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Abstract To solve the quality control problem for a batch produced from an unreliable production system,
an economic offline inspection and disposition (ID) model was previously proposed where the process is
assumed to have a constant failure rate, i.e., a geometric shift distribution. Through setting the proper
value of parameters in the ID model, three commonly used policies: cost minimizing, perfect information
and zero-defects are readily obtained. To facilitate the adoption of the developed ID model in practical
applications, this study investigated the ID model in which two additional features are considered: (i) the
process has a non-constant failure rate (NCFR). (ii) A manufacturing variation (MV) in the process exists.
Two sets of recursive cost equations are obtained to establish an algorithm for the optimal ID policy of a
given production lot. Numerical examples are used to show that MV and/or NCFR have significant effects
on the minimum cost. The results also show that it is infeasible to reach the perfect information policy once
MV exists, but that the zero-defects policy remains feasible. Finally, a concluding remark is made.

Keywords: Quality control, optimization

1. Introduction

When an unreliable production process is considered, it may shift from an in-control to an
out-of-control state. This will result in the production of a higher proportion of defective
units. When no inspection policy was considered, Porteus [5] used a small lot to control the
number of defective units. Based on Porteus’s [5] model, the defective unit costs were con-
sidered under a free repair warranty policy and an inspection/repair policy by Djamaludin
et al. [2] and Wang and Sheu [8], respectively. To achieve a balance between the number of
the defective units (i.e., defective cost) and the quality related control cost (i.e., inspection
and disposition), the use of an off-line inspection (or testing) policy is sometimes inevitable
for certain industrial production situations, e.g., food (e.g., see Wang et al. [10] and Bros-
nan and Sun [1]), or electronic products, which need to burn in their quality. In general, an
off-line policy is used when it takes a long period of time to identify product quality, and
this makes an on-line process control unfeasible.

Without considering manufacturing variation, many studies (e.g., see He et al. [3]) have
attempted to solve the off-line inspection problem by finding the process shift point. All
units produced after the shift point are defective and should be rejected and vise versa.
This is referred to as the perfect information policy. Unlike these previous works, Raz et
al. [6] focused on the balance between the inspection cost and disposition cost. Their
policy is to continue the following ID actions until all units have been dispositioned (i.e.,
accepted or rejected). Under the objective of cost minimization, a unit is selected from
the remaining batch to be inspected. All units prior the inspected unit are accepted (or
remained) and all units after it remain (or are rejected) if the unit has been inspected to
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be conforming (or non-conforming). Of course, whether to inspect a unit or not in a batch
is based on comparison of the resulting cost to that of the no inspection policy. Under the
no inspection policy, the break-even point (BEP) in the batch is first calculated, where the
BEP is the point when the penalty of incorrect acceptance and incorrect rejection are equal.
Second, according to the deteriorating property of the process, all the units after the BEP
are rejected and others accepted. Raz et al. [6] took advantage of the memoryless property
when the process has a geometric shift distribution. They developed two sets of recursive
equations which do not need to record the original position of each unit in the batch for
the optimal ID policy. Through setting proper values on the unit penalty cost of incorrect
acceptance and rejection in Raz et al.’s [6] model, the following three policies are obtained:
cost minimizing, perfect information and zero-defects, where the zero-defects policy is that
all accepted units are known to be conforming.

However, when product inspection cannot perfectly reflect the process status while pro-
ducing the inspected item, Raz et al.’s [6] inspection/disposition (RID) model would be not
be pertinent. This implies that once the possibility of inspection errors (IEs) or manufac-
turing variation (MV) exists, the RID model should be modified before it is used. IEs or
MV are present in different types of production environments. For example, IEs usually
arise during food products inspection (e.g., see [1]); while MV exists as a part of the nature
of the manufacturing semiconductors.

Recently, Sheu et al.[7] and Wang [9] introduced two types of IEs into the RID model
to see what are the effects of IEs on optimal inspection policy, where the process shift
distribution is assumed to be geometric. This is not the same as this study, where we focus
on a situation where the process has MV and possesses a non-constant failure rate. This
is motivated by the following deficiencies of the RID model: (i) when MV is considered,
RID policy is unable to reflect all costs since it has no way to infer the uninspected unit
quality from the inspected unit quality. In fact, two kinds of penalty while performing RID–
incorrect acceptance and rejection–are ignored in Raz et al.’s [6] cost model. (ii) Although
Raz et al. [6] present several discussions of a process with a non-constant failure rate, their
presentation form is difficult to use due to the lack of an explicit cost function in which
many conditional probabilities are contained. In addition, a linear search is necessary to
compute the BEP which results in increased computational effort.

Therefore, in this paper, we reformulated Raz et al.’s [6] model to consider MV and a
case where the process has a non-constant failure rate. This included extra penalty costs
and an additional index f to record the original position of the discussed batch.

An explicit cost function for our developed ID model is given. A closed form of the
break-even point is also obtained to facilitate computing the cost of no inspection when
the process has a discrete Weibull shift distribution. This will facilitate wider and easier
adoption of the off-line ID model. The related literatures of quality control in this paper
are summarized in Table 1.

The remainder of this paper is organized as follows. In Section 2, we describe the ID
model where the process possesses MV and NCFR. Later, an algorithm is proposed for the
optimal ID policy. In Section 3, numerical examples are performed to illustrate the effects
of MV and/or NCFR on the optimal ID policy. Concluding remarks are made in Section 4.
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Table 1: The related literature on quality control in this paper

Is there a product inspection policy introduced ?
Yes No

Are non-conforming products repairable?
Yes No

Wang and Sheu[8] He et al.[3], Raz et al.[6] and this study Porteus[5]

2. The Model and Algorithm

Considering a batch is produced from the following description of an unreliable process.
The process state is classified as either in-control or out-of-control. When the process is
in-control (out-of-control), there is a percentage of θ1 (θ2) and 1 − θ1 (1 − θ2) conforming
items and non-conforming items produced, respectively. Note that 1 ≥ θ1 > θ2 ≥ 0 is
assumed. At the beginning of each production run, the process is setup and maintained
to be in-control. The number of the items produced items since the last setup before the
process shifts from the in-control state to the out-of-control state is a random variable Y .
Let Pr(Y > j) = P̄j represent the probability that the first j units are produced in the
in-control state. This would not lose generality when a discrete Weibull shift distribution is
used to model the process reliability. That is, P̄j = pjα

, where 0 < p < 1 and α > 0. The
property of a decreasing, constant and increasing process failure rate can be characterized
as 0 < α < 1, α = 1 and α > 1, respectively (see Nakagawa and Osaki [4]).

Our objective here is to determine the optimal ID policy for a batch of size k, starting
from unit f , which is produced from the above described process. The corresponding cost
is given by

V (f, k) = min
{

min
1≤j≤k

V 1 (f, k; j) , V 0 (f, k)
}

,

where V 1(f, k; j) and V 0(f, k) represent the cost of a batch of size k, starting from unit
f when the jth unit in this batch is inspected and not a unit in this batch is inspected,
respectively.

Note that based on Raz et al.’s [6] ID policy, once a non-conforming unit is found, all
subsequently produced units are rejected and the rest of the units including the found non-
conforming unit are designated as the remaining batch for further ID decision. Thus, we will
encounter the case where the last unit in the batch is non-conforming. This requires that
we determine the optimal ID policy for a batch of size k, starting from unit f , where the
last unit in this batch has been inspected to be non-conforming, with optimal cost denoted
by G(f, k). More precisely, we have

G (f, k) = min
{

min
1≤j≤k−1

G1 (f, k; j) , G0 (f, k)
}

,

where G1(f, k; j) and G0(f, k) represent the cost of a batch of size k, starting from unit f ,
and the last unit in this batch has been inspected to be non-conforming when the jth unit
in this batch is inspected and not a unit in this batch is inspected, respectively.
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In the following context, we first comply with the no inspection policy and then proceed
to include the decision to perform inspection for the optimal ID policy. A batch of size k,
starting from unit f is considered if there is no particular specification.

2.1. No inspection policy

Let indicator variable Xi = 0 or 1 represent whether the unit i is inspected to be non-
conforming or conforming, respectively. We first consider the case in which there is no
inspection information in the batch. Conditioning on the random variable Y , the probability
that the jth unit in the batch (i.e., unit f + j − 1) will be produced as a non-conforming
unit is given by

Pr (Xf+j−1 = 0) = 1− θ2 + (θ2 − θ1) P f+j−1. (1)

The probability that the jth unit in the batch will be produced as a conforming unit can
be computed as 1− Pr (Xf+j−1 = 0), i.e.,

Pr (Xf+j−1 = 1) = (θ1 − θ2) P f+j−1 + θ2.

When no inspection is considered, we must find the break-even point (BEP) for which the
penalty for incorrect acceptance and incorrect rejection are equal. It is then economical
to accept (reject) those units that are produced prior to (after) the BEP. This is because
when the original position of the produced unit increases, the non-conforming probability
increases, as can be seen from Equation (1), and hence the incorrect acceptance penalty
increases in the original position. The BEP can be obtained by solving the following equation

Cp Pr (Xf+j−1 = 0) = Cs Pr (Xf+j−1 = 1) ,

where Cp (Cs) is the cost penalty for accepting (rejecting) a non-conforming (conforming)
unit. The last equation can be written as

Cp

(
(θ2 − θ1) P̄f+j−1 + 1− θ2

)
= Cs

(
(θ1 − θ2) P̄f+j−1 + θ2

)
.

Substituting P̄j = pjα
into the last equation and rearranging it gives:

j∗ = min

{
max

{⌊{
log((Cp/(Cp + Cs)− θ2)/(θ1 − θ2))

/
log(p)

}1/α
⌋
− f + 1, 0

}
, k

}
.

The last equation implies that all items in the batch will be accepted if the BEP (j∗)
is greater or equal to k, and all items will be rejected if the BEP is less or equal to zero.
Moreover, if we set α = 1, f = 1, θ1 = 1 and θ2 = 0 in the last equation, it is easy to verify
that the BEP is the same as given in Raz el al. [6]:

j∗ = min {max {blog (Cp/(Cp + Cs))/log (p)c , 0} , k} .

The expected total cost of the no inspection policy contains the penalty incurred by the
acceptance of non-conforming units between f and f + j∗ − 1, and the penalty incurred by
the rejection of conforming units between f + j∗ and f + k − 1. That is,

V 0 (f, k) = Cp

j∗∑

j=1

Pr (Xf+j−1 = 0) + Cs

k∑

j=j∗+1

Pr (Xf+j−1 = 1)

= Cp

j∗∑

j=1

(
(θ2 − θ1) P̄f+j−1 + 1− θ2

)
+ Cs

k∑

j=j∗+1

(
(θ1 − θ2) P̄f+j−1 + θ2

)
. (2)
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Once the last unit in the batch has been inspected to be non-conforming, the jth unit in
the batch will be produced as non-conforming with probability

Pr (Xf+j−1 = 0|Xf+k−1 = 0)

=
(1−θ2)2(1−P f+j−1)+(1−θ1)(1−θ2)(P f+j−1−P f+k−1)+(1−θ1)2P f+k−1

(1−θ2)(1−P f+k−1)+(1−θ1)P f+k−1
, 1 ≤ j ≤ k − 1.

On the other hand, the jth unit in the batch will be produced as conforming with probability

Pr (Xf+j−1 = 1|Xf+k−1 = 0)

=
θ2(1−θ2)(1−P f+j−1)+θ1(1−θ2)(P f+j−1−P f+k−1)+θ1(1−θ1)P f+k−1

(1−θ2)(1−P f+k−1)+(1−θ1)P f+k−1
, 1 ≤ j ≤ k − 1.

The break even point can be easily obtained by solving the following equation:

Cp Pr (Xf+j−1 = 0|Xf+k−1 = 0) = Cs Pr (Xf+j−1 = 1|Xf+k−1 = 0)

Incorporating the conditional probabilities of the relevant events and substituting P̄j = pjα

into the last equation gives:

j′ = min





max











log
(

Cp(1−θ2)−θ2Cs

(θ1−θ2)(Cp+Cs)
−

(
Cp(1−θ1)−θ1Cs

(1−θ2)(Cp+Cs)

)
p(f+k−1)α

)

log (p)





1/α
− f + 1, 0





, k − 1





.

Set α = 1, f = 1, θ1 = 1 and θ2 = 0 in the last equation and we have

j′ = min
{
max

{⌊
log

((
Cp + Csp

k
)/

(Cp + Cs)
)/

log (p)
⌋
, 0

}
, k − 1

}
,

which is exactly the result of Raz et al. [6]. Similar to the method used to obtain V 0(f, k),
the expected total cost of the no inspection policy when the last unit is non-conforming for
a batch of size k, starting from unit f , is given by

G0 (f, k)

= Cp

j′∑

j=1

Pr (Xf+j−1 = 0|Xf+k−1 = 0) + Cs

k−1∑

j=j′+1

Pr (Xf+j−1 = 1|Xf+k−1 = 0)

= Cp

j′∑

j=1

(1− θ2)
2

(
1− P f+j−1

)
+ (1− θ1) (1− θ2)

(
P f+j−1 − P f+k−1

)
+ (1− θ1)

2 P f+k−1

(1− θ2)
(
1− P f+k−1

)
+ (1− θ1) P f+k−1

+ Cs

k−1∑

j=j′+1

θ2 (1− θ2)
(
1− P f+j−1

)
+ θ1 (1− θ2)

(
P f+j−1 − P f+k−1

)
+ θ1 (1− θ1) P f+k−1

(1− θ2)
(
1− P f+k−1

)
+ (1− θ1) P f+k−1

.

(3)

2.2. The inspection policy

Suppose there is no inspection information in the batch. When the jth unit in the batch is
inspected, which costs CI , the resulting cost is analyzed as follows.

(1.) If the jth unit in this batch is inspected to be non-conforming, which has probability
Pr (Xf+j−1 = 0), then we reject units f + j through f + k − 1, and units f through
f + j−1 remain for further ID decision. Note that the total cost for the remaining batch
is G(f, j) since the last unit in the batch (i.e., unit f + j − 1) is non-conforming.
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(2.) By contrast, if the jth unit in the batch is inspected to be conforming, which has
probability Pr (Xf+j−1 = 1), we accept units f through f + j − 1, and units f + j
through f + k − 1 remain for further ID decision. The cost for the remaining batch
is V (f + j, k − j).

The expected total cost when the jth unit in the batch is inspected is given by

V 1 (f, k; j)

= CI + Pr (Xf+j−1 = 0)


G (f, j) + Cs

f+k−1∑

i=f+j

Pr (Xi = 1|Xf+j−1 = 0)




+ Pr (Xf+j−1 = 1)


V (f + j, k − j) + Cp

f+j−2∑

i=f

Pr (Xi = 0|Xf+j−1 = 1)




= CI +
(
(θ2 − θ1) P f+j−1 + (1− θ2)

)
G (f, j)

+Cs

f+k−1∑

i=f+j

[
θ2 (1− θ2)

(
1− P f+j−1

)
+ θ2 (1− θ1)

(
P f+j−1 − P i

)
+ θ1 (1− θ1) P i

]

+
(
(θ1 − θ2) P f+j−1 + θ2

)
V (f + j, k − j)

+Cp

f+j−2∑

i=f

[
(1− θ2) θ2

(
1− P i

)
+ (1− θ1) θ2

(
P i − P f+j−1

)
+ (1− θ1) θ1P f+j−1

]
. (4)

Now we consider the case in which the last unit of the batch has been inspected to be
non-conforming. If

(1.) the jth unit in the batch is being inspected to be non-conforming, we reject units f + j
through f + k − 1, and units f through f + j − 1 remain. Note that the cost for the
remaining batch is G(f, j) since the last item in the batch (i.e., item f + j − 1) is still
non-conforming.

(2.) On the other hand, if the jth unit is being inspected to be conforming, we accept units
f through f + j − 1, and units f + j through f + k − 1 remain. Also note that the
cost for the remaining batch is G(f + j, k− j) since the last item in the batch (i.e., unit
f + k − 1) is non-conforming.

Consequently, the expected total cost when the jth unit in the batch is inspected, given
that the last unit has been inspected to be non-conforming, is given by

G1 (f, k; j)

= CI + Pr (Xf+j−1 = 0)


G (f, j) + Cs

f+k−1∑

i=f+j

Pr (Xi = 1|Xf+j−1 = 0)




+ Pr (Xf+j−1 = 1)


V (f + j, k − j) + Cp

f+j−2∑

i=f

Pr (Xi = 0|Xf+j−1 = 1)




= CI +
(1− θ2)

2
(
1− P f+j−1

)
+ (1− θ1) (1− θ2)

(
P f+j−1 − P f+k−1

)
+ (1− θ1)

2 P f+k−1

(1− θ2)
(
1− P f+k−1

)
+ (1− θ1) P f+k−1




×G (f, j) +

(
Cs

(θ2 − θ1) P f+k−1 + (1− θ2)

)
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Inspection Model with Manufacturing Variation 161

×
f+k−2∑

i=f+j

[
(1− θ2)

2 θ2

(
1− P f+j−1

)
+ (1− θ1) θ2 (1− θ2)

(
P f+j−1 − P i

)

+ (1− θ1) θ1 (1− θ2)
(
P i − P f+k−1

)
+ (1− θ1)

2 θ1P f+k−1

]

+


θ2 (1− θ2)

(
1− P f+j−1

)
+ θ1 (1− θ2)

(
P f+j−1 − P f+k−1

)
+ θ1 (1− θ1) P f+k−1

(1− θ2)
(
1− P f+k−1

)
+ (1− θ1) P f+k−1




×G (f + j, k − j) +

(
Cp

(θ2 − θ1) P f+k−1 + (1− θ2)

)

×
f+j−2∑

i=f

[
(1− θ2)

2 θ2

(
1− P i

)
+ (1− θ1) θ2 (1− θ2)

(
P i − P f+j−1

)

+ (1− θ1) θ1 (1− θ2)
(
P f+j−1 − P f+k−1

)
+ (1− θ1)

2 θ1P f+k−1

]
. (5)

To understand the work loads of the inspection facility, the expected number of inspections
for a batch should be calculated. Let IV (f, k) and IG(f, k) represent the expected number
of inspections for a batch of size k, starting from unit f , given that the quality information
of the last unit in this batch is unknown and non-conforming, respectively. Then, IV (f, k)
and IG(f, k) can be obtained through the following two recursive formulae:

IV (f, k) =





0, if V (f, k) = V 0 (f, k) ,

1 + Pr
(
Xf+v∗(f,k)−1 = 0

)
IG (f, v∗ (f, k))

+ Pr
(
Xf+v∗(f,k)−1 = 1

)
IV (f + v∗ (f, k) , k − v∗ (f, k)) , otherwise,

(6)

IG (f, k) =





0, if G (f, k) = G0 (f, k) ,

1 + Pr
(
Xf+g∗(f,k)−1 = 0|Xf+k−1 = 0

)
IG (f, g∗ (f, k))

+ Pr
(
Xf+g∗(f,k)−1 = 1|Xf+k−1 = 0

)

× IG (f + g∗ (f, k) , k − g∗ (f, k)) , otherwise,

(7)

where g∗ (f, k) = arg min1≤j≤k−1 G1 (f, k; j) and v∗ (f, k) = arg min1≤j≤k V 1 (f, k; j).

2.3. Algorithm for optimal ID policy

Based on the above analysis, the following algorithm is proposed to compute the minimum
cost and the expected number of inspections for the optimal ID policy, where a batch of
size N , starting from unit one is considered.

Step 1. Input the value for these parameters: θ1, θ2, N , CI , Cp, Cs and P̄j, for j =
1, 2, · · · , N .

Step 2. For k = 1, 2, · · · , N − f + 1, compute the break-even points j∗ and j′ at f =
1, 2, · · · , N and f = 1, 2, · · · , N − 1, respectively.

Step 3. Using j∗ and j′ obtained in Step 2, determine the costs of no inspection V 0(f, k)
and G0(f, k) using Equation (2) and Equation (3), respectively.

Step 4. Set the initial conditions: V (f, 0) = 0, G(f, 1) = 0, IV (f, 0) = 0 and IG(f, 1) = 0,
f = 1, 2, · · · , N .

Step 5. With increasing values of k = 2, 3, · · · , N , sequentially compute

G (f, k) = min
{

min
1≤j≤k−1

G1 (f, k; j) , G0 (f, k)
}

and IG (f, k) using Equation (7), for f =

1, 2, · · · ,
N − k + 1, where G1(f, k; j) can be obtained from Equation (5).
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Step 6. With increasing values of k = 1, 2, · · · , N , sequentially compute

V (f, k) = min
{

min
1≤j≤k

V 1 (f, k; j) , V 0 (f, k)
}

and IV (f, k) using Equation (6), for f =

1, 2, · · · ,
N − k + 1, where V 1(f, k; j) can be obtained from Equation (4).

Step 7. Output V (1, N) and IV (1, N) are the minimum cost and the expected number of
inspections, respectively, for the optimal ID policy. STOP.

3. Numerical Examples

In this section, we present a numerical example to illustrate the effects of MV and/or
NCFR on the optimal ID policy. The discrete Weibull shift distribution is used for the
analysis of the numerical example, i.e., P̄j = pjα

. As in Raz et al. [6], the unit cost for
inspection, incorrect acceptance and incorrect rejection, CI , Cp and Cs, are selected with ten
combinations (namely cases A to J) that suffice for the policy of perfect information (i.e.,
case A), zero-defects (i.e., case B) and cost minimization (i.e., cases C to J), where cases
C-E, cases F-G, and cases H-J are performed for the sensitivity analysis of parameters Cp,
Cs and CI , respectively. For each of the ten cases, various combinations of the parameter
values α, θ1 and θ2 are selected to investigate the changes in IV (1, N) and V (1, N), where
(α, θ1, θ2) take on the values of (1,1,0), (1,0.99,0.01), (1.3,1,0) and (1.3,0.99,0.01). The
results are shown in Tables 2-5, respectively, where FIU means the first inspected unit in
this batch, the asterisk represents that inspection is never economically justified for these
combinations, 106 is used for the infinite value and cost error (CE) is defined as Raz et al.’s
result minus our result. Note that Table 2 shows the results for Raz et al.’s [6] model and
Tables 3-5 are the results for our model.

Comparison among Tables 2-5 revealed that

(i) When MV does not exist (see Tables 2 and 4), inspection gives exact information about
the process status as it produces the unit being inspected. Furthermore, when the process
has a higher failure rate (i.e.,α=1.3), it takes a lower number of inspections and has a
smaller minimum cost (see Table 4).

(ii) For the same process failure rate, (i.e., a fixed α), the number of inspections and
minimum cost are larger when MV exists (see Tables 2-5).

(iii) When MV exists (see Tables 3 and 5), the number of inspections and minimum cost
do not exhibit monotone behavior for different failure rates (i.e., α = 1 and α = 1.3). In
addition, it is infeasible to reach the perfect information policy once MV exists, but the
zero-defects policy is still feasible. Furthermore, when the process has an IFR (see Table
5), it is shown that as the inspection cost is is relatively high in comparison to Cp and
Cs, it would require no inspection (see H and I). From most of the cases given in Table
5, we found that the cost error was significant. As a result, It would be better to avoid
using Raz et al.’s [6] model when both MV and IFR exist.

(vi) For each combination of cases A to J, we use the numerical results given in Tables
3-5 to compute their root mean squared error (RMSE) on results from using Raz et
al.’s [6] model instead of ours, when MV and/or NCFR does exist. The term RMSE

is computed by
{ 5∑

j=3

(CE2 of Table j)/3
}1/2

. For example, the RMSE for case E can be

obtained by
{[

(−4.92)2 + (1.12)2 + (−8.45)2

]/
3
}1/2

= 5.68. The results are given in

Table 6. Moreover, Table 6 reveals that the perfect information (i.e., case A) cannot be
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Table 2: The optimal ID policy, neither MV nor NCFR are considered

p = 0.99, α = 1, θ1 = 1, θ2 = 0
CI Cp Cs FIU IV (1, N) V (1, N) CE

A 1 106 106 1 5.19 5.19 0
B 1 106 1 2 4.17 4.81 0
C 1 50 10 2 5.19 5.19 0
D 1 10 10 5 5.19 5.19 0
E 1 1 10 18 3.98 4.72 0
F 1 10 50 5 5.19 5.19 0
G 1 10 1 5 4.17 4.81 0
H 50 1 1 * 0 32.73 0
I 10 1 1 59 1 20.59 0
J 1 1 1 17 3.45 4.38 0

Table 3: The optimal ID policy when MV is considered

p = 0.99, α = 1, θ1 = 0.99, θ2 = 0.01
CI Cp Cs FIU IV (1, N) V (1, N) CE

A 1 106 106 1 5.195 1.498× 106 -1497994.81
B 1 106 1 4 11.691 18.891 -14.08
C 1 50 10 2 4.271 37.604 -32.41
D 1 10 10 5 3.757 18.948 -13.75
E 1 1 10 20 3.777 9.645 -4.92
F 1 10 50 5 4.324 38.630 -33.44
G 1 10 1 4 4.200 9.143 -4.33
H 50 1 1 * 0 33.075 -0.35
I 10 1 1 68 1.642 24.631 -4.04
J 1 1 1 18 3.119 4.862 -0.48

obtained at a reasonable cost, as Raz et al. [6] claim. For cost minimization policy (i.e.,
cases C to J), the RMSE is significant when one of the three costs Cp, Cs or CI is large
(see cases C, F and H).

(v) Finally, the FIU did not exhibit a particular behavior in the results of Tables 2-5.

4. Conclusion

This study has provided a solution to the economic optimization of an offline inspec-
tion/disposition (ID) model where the process deterioration follows a discrete Weibull shift
distribution with a non-constant failure rate (NCFR) and the existence of manufacturing
variation (MV) is considered. The incorporation of the two features, MV and NCFR, into
the ID model extend its applicability. Once MV exists, the inspection information is not
sufficient to determine the process’s actual status. Therefore, two kinds of extra penalty
while performing RID—incorrect acceptance and rejection—are included in our model. Nu-
merical examples show that it would be better to avoid using Raz et al.’s [6] model when
both MV and IFR exist. Also, when MV exists the perfect information policy is infeasible
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Table 4: The optimal ID policy when NCFR is considered

p = 0.99, α = 1.3, θ1 = 1, θ2 = 0
CI Cp Cs FIU IV (1, N) V (1, N) CE

A 1 106 106 1 3.646 3.646 1.55
B 1 106 1 2 3.123 3.420 1.39
C 1 50 10 2 3.645 3.646 1.55
D 1 10 10 4 3.645 3.646 1.55
E 1 1 10 14 3.648 3.604 1.12
F 1 10 50 4 3.646 3.646 1.55
G 1 10 1 4 3.123 3.420 1.39
H 50 1 1 * 0 18.200 14.52
I 10 1 1 88 1 18.014 2.58
J 1 1 1 14 3.025 3.374 1.01

Table 5: The optimal ID policy when both MV and NCFR are considered

p = 0.99, α = 1.3, θ1 = 0.99, θ2 = 0.01
CI Cp Cs FIU IV (1, N) V (1, N) CE

A 1 106 106 1 4.774 1.254× 106 -1253994.81
B 1 106 1 4 8.983 12.128 -7.31
C 1 50 10 2 3.900 24.101 -18.91
D 1 10 10 4 3.707 16.384 -11.19
E 1 1 10 16 4.018 13.170 -8.45
F 1 10 50 4 5.017 50.796 -45.6
G 1 10 1 4 3.363 6.506 -1.69
H 50 1 1 * 0 18.836 13.89
I 10 1 1 * 0 18.836 1.76
J 1 1 1 14 2.993 4.697 -0.31

Table 6: RMSE for the existence of MV and/or NCFR

A B C D E F G H I J

RMSE 1127902.39 9.19 21.68 10.27 5.68 32.65 2.80 11.60 2.94 0.66
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but the zero-defects policy is still feasible. A possible extension of this study is to constrain
the average outgoing quality level or supply contract of quality to determine the associated
optimal ID policy.
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