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Abstract This paper discusses the inventory replenishment policy over an infinite planning horizon with
a negative exponential lead time crashing cost, taking time value into account. Our work is based on the
paper of Ben-Daya and Raouf that has been cited 65 times. We extend their model to incorporate the time
value of money and then find the criterion to decide the optimal solution. Numerical examples illustrate
our findings to demonstrate that we provide an easy and efficient procedure to find the optimal solution.
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1. Introduction

For the traditional inventory model as described by Silver and Peterson [18], lead time is
treated as a predetermined constant or a stochastic parameter. Liao and Shyu [11] first
studied a probabilistic model creating the inventory system of linearly crashing lead time
with normal demand. With predetermined order quantities, they treated the lead time
as the only variable. Ben-Daya and Raouf [2] extended the Liao and Shyu [11] model by
allowing variable ordering quantities. They also constructed a new model by changing the
lead time crashing cost from piece-wise linear decreasing function to a negative exponential
function. Ouyang, Yeh and Wu [15] studied the first model of Ben-Daya and Raouf [2] by
adding the stock-out cost. During the stock-out period, the total amount of stock-out is
considered as a mixture of backorders and lost sales. The inventory model with an infinite
planning horizon taking time value into account was first studied by Trippi and Lewin [19].
The discount occurs only during the ordering point in that model. Ten years later, Gurnani
[8] approached this model using a finite planning horizon taking into account the cost of
the objective function with and without the discount of time value. Dohi, Kaio and Osaki
[7] proposed a new inventory model with an infinite time span taking into account time
value but suggesting that the inventory holding cost is continuously being discounted over
time. There are 65 papers that have quoted Ben-Daya and Raouf [2] in their references.
In view of the high level of citations of the original paper of Ben-Daya and Raouf [2], it
seems important to address this problem accurately and completely to ensure the successful
application of their proposed method by others. However to save the precious space of this
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journal, we only list those papers that are closely related to our extension. The following
papers consider that the lead time crashing cost is constructed as a piecewise linear function:
Chang [3], Chang, Ouyang, Wu and Ho [4], Chu, Yang and Chen [6], Lan, Chu and Chung
[9], Lee, Wu and Hsu [10], Ouyang and Chuang [13], Ouyang and Wu [14], Wu [20], Yang,
Ronald and Chu [21]. On the other hand, Chu, Chung and Lan [5] found the solution by
the Newton-Raphson method. From the perspective of a firm’s usable fund, an increase of
inventory in a business firm’s balance sheet is a de facto usage of fund. As the time value
of money serves as the foundation for all other notions in finance, it influences business
finance regarding the concept of interest by learning to calculate present and future value
This means that a dollar in our possession today is preferred over a dollar we expect to
receive at some point in the future. Thus, decision makers must take the time value of
money into consideration when they are making inventory decisions. This is traditionally
done by restating money values through time with time value of money calculations; given
that the cost of money is fluctuating over time in the market, a more realistic inventory
model thus should incorporate this factor into it. (See, for example, Ross, Westerfield, Jaffe
and Jordan [17]). In the past, the two properties of lead time exponential crashing cost
and the time value of money have received attention separately, but have never considered
together simultaneously. The purpose of this paper is to develop an inventory model with a
negative exponential lead time crashing cost taking into account time value. The inventory
holding cost is continuously discounted. On the other hand, the set-up cost and the lead
time crashing cost are discretely discounted. Under two acceptable assumptions, we find
the criterion to decide the optimal lead time and order quantity. Numerical examples are
included to illustrate our model and the solution procedure.

2. Assumptions and Notation

To develop the proposed models the following assumptions and notation of Ben-Daya and
Raouf [2], and Chu, Chung and Lan [5] are used.

1. The deterministic lead time L and the demand follow a normal distribution with mean
D and standard derivation σ.

2. The reorder point r = expected demand during lead time + safety stock (SS) and SS
= k × (standard deviation of lead time demand) where k is known as a safety factor.

3. The total crashing cost is related to the lead time by a function of the form

R (L) = α e−βL,

where α is the cost for reducing lead time to negligible, so α is the scale parameter and
β is the shape parameter.

4. The ordering cost is denoted by A and h is the holding cost per item per year.
5. The total relevant cost is denoted by C (Q, L) where Q is the order quantity.
6. The interest rate is θ per year.

In Silver and Peterson [18], the reorder point is given by r = DL+kσ
√

L where DL is the
expected demand during lead time and kσ

√
L is a safety stock. The expected net inventory

immediately before and after the receipt of an order of size Q is r − DL and Q + r − DL,
respectively. Therefore, expected average inventory level of one cycle for t ∈ [0, Q/D], equals
Q+ kσ

√
L−Dt. Hence the present value of the inventory carrying cost for the first cycle is

Q/D
∫

t=0

[

Q + kσ
√

L − Dt
]

h e−θtdt. (1)
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Equation (1) can be simplified as

hkσ
√

L
1 − e−θ Q

D

θ
+ h

D

θ2

(

e−θ Q

D − 1 + θ
Q

D

)

. (2)

We adopt the discounted cash flow approach of Moon and Yun [12]. There will be cash
outflows for the ordering cost and lead time crashing cost at the beginning of each cycle.
Therefore, the total cost for the first cycle is

(

A + α e−βL
)

+







hkσ
√

L
1 − e−θ Q

D

θ
+ h

D

θ2

(

e−θ Q

D − 1 + θ
Q

D

)







. (3)

Consequently, the present value of the expected total cost over infinite time horizon, C (Q, L),
is given by

1

1 − e−θ Q

D

(

A + α e−βL
)

+
1

1 − e−θ Q

D

{

hkσ

θ

√
L
(

1 − e−θ Q

D

)

+ h
D

θ2

(

e−θ Q

D − 1 + θ
Q

D

)

}

. (4)

For L ∈ [0,∞) and Q ∈ (0,∞), with f (L) = A + α e−βL, we rewrite C (Q, L) as

f (L)

1 − e−θ Q

D

+
hkσ

θ

√
L + h

D

θ2

e−θ Q

D − 1 + θ Q
D

1 − e−θ Q

D

. (5)

According to Rachamadugu [16], in order to compare our result with the previous model
of Ben-Daya and Raouf [2], we use A (Q, L) = θC (Q, L), an alternate but equivalent mea-
sure. A (Q, L) represents the equivalent uniform cash flow stream that generates the same
C (Q, L). From lim

θ→0
A (Q, L) = AD

Q
+ hQ

2
+ hkσ

√
L + D

Q
α e−βL, which is the Equation (7) of

Ben-Daya and Raouf [2]. Hence, we extend the Ben-Daya and Raouf’s model.

3. Mathematical Formulation

By Equation (5), we have that

∂ C (Q, L)

∂ Q
=

−θ

D

f (L)
(

1 − e−θ Q

D

)2 e−θ Q

D +
h

θ

1 − e−θ Q

D − θ Q
D

e−θ Q

D

(

1 − e−θ Q

D

)2 (6)

and

∂2 C (Q, L)

∂ Q2
= f (L)

θ2

D2

(

1 + e−θ Q

D

)

e−θ Q

D

(

1 − e−θ Q

D

)3 +
h

D
e−θ Q

D

(

2 + θ Q
D

)

e−θ Q

D − 2 + θ Q
D

(

1 − e−θ Q

D

)3 . (7)

From [16], Rachamadugu derived that e−x > 2−x
2+x

for x > 0. Hence, C (Q, L) is convex for
Q ∈ (0,∞). From Equation (6), it yields that

∂ C (Q, L)

∂ Q
=

h

θ

e−θ Q

D

(

1 − e−θ Q

D

)2

[

eθ Q

D − 1 − θ
Q

D
− θ2

Dh

(

A + α e−βL
)

]

. (8)

Since eθ Q

D − 1− θ Q
D

is strictly increasing in Q, given a L, there exists a unique Q satisfying

eθ Q

D − 1 − θ Q
D

= θ2

Dh

(

A + α e−βL
)

. We denote the unique positive root of ∂ C(Q,L)
∂ Q

= 0 as

Q∧ (L). Using the convexity of C (Q, L) in Q, we derive that the minimum problem

min {C (Q, L) : 0 ≤ L < ∞, 0 < Q < ∞} (9)
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is equivalent to the minimum problem

min {C (Q∧ (L) , L) : 0 ≤ L < ∞} . (10)

To simplify the expression, let φ (L) = C (Q∧ (L) , L) for 0 ≤ L < ∞.
Here, we write an implicit form of φ (L) as

φ (L) = A + αe−βL +
h

θ
Q∧ (L) +

hkσ
√

L

θ
, (11)

with

e
θ
D

Q∧(L) − 1 − θ

D
Q∧ (L) =

θ2

Dh

(

A + α e−βL
)

. (12)

In the remainder of this paper, we only consider Q∧ (L), except for the Equation (23) so we
use Q to denote Q∧ (L) to simplify the expression. Since

dQ

dL
=

−αβθ

h

e−βL

eθ Q

D − 1
, (13)

we have
d

dL
φ (L) = −α β e−βL eθ Q

D

eθ Q

D − 1
+

hkσ

2θ
√

L
. (14)

After cross multiplication, we get

φ′ (L) =
αβ e−βL

√
L
(

1 − e−θ Q

D

)

[

hkσ

2θαβ

(

1 − e−θ Q

D

)

eβL −
√

L

]

. (15)

We are motivated by Chu, Chung and Lan [5] to decompose φ′ (L) as the multiplication of
a positive function and a convex function. First, we define

V (L) =
αβ e−βL

√
L
(

1 − e−θ Q

D

) (16)

and

W (L) =

[

hkσ

2θαβ

(

1 − e−θ Q

D

)

eβL −
√

L

]

. (17)

It is apparent that V (L) > 0. Hence, our goal is to verify that W (L) is a convex function
for L ∈ [0,∞).

After we express φ′ (L) as V (L) W (L) where V (L) is a positive function and W (L) is a
convex function, then it implies that the solution of φ′ (L) = 0 is the solution for W (L) = 0
such that we can locate the solution of φ′ (L) = 0 according to different cases in the next
section.

4. Lemmas and Theorem

For technical reasons, we will assume two extra conditions: Dh > 100(A + α)θ2 and
A > (0.779)α. In the next lemma, we will provide detailed explanation to show that why
our two extra assumptions are necessary and acceptable.
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Lemma 1. If Dh > 100(A + α)θ2 and A > (0.779)α, then W (L) is a convex function
for L ∈ [0,∞) and W ′ (L) = 0 has a unique positive solution, say L0.

Proof of Lemma 1.
We have

W ′ (L) =
hkσ

2θαβ





(

1 − e−θ Q

D

)

β eβL − θ2αβ

Dh

e−θ Q

D

eθ Q

D − 1



− 1

2
√

L
(18)

and

W ′′ (L) =
hkσβ

2D2h2θα
(

eθ Q

D − 1
)3

[

D2h2eβL
(

1 − e−θ Q

D

) (

eθ Q

D − 1
)3

− Dhθ2α e−θ Q

D

(

eθ Q

D − 1
)2

−θ4α2e−βL
(

2 − e−θ Q

D

)]

+
1

4
√

L3
.

(19)

To simplify the expression, we use Ω = D2h2eβL
(

1 − e−θ Q

D

) (

eθ Q

D − 1
)

− Dhθ2α e−θ Q

D and

∆ = θ4α2e−βL
(

2 − e−θ Q

D

)

. To prove W ′′(L) > 0, it is sufficient to show that

(

eθ Q

D − 1
)2

Ω − ∆ > 0. (20)

For some constant, say φ, we want the next inequality being satisfied

θ2

Dh

(

A + α e−βL
)

<
A + α

Dh
θ2 < φ. (21)

Since eθ Q

D −1−θ Q
D

=
∞
∑

k=2

1
k!

θk Qk

Dk > 1
2
θ2 Q2

D2 , Equations (12) and (21), it follows that φ > 1
2
θ2 Q2

D2

so we derive
√

2φ > θ
Q

D
. (22)

From the Taylor’s series expansion, it implies that for a given Q, there exists a Q#, with
0 < Q# < Q, satisfying

eθ Q

D − 1 − θ
Q

D
=

1

2

θ2Q2

D2
+

1

6
eθ Q#

D
θ3Q3

D3
. (23)

We need another condition to imply the following inequality being valid, hence for some
constant, say µ, with

e
√

2φ < 6µ. (24)

Using
√

2φ > θ Q
D

, hence 1
6
eθ Q#

D
θ3Q3

D3 < 1
6
e
√

2φ θ2Q2

D2 < µ θ2Q2

D2 . Therefore, it follows that
(

1
2

+ µ
)

θ2Q2

D2 > eθ Q

D − 1 − θ Q
D

= θ2

Dh

(

A + α e−βL
)

so

(

1

2
+ µ

)

Q2 >
D

h

(

A + α e−βL
)

. (25)

Now, we evaluate Ω as follows:

Ω >
[

D2h2eβL
(

eθ Q

D − 2 + e−θ Q

D

)

− Dhθ2α
]

>

[

D2h2eβLθ2 Q2

D2
− Dhθ2α

]

. (26)
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By Equation (25), we improve Equation (26) as

Ω > Dhθ2

[

eβL 2

1 + 2µ

(

A + α e−βL
)

− α

]

= Dhθ2

(

2

1 + 2µ
AeβL +

1 − 2µ

1 + 2µ
α

)

. (27)

Second, we compute
(

eθ Q

D − 1
)2

Dhθ2AeβL − ∆ as follows:

(

eθ Q

D − 1
)2

Dhθ2AeβL −∆ >
(

θ
Q

D

)2

Dhθ2AeβL − 2θ4α2e−βL = θ4

(

Q2

D
AheβL − 2α2 e−βL

)

.

(28)

Using Equation (25) again, we revise Equation (28) as

(

eθ Q

D − 1
)2

Dhθ2AeβL − ∆ > θ4

[

(

A + α e−βL
) 2

1 + 2µ
AeβL − 2α2 e−βL

]

. (29)

We face the problem to show that

[

(

A + α e−βL
) 2

1 + 2µ
AeβL − 2α2 e−βL

]

(30)

is positive?
With y = Aeβ L, we may rewrite (30) as

[

(

A + α e−βL
) 2

1 + 2µ
AeβL − 2α2 e−βL

]

= e−β L 2

1 + 2µ

(

y2 + α y − (1 + 2µ)α2
)

. (31)

If we solve the quadratic equation y2 + α y − (1 + 2µ)α2 = 0, then it yields that y =
−α±α

√
5+8µ

2
. Hence, to obtain y2 + α y − (1 + 2µ) α2 > 0, we need the following condition

y >

√
5 + 8µ − 1

2
α. (32)

It means that if we try to derive a property for all L > 0, then we need the next condition,
that is our third goal,

A >

√
5 + 8µ − 1

2
α. (33)

We combine all extraditions that we require in the following:

θ2

Dh

(

A + α e−βL
)

< φ, e
√

2φ < 6µ, and

√
5 + 8µ − 1

2
α < A.

From the numerical example of Ben-Daya and Raouf [2] with the following data: D = 600
units/year, A = $200 per order, h = $20, σ = 6 units/week, R (L) = α e−βL, with L in
weeks, α = 156, and β = 1.

For different values of φ, we compute δ = 1
6
e
√

2 φ and
√

5+8δ−1
2

to list them in the next
table.

We know that θ2

Dh

(

A + α e−βL
)

≤ θ2

Dh
(A + α) ≈ 2.967 × 10−4. Hence, we begin our

search for φ = 10−3.
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Table 1: Estimation for δ = 1
6
e
√

2 φand
√

5+8δ−1
2

φ 10−3 10−2 10−1 0.2 0.3 0.4 0.5

δ = 1
6
e
√

2 φ 0.174 0.192 0.261 0.314 0.362 0.408 0.453 0.5√
5+8δ−1

2
0.764 0.778 0.831 0.870 0.905 0.937 0.968 1

From previous Table 1, if we can make the value of φ as small as possible, then we will
imply a small value of

√
5+8δ−1

2
.

Consequently, if we assume that φ = 0.01 and µ = 0.192, then

1

6
e
√

2φ = 0.19198 < µ = 0.192

such that the inequality e
√

2φ < 6µ is valid.
Moreover, we will want another assumption (0.779)α < A. Since, if (0.779)α < A, with

µ = 0.192 then
√

5+8µ−1
2

α = (0.77828)α < A such that
√

5+8µ−1
2

α < A holds.
Based on the above discussion, we will assume two extra assumptions to finish our proof:

θ2

Dh

(

A + α e−βL
)

<
1

100
and (0.779)α < A.

From the data of Ben-Daya and Raouf [2], we know that

θ2

Dh

(

A + α e−βL
)

≤ θ2

Dh
(A + α) ≈ 3 × 10−4 <

1

100

and
(0.779) α = 121.5 < A = 200.

If we follow the sensitivity analysis in Axsater [1], then in his Table 1, there are 11 exam-
ples. The first one is the base example. The rest 10 examples are vary the five problem
parameters—AR, λ, h, AD, and ω—up and down, where AR is the fixed cost of replenishing
inventory; λ is the demand intensity; h is the holding cost per unit and time unit, AD is
the fixed cost of dispatching and ω is the customer waiting cost per unit and time unit. His
base data are: AR = 125, λ = 10, h = 7, AD = 50, and ω = 10. We list the ups and downs
for each parameter in the next Table 2.

Table 2: The ups and downs for each parameter from Axsater [1]
AR λ h AD ω

Base values 125 10 7 50 10
Ups 150 15 9 75 12
Downs 100 5 5 25 8

We find the average up may be equal to

1

5

(

150

125
+

15

10
+

9

7
+

75

50
+

12

10

)

= 1.337

and the average down may be equal to

1

5

(

100

125
+

5

10
+

5

7
+

25

50
+

8

10

)

= 0.663.
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From the data of Ben-Daya and Raouf [4], for the base example, we know that

(0.779) α = 121.5 < A = 200.

Next, we consider the ups and downs. We only examine the two unfavorable cases as (a) α
increases to 133.7%, and (b) A decreases to 66.3%.

For case (a), with α increases to 133.7%,

(0.779)α (1.337) = 162.4 < A = 200.

For case (b), with A decreases to 66.3%.

(0.779) α = 121.5 < 132.6 = 200(0.663) = A(0.663).

From the above discussion, we may claim that (0.779) α < A is a reasonable assumption for
this kind of inventory model.

It means that our extra assumptions may be accepted for this kind of inventory system.
Combining Equations (27) and (29), according to µ = 0.192 so 2

1+2µ
> 1 and 1−2µ

1+2µ
> 0,

then we conclude W ′′ (L) > 0. Hence, we prove that W (L) is a convex function for L ∈
[0,∞), under the constrains Dh > 100 (A + α) θ2 and A > (0.779)α.

Since lim
L→0

W ′ (L) = −∞ and lim
L→∞

W ′ (L) = ∞, we know that W ′ (L) = 0 has a unique

positive solution, say L0.

Lemma 2. If W (L0) ≥ 0, then L = 0 is the minimum point of φ (L). On the other
hand, if W (L0) < 0, then φ′ (L) = 0 has two solutions, say L1 and L2, with L1 < L0 < L2.
Moreover, L1 is a local maximum point and L2 a local minimum point of φ (L).

Proof of Lemma 2.
We already implied that V (L) is a positive function and W (L) is a convex function,

with minimum point L0. Depending on the value of W (L0), it yields the following three
cases: Case (a), W (L0) > 0; Case (b), W (L0) = 0; Case (c), W (L0) < 0.

For Case (a), if W (L0) > 0, then W (L) > 0 for L ∈ (0,∞). Since φ′ (L) = V (L) W (L) >
0 for L ∈ (0,∞) so L = 0 is the minimum point for φ (L).

For Case (b), if W (L0) = 0, then W (L) > 0 for L ∈ (0, L0)∪ (L0,∞). Hence, φ′ (L) > 0
and φ (L) is an increasing function for L ∈ (0, L0) ∪ (L0,∞). Therefore, we still imply that
L = 0 is the minimum point for φ (L).

For Case (c), if W (L0) < 0, using W (0) > 0 and lim
L→∞

W (L) = ∞, we know that there

are two points, say L1 and L2, satisfying W (L1) = 0 = W (L2), with L1 < L0 < L2. We
have that φ′ (L) > 0for L ∈ (0, L1) ∪ (L2,∞) and φ′ (L) < 0for L ∈ (L1, L2). Hence, we
conclude that L1 is a local maximum point and L2 a local minimum point of φ (L).

Combining Lemma 1 and Lemma 2, we state the main theorem of this paper.

Theorem 1. Under the constrain Dh > 100 (A + α) θ2 and A > (0.779) α, there exists a
unique L0, with W ′ (L0) = 0. If W (L0) ≥ 0, then φ (0) is the minimum value. Moreover, if
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W (L0) < 0, then the minimum value equals min {φ (0) , φ (L2)} where W (L1) = 0 = W (L2)
with L1 < L0 < L2.

For completeness, for the condition of W (L0) < 0, we sketch the graphs to express the
relation among L = 0, L = L1 and L = L2 in Figure 1.

�� �� ������ ����
� �� ��

����
��	
 ��
��� � ��� ��	�

� �� ��
����

	��
 ��	�
Figure 1: The graph of φ (L) when W (L0) < 0

5. Solution Procedure

Next, we discuss how to use a search method to locate the optimal solution. Since θ Q
D

<< 1,

we will consider eθ Q

D − 1 − θ Q
D

as 1
2

θ2Q2

D2 . Moreover, L0 must exist. Therefore, we take the

starting point as L = 1 and Q =
√

2AD
h

to find L0 and Q∧ (L0).

If W (L0) ≥ 0, then we stop the search, taking L = 0 as the optimal solution for φ (L).
On the other hand, if W (L0) < 0, then we use L = 2L0 and Q = Q∧ (2L0) as the starting
points to locate L2 and Q∧ (L2). Using W (L0) < 0 and the convexity of W (L), we know
that there exist two roots as L1 and L2, with L1 < L0 < L2. From our starting point, 2L0,
the computation result will converge to the bigger solution L2, since in MathCAD, they
used the secant method to locate the solution. From Theorem 1, the minimum value equals
min {C (Q∧ (L2) , L2) , C (Q∧ (0) , L = 0)}.

6. Numerical Examples

We consider the same problem in Ben-Daya and Raouf [2], with the variation of σsuch
that three possible cases will be demonstrated. It is assumed that D = 600 units/year,
A = $200 per order, h = $20, σ = 6 units/week, k = 2.3 and R (L) = α e−βL, with L in
weeks, α = 156, β = 1, and for the recent low interest rate period, namely θ = 5%. In the
following, we examine the solution procedure for (1) σ = 6, (2) σ = 12 and (3) σ = 18. The
starting points for finding L0 and Q∧ (L0) are L = 1 and Q = 109.5445 for all three cases.

We solve Equation (12) that e
θ
D

Q∧(L0) − 1 − θ
D

Q∧ (L0) = θ2

Dh

(

A + α e−β L0

)

where L0 is

the solution for W ′ (L) = 0 of Equation (18) and then check the value of W (L0) by Equation
(17).
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The computation results are listed in Table 3. It yields that when lead time is negligible
as L → 0, by Equation (12), Q∧ (0) = 145.8545.

Table 3: Summary of the optimal solutions, with θ = 5%
σ L0 Q∧(L0) W (L0) L2 Q∧(L2) φ(Q∧(L2), L2) φ(Q∧(0), 0) Optimal cost
6 1.087 122.896 -0.508 2.1758 114.11 54004.04 58697.82 φ(Q∧(L2), L2)
12 0.646 129.780 -0.078 1.0272 123.696 60919.39 58697.82 φ(Q∧(0), 0)
18 0.434 134.154 0.252 58697.82 φ(Q∧(0), 0)

From the numerical examples, we may say that when the standard derivation of the lead
time demand is big then the most economic way to run the inventory system is to reduce the
lead time to as small as possible to attain the optimal value. When the standard derivation
of the lead time demand is small, we point out that there is an optimal lead time, say L2

that will attain the optimal value.

In the following, we try to provide a further explanation for different interest rates to
help decision-makers execute the optimal replenishment policy.

Table 4: Summary of the optimal solutions, with σ = 6
θ L0 Q∧(L0) W (L0) L2 Q∧(L2) φ(Q∧(L2), L2) φ(Q∧(0), 0) Optimal cost

0.01 1.084 123.107 -0.505 2.1689 114.29 269439 58697.82 φ(Q∧(0), 0)
0.05 1.087 122.896 -0.508 2.1758 114.11 54004.04 58697.82 φ(Q∧(L2), L2)
0.10 1.092 122.634 -0.512 2.1845 113.89 27074.81 58697.82 φ(Q∧(L2), L2)

With the base standard derivation σ = 6, when the interest rate is very low as θ = 1%,
the best policy is to reduce the lead time to a negligible amount to obtain the biggest order
quantity, Q∧ (0), that satisfies Equation (12). It indicates that the first partial derivative
system does not have an optimal solution. On the other hand, when the interest rate is
relatively high as θ = 10%, there is an optimal lead time L2 and an order quantity Q∧ (L2)
that are the optimal solutions for the first partial derivative system.

7. Conclusion

We study the inventory model with a negative exponential crashing lead time cost. Under
two reasonable assumptions, we find a criterion to determine whether or not there exists
an interior local minimum point. From our decomposition of the first derivative of the
objective function, the secant line search method is very easy to operate. Our findings not
only provide the theoretical background for inventory models with a negative exponential
crashing cost but also offer an easy algorithm to locate the optimal solution.
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