, 2, 3, . . .} and fi ∈ Aff (i ∈ I). Let

I0 = {i : Pi = 0}, I1 = {i : Pi = 1}, I2 = {i : Pi ≥ 2}, I = I0 ∪ I1 ∪ I2.

Then, (3) can be written as

min
∑
i∈I0

fi(x) +
∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i subj. to fi(x)2(Pi−1) ≤ ti (i ∈ I2),

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 245

or equivalently,

min
∑
i∈I0

fi(x) + s subj. to
∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i ≤ s, fi(x)2(Pi−1) ≤ ti (i ∈ I2).

If Pi = 2, then fi(x)2(Pi−1) ≤ ti can be represented as (ti + 1, ti − 1, 2fi(x))T≽S0.

For Pi ≥ 3, introducing auxiliary variables into the inequality fi(x)2(Pi−1) ≤ ti until
the power of fi(x) becomes 2, we replace it by the sequence of inequalities ti ≥ u2

i , ui ≥
v2

i , . . . , wi ≥ fi(x)2. Then, the problem is equivalent to

min
∑
i∈I0

fi(x) + s

subj. to
∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i ≤ s, ti ≥ u2
i , ui ≥ v2

i , . . . , wi ≥ fi(x)2 (i ∈ I2).

 (4)

Alternatively,

min
∑
i∈I0

fi(x) +
∑

i ∈ I1

ti +
∑

i ∈ I2

ti

subj. to ti ≥ fi(x)2 (i ∈ I1), ti ≥ u2
i , ui ≥ v2

i , . . . , wi ≥ fi(x)2 (i ∈ I2).

 (5)

Let α and β be the number of indices in I1 and I2, respectively, and I1 = {i1j : j = 1, . . . , α}
and I2 = {i2k : k = 1, . . . , β}. We now consider the constraint∑

i∈I1

fi(x)2 +
∑
i∈I2

t2i ≤ s (6)

in the problem (4). The second order cone representation of (6) is(
s + 1, s − 1, 2fi11(x), 2fi12(x), . . . , 2fi1α(x), 2ti21 , 2ti22 , . . . , 2ti2β

)T ≽S0,

and the size of the second order cone is 2 + α + β. On the other hand, the sizes of all the
second order cones induced from the constraints in (5) are 3. The SOCP formulation of
(5) thus involves smaller size second order cones than that of (4). We note that another
SOCP formulation can be obtained by replacing the variable s in the objective function
of the problem (4) by s′ + s′′ and splitting the constraint

∑
i∈I1

fi(x)2 +
∑

i∈I2
t2i ≤ s

into
∑

i∈I1
fi(x)2 ≤ s′ and

∑
i∈I2

t2i ≤ s′′. Introducing less auxiliary variables than (5)
and more auxiliary variables than (4) leads to an SOCP formulation in which the size
of the largest second order cone is smaller than that of (4) and larger than that of (5).
Formulating the problem in which the size of the largest second order cone is the largest
among the equivalent SOCP formulations provides good computational efficiency.

If a problem has a constraint
∑

i∈I fi(x)2Pi ≤ g(x), the SOCP formulation described
above can be also applied, where g ∈ Aff.

Similarly, problems that involve
(∑

i∈I fi(x)2Pi

)1/2

, with Pi ≥ 1 (hence I0 = ∅) in

their objective functions to be minimized or their inequality constraints can be formulated
as SOCPs using

s ≥

∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i

1/2

, ti ≥ u2
i , ui ≥ v2

i , . . . , wi ≥ fi(x)2 (i ∈ I2).

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



246 K. Kobayashi, S. Kim & M. Kojima

We also mention that SOCP formulations of problems involving
(∑

i∈I fi(x)2Pi

)
/g(x) in

their objective functions to be minimized, where g ∈ Aff++(K) for some SOCI representable
convex subset K of Rn, can be derived. More precisely, we consider the constraints∑

i∈I
fi(x)2Pi

 /g(x) ≤ t and x ∈ K

where t is an auxiliary variable representing the objective value, and write∑
i∈I

fi(x)2Pi

 ≤ tg(x) and x ∈ K

as second order cones by using the restricted hyperbolic constraint given in Section 2.2.

For theoretical complexity aspect of an SOCP, Tsuchiya [17] showed that the long-step
algorithm for SOCP using NT direction has O(k log ϵ−1) iteration-complexity to reduce the
duality gap by a factor of ϵ, where k is the number of second order cones. We observe this
with three SOCP formulations of varying number of second order cones in the following
illustrative example.

An illustrative example: the Chained singular function

As an illustrative example, we show three different SOCP formulations of the Chained
singular function. We consider minimizing the Chained singular function

min
∑
i∈J

(
(xi + 10xi+1)

2 + 5(xi+2 − xi+3)
2 + (xi+1 − 2xi+2)

4 + 10(xi − 10xi+3)
4
)
, (7)

where J = {1, 3, 5, . . . , n − 3} and n is a multiple of 4. This can be rewritten as

min
∑
i∈J

(si + ti + pi + qi)

subj. to si ≥ (xi + 10xi+1)
2 , ti ≥ 5 (xi+2 − xi+3)

2 , ri ≥ (xi+1 − 2xi+2)
2 ,

pi ≥ r2
i , ui ≥

√
10 (xi − 10xi+3)

2 , qi ≥ u2
i (i ∈ J).

We can formulate this problem as an SOCP:

min
∑
i∈J

(si + ti + pi + qi)

subj. to

 si + 1
si − 1

2(xi + 10xi+1)

≽S0,

 ti + 1
ti − 1

2
√

5(xi+2 − xi+3)

≽S0, ri + 1
ri − 1

2(xi+1 − 2xi+2)

≽S0,

 pi + 1
pi − 1
2ri

≽S0, ui + 1
ui − 1

2 4
√

10(xi − 10xi+3)

≽S0,

 qi + 1
qi − 1
2ui

≽S0 (i ∈ J).



(8)

The sizes of all the second order cones are 3.

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 247

Minimizing the Chained singular function (7) can also be rewritten as

min s +
∑

i∈J(pi + qi)
subj. to s ≥

∑
i∈J ((xi + 10xi+1)

2 + 5(xi+2 − xi+3)
2) ,

ri ≥ (xi+1 − 2xi+2)
2, pi ≥ r2

i ,

ui ≥
√

10(xi − 10xi+3)
2, qi ≥ u2

i (i ∈ J).

We can formulate this problem as an SOCP:

min s +
∑

i∈J(pi + qi)
subj. to a single SOCP inequality to be derived from

s ≥
∑

i∈J ((xi + 10xi+1)
2 + 5(xi+2 − xi+3)

2) , ri + 1
ri − 1

2(xi+1 − 2xi+2)

≽S0,

 pi + 1
pi − 1
2ri

≽S0, ui + 1
ui − 1

2 4
√

10(xi − 10xi+3)

≽S0,

 qi + 1
qi − 1
2ui

≽S0 (i ∈ J).


(9)

The single SOCP inequality is of the following form

s + 1
s − 1

2(x1 + 10x1+1)
2(x3 + 10x3+1)

...
2(xn−3 + 10xn−3+1)
2
√

5(x1+2 − x1+3)
2
√

5(x3+2 − x3+3)
...

2
√

5(xn−3+2 − xn−3+3)


≽S0.

The dimension of this single SOCP inequality is n. Now we have two different SOCP
formulations (8) and (9).

A different SOCP formulation can be derived: If we write minimizing the Chained
singular function

min s
subj. to s ≥

∑
i∈J ((xi + 10xi+1)

2 + 5(xi+2 − xi+3)
2 + r2

i + u2
i ) ,

ri ≥ (xi+1 − 2xi+2)
2, ui ≥

√
10(xi − 10xi+3)

2 (i ∈ J),

an SOCP can be formulated as

min s
subj. to a single SOCP inequality to be derived from

s ≥
∑

i∈J ((xi + 10xi+1)
2 + 5(xi+2 − xi+3)

2 + r2
i + u2

i ) , ri + 1
ri − 1

2(xi+1 − 2xi+2)

≽S0,

 ui + 1
ui − 1

2 4
√

10(xi − 10xi+3)

≽S0 (i ∈ J).


(10)

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



248 K. Kobayashi, S. Kim & M. Kojima

The single SOCP inequality is represented as

s + 1
s − 1

2(x1 + 10x1+1)
2(x3 + 10x3+1)

...
2(xn−3 + 10xn−3+1)
2
√

5(x1+2 − x1+3)
2
√

5(x3+2 − x3+3)
...

2
√

5(xn−3+2 − xn−3+3)
2r1

2r3
...

2rn−3

2u1

2u3
...

2un−3



≽S0.

Note that the size of the first second order cone is 2(n − 1) and the size of all the other
second order cones is 3.

4. Sparsity

When different SOCP formulations shown in Section 3 are solved by a software based on
primal-dual interior-point methods, their computational efficiency varies. The most time
consuming part is solving the Schur complement equation. Two important factors that affect
the efficiency of solving the Schur complement equation are the sparsity and the size of the
Schur complement matrix. We examine how SeDuMi [14] handles the Schur complement
equations from various SOCP formulations, resulting in different computational time.

Consider the primal-dual standard form SOCP:

min
ℓ∑

i=1

cT
i xi subj. to

ℓ∑
i=1

Aixi = b, xi≽S0 (i = 1, 2, . . . , ℓ), (11)

max bT y subj. to si = ci − AT
i y≽S0 (i = 1, 2, . . . , ℓ), (12)

where ci, xi, si ∈ Rki , Ai ∈ Rm×ki (i = 1, . . . , ℓ), and b, y ∈ Rm.

In primal-dual interior-point methods for solving SOCP, the Cholesky factorization is
commonly used for the solution of the Schur complement equation. The sparsity of the
Schur complement matrix can be explained in connection with the sparsity of SOCP by
considering the correlative sparsity pattern (csp) matrix, which was originally proposed for
a POP [18], for the dual standard form SOCP (12). The csp matrix of SOCP is defined
by m × m symmetric matrix R, called the correlative sparsity pattern (csp) matrix whose
element Rjk is either 0 or ∗ for a nonzero value. The symbol ∗ was assigned to all diagonal
elements of R and also to each off-diagonal element Rjk = Rkj (1 ≤ j < k ≤ m) if and only
if the variables yj and yk appear simultaneously in a second order cone inequality constraint

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 249

si = ci −AT
i y≽S0. We note that the sparsity pattern of the Schur complement matrix (the

coefficient matrix of the Schur complement equation) coincides with the csp matrix R [9].

In the implementation of the primal-dual interior-point method, the Schur complement
matrix is splitted into sparse and dense parts. Then, the sparse part is factorized and
a low-rank update is applied to the dense part. Therefore, even with the dense Schur
complement matrix, the sparsity structure of the sparse part of the Schur complement
matrix can still be exploited after the splitting. Thus, the computational efforts for solving
the Schur complement equation depend on the size of the Schur complement matrix, the
sparsity of the sparse part, and the rank of the dense part.

Notice that SOCPs formulated with small second order cones have more variables than
those with large second order cones because more auxiliary variables are introduced. As a
result, the size of the Schur complement matrix is larger.

The sparsity of the Schur complement matrix is determined by the sparsity of the data
matrices Ai (i = 1, 2, . . . , ℓ) in (12). More specifically, the nonzero pattern of the sparse
part of the Schur complement matrix coincides with the nonzero pattern of the matrix∑ℓ

i=1 AiA
T
i . From this, we can observe that different SOCP formulations from various ways

of introducing auxiliary variables do not change the sparsity pattern of the sparse part of
the Schur complement matrix essentially, and only the number of variables are different.
This will be shown with the illustrative example in this section.

The csp matrix becomes increasingly dense as a second order cone of SOCP formula-
tion includes more variables, which was called a dense constraint in [9], for example (10).
We need to know how SeDuMi handles the Schur complement equation to compare the
computational efficiency of various SOCP formulations. SeDuMi implements the product-
form Cholesky factorization based on the rank-1 Fletcher-Powell method [3] for solving the
Schur complement equation. The product form approach can be described as follows. Let
I ⊂ {1, . . . , ℓ} be the index set of second order cones involving many variables. We also let
(x1, x2, . . . , xℓ) be an interior-feasible solution of the primal standard form SOCP (11) and
(y, s1, s2, . . . , sℓ) an interior-feasible solution of the dual standard form SOCP (12). We
notice that SeDuMi uses the Nesterov-Todd direction as the search direction, and denote

γ(xi) =
√

x2
i1 − ∥xi2∥2,

ui1 = {(γ(si)xi1 + γ(xi)si1)/γ(xi)}
√

xT
i si + γ(xi)γ(si),

ui2 = {(−γ(si)xi2 + γ(xi)si2)/γ(xi)}
√

xT
i si + γ(xi)γ(si).

In addition, we denote by Ai1 the first column of Ai. Then, the Schur complement matrix
is represented as

ℓ∑
i=1

AiF iA
T
i =

ℓ∑
i=1

γ2(ui)

2
AiA

T
i +

ℓ∑
i=1

(viv
T
i − wiw

T
i ),

where vi = Aiui, wi = γ(ui)Ai1, and F i = (γ2(ui)/2)I i + uiu
T
i − γ2(ui)Ii1(Ii1)

T . Here
I i is the ki × ki identity matrix whose first column is denoted Ii1. For i ∈ I, AiF iA

T
i

is splitted into the sparse and dense parts. More precisely,
∑ℓ

i=1 AiF̃ iA
T
i +

∑
i∈I (viv

T
i −

wiw
T
i ) where F̃ i = F i for i /∈ I and F̃ i = (γ2(ui)/2)I for i ∈ I. Then, the sparse

part
∑ℓ

i=1 AiF̃ iA
T
i is factorized, and the rank-1 Fletcher-Powell update for the dense part

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



250 K. Kobayashi, S. Kim & M. Kojima∑
i∈I (viv

T
i −wiw

T
i ) is applied to the factorization. Notice that the rank of the dense part

is 2#I. As a result, increasing the number of second order cones of large dimensions in an
SOCP formulation requires more applications of the rank-1 Fletcher-Powell update to the
factorization. SeDuMi uses a threshold value to decide how large size of a second order cone
is regarded as large.

Illustrative example

Three different SOCP formulations of the Chained singular function in Section 3 result in
different computational performance. We investigate their difference with the size of the
Schur complement matrix, the csp matrix of A, and the sparsity of the sparse part of Schur
complement matrix.

Consider the Chained singular function with n = 4. For SOCP formulation (8), we define
the vector y in (12) by y = (y1, y2, . . . , y10) = (x1, x2, x3, x4, s1, t1, r1, p1, u1, q1). The 10× 10
csp matrix of the SOCP formulation (8) is shown in Figure 1. For the SOCP formulation



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗

∗ ∗


Figure 1: The csp matrix of (8)

(9), the vector y in (12) is defined by y = (y1, y2, . . . , y9) = (x1, x2, x3, x4, s1, r1, p1, u1, q1),
and the 9 × 9 csp matrix of (9) is shown in Figure 2. For the SOCP formulation (10), the
vector y in (12) is defined by y = (y1, y2, . . . , y7) = (x1, x2, x3, x4, s1, r1, u1). In this SOCP
formulation, all elements in y are included in the first cone, and thus the 7 × 7 csp matrix
becomes completely dense. Its csp matrix is shown in Figure 3.



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗



Figure 2: The csp matrix of (9)

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 251



∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗


Figure 3: The csp matrix of (10)

As we see from Figure 1, 2 and 3, the sparsity decreases from the csp matrix of (8),
(9) to (10). More precisely, as the size of the largest second order cone in the SOCP
formulation increases, the csp matrix gradually loses sparsity. Note that in (9), the first
second order cone inequality contains x1, x2, x3, x4, and s and this inequality makes the 5×5
submatrix of the csp matrix to be completely dense. Moreover, the first second order cone
inequality in (10) contains x1, x2, x3, x4, s, r1, and u1 which makes 7×7 submatrix of the csp
matrix completely dense. In SeDuMi, the nonzero pattern of the sparse part of the Schur
complement matrix of (8) is equivalent to the csp matrix of (8) shown in Fig 1. For (9)
and (10), when a second order cone involving most variables is considered large in SeDuMi,
that is, #I = 1, the sparsity pattern of the sparse part of the Schur complement matrix
is shown in Figure 4 and 5, respectively. If we compare Figure 1, 4 and 5, we see that the
size of the Schur complement matrix decreases from 10, 9 to 7, and the number of nonzero
elements are reduced from 38, 29 to 23, and the sparsity pattern remains almost the same.
As a result, the computational time for factorizing the sparse part is expected to decrease
slightly or stay almost equal.

After factorizing the sparse part, the rank-1 Fletcher-Powell update is applied to the
factorization to account for the dense part. As n increases, the size of the largest cone of
SOCP formulations (9) and (10) grows, and that second order cone is regarded as large by
SeDuMi. For (8), SeDuMi did not find any large second order cones, namely, #I = 0. For
(9) and (10) with n = 500, 1000 and 2000, our test showed that SeDuMi determined the
number of large second order cone #I = 1. This indicates that the rank of the dense part
is 2. The computational time for applying the rank-1 update for the dense part is small and
(10) has the smallest size of the Schur complement matrix among the three formulations.
Consequently, solving (10) consumes the least amount of cpu time, as shown in the following
numerical experiments.

The three SOCP formulations of the Chained singular function were tested with SeDuMi
on a Macintosh Dual 2.5GHz PowerPC G5 with 2GB DDR SDRAM. In Tables 1-3, n means
the number of variables, sizeA the size of SOCP problem in the SeDuMi input format, #nzA
the number of nonzeros in the coefficient matrix A of SOCP problem to be solved by SeDuMi,
#it the number of iterations, and rel.err the relative error of SOCP values.

Table 1, 2 and 3 show the numerical results of the SOCP formulation (8), (9) and (10).
The asterisk mark in Table 1, 2, and 3 means that numerical difficulty was encountered
while SeDuMi was solving the problem. Numerical problems in SeDuMi encountered while
solving (10) may have caused an increase in the number of iterations and large rel.err.
Currently, it is not well-understood why SeDuMi, an implementation of the primal-dual

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



252 K. Kobayashi, S. Kim & M. Kojima



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗

∗ ∗


Figure 4: Sparse pattern of the sparse part for SOCP (9)



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗ ∗ ∗

∗ ∗ ∗


Figure 5: Sparsity pattern of the sparse part for SOCP (10)

Table 1: Numerical results of SOCP (8)

Chained Singular, SOCP (8)
n sizeA #nzA rel.err cpu #it cpu/#it

500 [4482, 1994] 5478 5.7e-14 5.48 25 0.22
1000 [8982, 3994] 10978 0.0e-0 13.48 26 0.52
2000 [17982, 7994] 21978 0.0e-0 ∗37.48 25 1.50

Table 2: Numerical results of SOCP (9)

Chained Singular, SOCP (9)
n sizeA #nzA rel.err cpu #it cpu/#it

500 [3488, 1497] 4484 1.2e-7 3.47 18 0.19
1000 [6988, 2997] 8984 2.4e-7 7.14 18 0.40
2000 [13988, 5997] 17984 4.7e-7 19.06 18 1.06

Table 3: Numerical results of SOCP (10)

Chained Singular, SOCP (10)
n sizeA #nzA rel.err cpu #it cpu/#it

500 [2492, 999] 3488 1.2e-6 ∗3.26 23 0.14
1000 [4992, 1999] 6988 9.6e-5 ∗5.89 24 0.25
2000 [9992, 3999] 13988 1.6e-4 ∗14.15 28 0.51

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 253

interior-point method, gives numerical problems for some problems. We can only guess that
computational aspects of the primal-dual interior-point methods employed by SeDuMi may
contribute to numerical stability of SeDuMi. In this regard, we can not say that the result
here indicates that (10) always cause numerical problems in SeDuMi. Further research on
the numerical stability of SeDuMi is necessary.

In Table 3, the formulation (10) consumes the least amount of cpu time and cpu time
per iteration, despite numerical difficulty which usually increases cpu time. Note that the
size of A in (10) is smaller than (8) and (9), indicated by sizeA, and the numbers of nonzero
elements shown in the column of #nzA in Table 3 are smaller than those in Tables 1 and
2. This resulted in the least amount of cpu time per iteration of (10).

As we already pointed out, the long-step algorithm for SOCP using NT direction has
O(k log ϵ−1) iteration-complexity to reduce the duality gap by a factor of ϵ, where k is the
number of second order cones. The SOCP formulation in which the size of the largest second
order cone is the largest among the various equivalent SOCP formulations is the formula-
tion with the smallest number of second order cones among the various equivalent SOCP
formulations. Thus, for computational efficiency, it is recommended to use this SOCP for-
mulation. Besides the number of second order cones, the sparsity of the problem also affects
the computational efficiency of the algorithm. As we have seen from these examples, we can
observe that different SOCP formulations from various ways of introducing auxiliary vari-
ables do not change the sparsity pattern of the sparse part of the Schur complement matrix
essentially. Moreover, our numerical results show that (10) provides the best computational
efficiency. Thus it is recommended to use the SOCP formulation in which the size of the
largest second order cone is the largest among the various equivalent SOCP formulations.

5. Numerical Results

We test SOCP formulations of convex optimization problems using SeDuMi and compare nu-
merical results with LANCELOT. For unconstrained problems, we use the arwhead function,
the engval1 function, nondquar function, the vardim function in addition to the Chained
singular function in Section 4. Constrained test problems are generated by modifying some
of the unconstrained problems and adding constraints because suitable constrained test
problems of the type presented in this paper for the numerical experiments are unavailable.

Numerical results for unconstrained problems are presented in Section 5.1. Generating
constrained test problems is described in Section 5.2 with numerical results. All the numer-
ical tests were performed using the Matlab toolbox SeDuMi [14] for SOCP formulation, and
using LANCELOT on a Macintosh Dual 2.5GHz PowerPC G5 with 2GB DDR SDRAM. We
use the notation described in Table 4 for the description of numerical results.

5.1. Unconstrained problems

We selected minimization problems of the following functions for the test of unconstrained
problems from CUTEr [4].

The arwhead function

n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

n)2. (13)

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



254 K. Kobayashi, S. Kim & M. Kojima

Table 4: Notation

n the number of variables
sizeA the size of SOCP problem in the SeDuMi input format
#nz the number of nonzeros in the coefficient matrix A of SOCP problem

for SeDuMi
cpu cpu time consumed by SeDuMi and LANCELOT in seconds

#iter. the number of iterations
gradNorm the infinity norm of the gradient vector of the objective function

at the obtained solution x
infeasErr maxi{max(gi(x), 0)} where gi(x) ≤ 0 (i = 1, . . . ,m) are constraint

and x is the obtained solution.
functVal the objective function value at the end of iteration

s/f S if num.err = 0 and pinf =dinf =0 from SeDuMi output.
F if num.err = 1, or pinf=1, or dinf =1, or infeasErr>1.0e-2.

init.pt initial guess for LANCELOT
inform LANCELOT warning message; 0: successful, 1: maxit reached,

3: the step taken during the current iteration is so small that no
difference will be observed in the function values, 5: insufficient space,
8: Check constraints and try starting with different initial values,
10: Some of internal functions are not large enough.

The engval1 function

n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

i+1)
2. (14)

The nondquar function

n−2∑
i=1

(xi + xi+1 + xn)4 + (x1 − x2)
2 + (xn−1 + xn)2. (15)

The vardim function

n∑
i=1

(xi − 1)2 + (
n∑

i=1

ixi −
n(n + 1)

2
)2 + (

n∑
i=1

ixi −
n(n + 1)

2
)4. (16)

Note that these functions belong to the class of Sepi and can thus be formulated as
SOCPs. The numerical results of the problems are shown in Table 5, 6, 7, and 8, respectively.
The SOCP formulation of the problems in which the size of the largest second order cone
is the largest among various SOCP formulations is tested for all numerical experiment for
computational efficiency as discussed in Section 4. In all Tables, we see that the matrix A
when applying SeDuMi for solving SOCP is very sparse from the size of A and the number
of nonzero elements of A shown in the columns of sizeA and #nzA, respectively.

The default values of the parameters in LANCELOT were used except the maximum
number of iterations, which was increased to 200, 000. Input for LANCELOT for all the
problems was prepared in SIF format. The column of “inform” shows information that

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 255

Table 5: Numerical results of minimizing the arwhead function using SeDuMi for SOCP
and LANCELOT

SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [4997, 2000] 4997 1.41e-4 9.75e-7 1.26
5000 S [24997, 10000] 24997 2.13e-4 9.24e-6 13.42

LANCELOT
n inform #iter. init.pt gradNorm functVal cpu

1000 0 5 xi = 1.0 ∀i 2.01e-6 1.69e-10 0.28
1000 0 14 xi = 10.0 ∀i 2.55e-13 0.0e-0 0.67
5000 0 5 xi = 1.0 ∀i 1.98e-7 1.11e-12 0.81
5000 0 14 xi = 10.0 ∀i 1.85e-13 0.0e-0 1.41

LANCELOT returns after it finishes solving the problems, and the meaning of each value is
included in Table 4.

In Table 5, we see that solving with LANCELOT provides more accurate solutions faster
than using SeDuMi for SOCP formulations. For the engval1 function, LANCELOT obtained
optimal objective function values faster for n = 1000, however, in the case of n = 10000
and n = 15000 with init.pt 10.0, it consumed more cpu time than SeDuMi as indicated in
Table 6.

Table 6: Numerical results of minimizing the engval1 function using SeDuMi for SOCP and
LANCELOT

SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [4997, 2000] 4997 2.35e-4 1.10819e+4 2.02
10000 S [49997, 20000] 49997 2.27e-4 1.10993e+4 25.10
15000 S [74997, 30000] 74997 1.95e-4 1.66499e+4 28.20

LANCELOT
n Inform #iter. init.pt gradNorm functVal cpu

1000 0 7 xi = 2.0 ∀i 2.47e-6 1.10819e+4 0.26
1000 0 13 xi = 10.0 ∀i 7.50e-12 1.10819e+4 0.63

10000 0 7 xi = 2.0 ∀i 2.47e-6 1.10993e+4 1.34
10000 3 13747 xi = 10.0 ∀i 1.66e-7 1.10993e+4 274.47
15000 0 7 xi = 2.0 ∀i 2.47e-6 1.66499e+4 1.94
15000 3 10152 xi = 10.0 ∀i 1.23e-7 1.66499e+4 324.79

The numerical results for the nondquar function are presented in Table 7. It took longer
to solve with SeDuMi than LANCELOT. We observe that the performance of LANCELOT is
better in terms of cpu time for both case of initial points x = (1,−1, 1,−1, . . .) and xi = 10.0
for all i.

In Table 8, the numerical results for the vardim function are shown. When LANCELOT
ended in inform 3 for solving the vardim function for n = 10000, 15000, the values of
the column of gradNorm are large compared to terminating with inform 0. We observe
that the function values are small for these cases. LANCELOT spent more cpu time with

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



256 K. Kobayashi, S. Kim & M. Kojima

Table 7: Numerical results of minimizing the nondquar function using SeDuMi for SOCP
and LANCELOT

SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [4994, 1999] 5994 4.81e-5 1.68e-5 2.35
10000 S [49994, 19999] 59994 9.03e-3 3.16e-3 31.43
50000 S [249994, 99999] 299994 1.03e+1 1.34e-1 227.22

LANCELOT
n inform #iter. init.pt gradNorm functVal cpu

1000 0 17 x =(1,-1,1,-1,...) 8.47e-6 1.39e-9 0.18
1000 0 28 xi = 10.0 ∀i 0.0e-0 9.31e-10 0.49

10000 0 19 x =(1,-1,1,-1,...) 6.61e-6 5.23e-10 1.17
10000 0 29 xi = 10.0 ∀i 1.15e-15 7.40e-8 1.13
50000 0 20 x =(1,-1,1,-1,...) 5.97e-6 4.16e-10 5.61
50000 0 31 xi = 10.0 ∀i 6.87e-15 6.07e-10 7.66

Table 8: Numerical results of minimizing the vardim function using SeDuMi and LANCELOT

SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [1008, 1002] 3005 1.55e-2 2.79e-10 0.29
10000 S [10008, 10002] 30005 8.60e-3 9.22e-7 3.3
15000 S [15008, 15002] 45005 3.16e-2 1.55e-6 6.47

LANCELOT
n inform #iter. init.pt gradNorm functVal cpu

1000 0 36 xi = 1 − i/n ∀i 1.89e-7 8.95e-21 1.0
1000 0 56 xi = 10.0 ∀i 5.74e-17 7.72e-14 1.78

10000 3 48 xi = 1 − i/n ∀i 2.65e-3 1.77e-14 102.07
10000 3 61 xi = 10.0 ∀i 1.07e-3 3.78e-9 159.12
15000 3 50 xi = 1 − i/n ∀i 1.63e-2 2.97e-13 237.67
15000 3 75 xi = 10.0 ∀i 1.18e-2 4.03e-9 412.28

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 257

init.pt xi = 10 for all i. SeDuMi could find optimal objective function values faster for
n = 10000, 15000. We see that the cpu time consumed by SeDuMi is smaller than that of
LANCELOT, and LANCELOT needs a good initial point to have fast convergence.

5.2. Constrained problems

Constrained test problems for SOCP formulations presented in this paper are scarce in
the literature. We generated test problems using some problems in CUTEr [4]. We first
describe how the test problems were generated, and then present the numerical results of
the problems. Main purpose of generating constrained test problems was to create problems
with rational polynomials, square root of polynomials and nonlinear inequality constraints.
The arwhead function, the engval1 function, and the nondquar function were modified for
the objective function of the test problems, and the Chained singular function was used to
create constraints.

We create 6 test problems, which are called P1, P2, P3, P4, P5, and P6. In the
description of test problems, we use J = {1, 3, 5, . . . , n − 3}, gi(x) = (xi + 10xi+1)

2 +
5(xi+2 − xi+3)

2 + (xi+1 − 2xi+2)
4 + 10(xi − 10xi+3)

4 (i ∈ J), where n is a multiple of 4.
The constraints in the form of gi(x − 2e) ≤ ρ, where e = (1, 1, . . . , 1)T ∈ Rn, are included
in the test problems. Here ρ denotes a parameter, which will be fixed to 1000 for numerical
tests. We use a large number 1000 for ρ because the value of gi(x) tends to be large for
even small values of xi’s. Using the arwhead function (13), test problems P1 and P2 are
generated as follows.

P1 : min
n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

n)2

subj. to gj(x − 2e) ≤ ρ (j ∈ J).



P2 : min

(
n−1∑
k=1

(−4xk + 3.0)2

)1/2

+
n−1∑
i=1

(x2
i + x2

n)
2

1 + xi + xn

subj. to gj(x − 2e) ≤ ρ (j ∈ J), x ∈ K,


where K = {x ∈ Rn : xi ≥ 0 (i = 1, 2, . . . , n) }.

Constrained test problems P3 and P4 are derived using the engval1 function.

P3 : min
n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

i+1)
2

subj. to gj(x − 2e) ≤ ρ (j ∈ J).



P4 : min
n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

i+1)
2

−
n−1∑
i=1

(1 + xi + xi+1)
1/4

(
1 +

xi

2
+

xi+1

i + 1

)1/2

subj. to gj(x − 2e) ≤ ρ (j ∈ J), x ∈ K,


where K = {x ∈ Rn : xi ≥ 0 (i = 1, 2, . . . , n) }.

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



258 K. Kobayashi, S. Kim & M. Kojima

Using the nondquar function (15), we obtain test problems P5 and P6.

P5 : min
n−2∑
i=1

(xi + xi+1 + xn)4 + (x1 − x2)
2 + (xn−1 − xn)2

subj. to gj(x − 2e) ≤ ρ (j ∈ J).


P6 : min

n−2∑
i=1

(xi + xi+1 + xn)4

1 + xi + xi+1 + xn

+
(x1 − x2)

2

1 + x1 + x2

+
(xn−1 − xn)2

1 + xn−1 + xn

subj. to gj(x − 2e) ≤ ρ (j ∈ J), x ∈ K,


where K = {x ∈ Rn : xi ≥ 0 (i = 1, . . . , n) }.

Notice that gj ∈ Sepi in P1, P2, P3, P4, P5 and P6, and the constraints gj(x−2e) ≤
ρ (j ∈ J) can be formulated as second order cone inequalities. We see the objective functions
of P1, P3 and P5, the constraint functions gj(x) are in the class of Sepi. Also, the objective
functions of P2, P4, P6 are in the class of Sepi(K). As a result, the problem P1, P2, P3,
P4, P5 and P6 can be formulated as SOCPs.

We show SOCP formulations of P2 and P4. Since the other problems have resem-
bling terms in the objective function and the same constraints as P2 and P4, their SOCP
formulations can be derived similarly.

The problems P2 and P4 have a common constraint gj(x− 2e) ≤ ρ (j ∈ J). We show
how the second order cone inequalities of the constraint can be described. Consider

ρ ≥ ((xj − 2) + 10 (xj+1 − 2))2 + 5 ((xj+2 − 2) − (xj+3 − 2))2 + q2
j + r2

j ,

qj ≥ ((xj+1 − 2) − 2 (xj+2 − 2))2 , rj ≥
√

10 ((xj − 2) − 10 (xj+3 − 2))2 (j ∈ J).

}
(17)

Then, the SOCP formulation of (17) can be written as
ρ + 1
ρ − 1

2 {(xj − 2) + 10 (xj+1 − 2)}
2
√

5 {(xj+2 − 2) − (xj+3 − 2)}
2qj

2rj

≽S0,

 qj + 1
qj − 1

2 {(xj+1 − 2) − 2 (xj+2 − 2)}

≽S0, rj + 1
rj − 1

2 4
√

10 {(xj − 2) − 10 (xj+3 − 2)}

≽S0 (j ∈ J).



(18)

The problem P2 is equivalent to the problem

min s +
n−1∑
i=1

ti

subj. to s ≥

(
n−1∑
k=1

(−4xk + 3.0)2

)1/2

, ti ≥
u2

i

1 + xi + xn

,

ui ≥ x2
i + x2

n (i = 1, 2, . . . , n − 1),
Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n).


(19)

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 259

The SOCP formulation of P2 with the largest size of second order cone is

min s +
n−1∑
i=1

ti

subj. to


s

−4x1 + 3.0
−4x2 + 3.0

...
−4xn−1 + 3.0

≽S0,

 ti + 1 + xi + xn

ti − 1 − xi − xn

2ui

≽S0,


ui + 1
ui − 1
2xi

2xn

≽S0 (i = 1, 2, . . . , n − 1),

Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n).


The problem P4 is equivalent to the problem

min
n−1∑
i=1

(−4xi + 3.0) + t +
n−1∑
i=1

(−ui)

subj. to t ≥
n−1∑
i=1

v2
i , vi ≥ x2

i + x2
i+1,

u2
i ≤ wi

(
1 +

xi

2
+

xi+1

i + 1

)
, w2

i ≤ 1 + xi + xi+1 (i = 1, 2, . . . , n),

Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n − 1).


The SOCP formulation of P4 with the largest size of second order cone is

min
n−1∑
i=1

(−4xi + 3.0) + t +
n−1∑
i=1

(−ui)

subj. to



t + 1
t − 1
2v1

2v2
...

2vn−1


≽S0,


vi + 1
vi − 1
2xi

2xi+1

≽S0,

 wi + 1 + xi

2
+ xi+1

i+1

wi − 1 − xi

2
− xi+1

i+1

2ui

≽S0, 1 + xi + xi+1 + 1
1 + xi + xi+1 − 1

2wi

≽S0, (i = 1, 2, . . . , n)

Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n − 1).



c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



260 K. Kobayashi, S. Kim & M. Kojima

Table 9: Numerical results from solving P1 using SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

1000 S [10986, 2999] 12982 5.53e-4 1.0293e+4 7.15
5000 S [54986, 14999] 64982 8.29e-4 5.1297e+4 53.12

LANCELOT
n inform #iter. init.pt infeasErr functVal cpu

1000 3 2165 xi = 1.0 ∀i 8.25e-8 1.0293e+4 22.28
1000 3 33455 xi = 10.0 ∀i 5.26e-7 1.0293e+4 190.39
5000 3 2548 xi = 1.0 ∀i 9.31e-9 5.1297e+4 1114.93
5000 3 27201 xi = 10.0 ∀i 2.28e-6 5.1299e+4 1255.33

Table 10: Numerical results from solving P2 using SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

1000 S [13982, 3998] 19974 2.94e-4 3.0860e+3 53
5000 S [69982, 19998] 99974 1.17e-4 1.5117e+4 55.42

LANCELOT
n inform #iter. init.pt infeasErr functVal cpu

1000 3 11805 xi = 1.0 ∀i 1.62e-6 3.0860e+3 55.99
1000 3 83580 xi = 10.0 ∀i 3.28e-7 3.1100e+3 402.53
5000 1 200000 xi = 1.0 ∀i - 1.5117e+4 7534.52
5000 3 168780 xi = 10.0 ∀i 1.80e-6 1.5137e+4 6855.94

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 261

The numerical results for the problems P1 and P2 are shown in Tables 9 and 10,
respectively. In Table 9, we notice that LANCELOT took more cpu time to compute op-
timal objective function values than SeDuMi. The objective function values obtained by
LANCELOT with init.pt 10.0 are larger than the ones obtained with init.pt 1.0 for n = 5000.

From Table 10, we see that SeDuMi provided the optimal objective function values
faster than LANCELOT. If init.pt 10.0 is used for LANCELOT, it took longer time to attain
slightly larger values for the objective function values than with init.pt 1.0. For n = 5000
and init.pt = 1, LANCELOT reached the maximum number of iterations, but the objective
function value was as good as the one obtained by SeDuMi.

In Table 11, solving the SOCP formulation of P3 with SeDuMi and solving P3 with
LANCELOT for n = 5000, 10000, and 15000 resulted in the same objective function val-
ues. We note that the cpu time consumed by SeDuMi was less than LANCELOT using
init.pt=10.0.

Table 11: Numerical results from solving P3 with SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [54986, 14999] 64982 1.06e-4 2.5023e+4 19.3
10000 S [109986, 29999] 129982 1.17e-3 5.0056e+4 70.4
15000 S [164986, 44999] 194982 9.20e-4 7.5089e+4 84.9

LANCELOT
n inform #iter. init.pt infeasErr functVal cpu

5000 3 220 xi = 1.0 ∀i 9.76e-9 2.5024e+4 22.20
5000 3 9794 xi = 10.0 ∀i 6.09e-9 2.5024e+4 321.87

10000 3 160 xi = 1.0 ∀i 1.84e-9 5.0056e+4 26.66
10000 3 10044 xi = 10.0 ∀i 5.48e-11 5.0056e+4 630.58
15000 3 2503 xi = 1.0 ∀i 1.04e-6 7.5089e+4 24.00
15000 3 9779 xi = 10.0 ∀i 1.19e-8 7.5089e+4 943.55

In Table 12, solving the SOCP formulation of P4 with SeDuMi is shown to be a better
approach than LANCELOT for accuracy and getting smaller objective function values. For
n = 15000, LANCELOT resulted in insufficient memory.

From Table 13 for P5 and Table 14 for P6, we notice that large infeasible errors were
obtained by LANCELOT as shown in the column of infeasErr in the tables. We also tested
for small-sized problem such as n = 8, the same objective function values were obtained
from SeDuMi and LANCELOT for both P5 and P6. However, with increasing n, LANCELOT
failed to attain optimal objective function values while SeDuMi provided optimal objective
function values with small infeasible errors.

In unconstrained test problems, LANCELOT performed faster if initial points were given
close to the optimal solution. Otherwise, optimal solutions were attained faster by solving
the SOCP formulation with SeDuMi. Numerical experiments for constrained problems show
that using SeDuMi for the SOCP formulation of the problems provides optimal objective
function values in less cpu time except for P3. LANCELOT failed to obtain an optimal
objective function value in some cases. We mention LANCELOT is a local optimizer while
SeDuMi based on primal-dual interior-point methods is a global optimizer, thus, does not
depend on initial points for convergence. Good initial points are necessary to have conver-

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



262 K. Kobayashi, S. Kim & M. Kojima

Table 12: Numerical results from solving P4 with SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [84980, 24997] 124970 9.25e-4 3.3338e+3 72.45
10000 S [169980, 49997] 249970 8.63e-4 6.6790e+3 199.84
15000 S [254980, 74997] 374970 2.29e-4 1.0024e+4 345.19

LANCELOT
n inform #iter. Init.pt infeasErr functVal cpu

5000 3 244 xi = 1.0 ∀i 5.32e-2 2.5041e+4 21.38
5000 3 59749 xi = 10.0 ∀i 2.32e-2 8.9121e+4 3718.86

10000 3 245 xi = 1.0 ∀i 3.79e-2 5.0091e+4 26.67
10000 3 533 xi = 10.0 ∀i 3.38e-2 1.7768e+5 2698.54
15000 5 - - - -

Table 13: Numerical results from solving P5 with SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [49985, 14998] 69979 2.69e-4 8.1213e+4 54.34
10000 S [99985, 29998] 139979 2.34e-4 1.6179e+5 124.48
15000 F [149985, 44998] 209979 2.07e-4 2.4220e+5 ∗192.52

LANCELOT
n inform #iter. Init.pt infeasErr functVal cpu

5000 3 2120 xi = 1.0 ∀i 5.10e-1 1.9877e+5 2.88
5000 3 2447 xi = 10.0 ∀i 7.84e-0 9.5439e+5 37.21

10000 3 2869 xi = 1.0 ∀i 2.96e+1 1.6179e+5 4774.05
10000 3 3537 xi = 10.0 ∀i 1.18e+3 1.6822e+7 8630.30
15000 3 2974 xi = 1.0 ∀i 9.39e+1 7.5836e+6 8029.10
15000 3 2900 xi = 10.0 ∀i 2.21e+1 2.3696e+6 327.51

Table 14: Numerical results from solving P6 with SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [59983,11997] 109973 3.17e-4 2.6941e+4 40.84
10000 S [119983,39997] 219973 1.95e-4 5.3729e+4 94.97
15000 S [179983,59997] 329973 1.96e-4 8.0476e+4 196.08

LANCELOT
n Inform #iter. init.pt infeasErr functVal cpu

5000 10 731 xi = 1.0 ∀i 3.33e-1 1.6260e+5 446.28
5000 3 6339 xi = 10.0 ∀i 4.33e+0 2.4236e+6 191.52

10000 3 5256 xi = 1.0 ∀i 1.05e+0 2.9769e+5 14584.56
10000 10 4540 xi = 10.0 ∀i 1.95e+1 5.2815e+6 243.40
15000 3 3639 xi = 1.0 ∀i 1.50e-0 7.1146e+5 16404.76
15000 10 3735 xi = 10.0 ∀i 1.47e+2 8.0147e+6 303.33

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



Sparse SOCP for Convex Problems 263

gence to the optimal solution with LANCELOT. The approach using SOCP is effective when
good initial points are not available. We have observed in the numerical experiments that
SOCP is effective in solving constrained problems.

6. Concluding Discussions

We have shown that convex optimization problems of SOCI representable functions can
be formulated as SOCPs in various ways. The computational efficiency of solving the
Schur complement equation in the primal-dual interior-point methods depends on the SOCP
formulation. Introducing a smaller-number of auxiliary variables when formulating a convex
optimization problem as an SOCP provides a smaller-sized Schur complement matrix. In
terms of sparsity, the sparsity pattern of the sparse part of the Schur complement matrix
remains almost the same for various SOCP formulations. Therefore, if the rank of the
dense part of the Schur complement matrix, which is determined by SeDuMi, is small, then,
the computational efficiency increases by introducing a minimum number of the auxiliary
variables.

Numerical experiments shown in Section 5 demonstrate that SOCP formulations can be
solved efficiently by SeDuMi compared with LANCELOT when good initial points are not
available. Solving the SOCP formulation by SeDuMi is shown to be more effective to obtain
better optimal values than LANCELOT for the constrained test problems.

References

[1] F. Alizadeh and D. Goldfarb: Second-order cone programming. Mathematical Program-
ming, 95 (2003), 3–51.

[2] A.R. Conn, N.I.M. Gould, and Ph.L. Toint: LANCELOT, A Fortran Package for Large-
Scale Nonlinear Optimization (Release A) (Springer, Heidelberg, 1992).

[3] D. Goldfarb and K. Scheinberg: Product-form Cholesky factorization in interior-point
methods for second order cone programming. Mathematical Programming, 103 (2005),
153–179.

[4] N.I.M. Gould, D. Orban, and Ph.L. Toint: Cuter, a constrained and unconstrained
testing environment, revisited. Transactions on Mathematical Software, 29 (2003), 373–
394.

[5] A. Griewank and Ph.L. Toint: On the unconstrained optimization of partially separable
functions. In M.J.D. Powell (eds.): Nonlinear Optimization 1981 (Academic Press, New
York, 1982), 301–312.

[6] S. Kim and M. Kojima: Second order cone programming relaxations of quadratic op-
timization problems. Optimization Methods and Software, 15 (2001), 201–224.

[7] S. Kim and M. Kojima: Exact solutions of some nonconvex quadratic optimization
problems via SDP and SOCP relaxations. Computational Optimization and Applica-
tions, 26 (2003), 143–154.

[8] S. Kim, M. Kojima, and H. Waki: Generalized Lagrangian duals and sums of squares
relaxations of sparse polynomial optimization problems. SIAM Journal on Optimiza-
tion, 15 (2005), 697–719.

[9] K. Kobayashi, S. Kim, and M. Kojima: Correlative sparsity in primal-dual inte-
rior point methods for LP, SDP, and SOCP. Applied Mathematics and Optimization,
58 (2008), 69–88.

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3



264 K. Kobayashi, S. Kim & M. Kojima

[10] M. Kojima, S. Kim, and H. Waki: Sparsity in sums of squares of polynomials. Mathe-
matical Programming, 103 (2005), 45–62.

[11] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret: Applications of second-order cone
programming. Linear Algebra and its Applications, 284 (1998), 193–228, Special Issue
on Linear Algebra in Control, Signals and Image Processing.

[12] A. Nemirovski: What can be expressed via conic quadratic and semidefinite program-
ming?. August 1999, Talk presented at RUTCOR weekly seminar.

[13] Yu.E. Nesterov and A. Nemirovski: Interior Point Polynomial Methods in Convex
Programming: Theory and Applications (SIAM, Philadelphia, 1994).

[14] F.J. Sturm: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11 & 12 (1999), 625–653.

[15] F.J. Sturm: Implementation of interior point methods for mixed semidefinite and sec-
ond order cone optimization. Optimization Methods and Software, 17 (2002), 1105–
1154.

[16] K. Toh, M.J. Todd, and R.H. Tütüntü: SDPT3 — a MATLAB software package for
semidefinite programming. Dept. of Mathematics, National University of Singapore
(1998), Singapore.

[17] T. Tsuchiya: A convergence analysis of the scaling-invariant primal-dual path-following
algorithms for second-order cone programming. Optimization Methods and Software, 11
& 12 (1999), 141–182.

[18] H. Waki, S. Kim, M. Kojima, and M. Muramatsu: Sums of squares and semidefi-
nite programming relaxations for polynomial optimization problems with structured
sparsity. SIAM Journal on Optimization, 17 (2006), 218–242.

[19] E. Andersen: MOSEK. http://www.mosek.com/.

Kazuhiro Kobayashi
Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,
2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan.
E-mail: kazuhir2@gmail.com

c⃝ Operations Research Society of JapanJORSJ (2008) 51-3


