
Journal of the Operations Research
Society of Japan

2007, Vol. 50, No. 4, 444-462

USER-ORIENTED AND -PERCEIVED SOFTWARE AVAILABILITY

MEASUREMENT AND ASSESSMENT WITH ENVIRONMENTAL

FACTORS

Koichi Tokuno Shigeru Yamada
Tottori University

(Received October 30, 2006; Revised May 15, 2007)

Abstract This paper proposes the methods of the operation-oriented software availability measurement
and assessment. Considering the difference of the software failure-occurrence phenomena and the restora-
tion characteristics between the testing and the operation phases, we first introduce the environmental
factors into the existing Markovian software availability model. Next we discuss the stochastic modeling
for measuring software service availability; this is one of the customer-oriented attribute and defined as
the attribute that the software system can successfully satisfy the end users’ requests. We derive several
service-oriented software availability assessment measures which are given as the functions of time and the
number of debuggings. Finally, we present several numerical examples of these measures for software service
availability analysis.

Keywords: Reliability, software service availability, operational phase, Markov process,
environmental factor, software reliability growth

1. Introduction

Today it has been increasingly important to evaluate not only the inherent quality charac-
teristics of the artificial industrial products but also the quality of service created by the
use of the products. Recently, the engineering system of “service engineering” has been sug-
gested [1, 8]. In the traditional engineering, only the inherent functions, performance, and
quality of the industrial products have been discussed and designed from the developer’s
logic. On the other hand, the service engineering aims to establish the comprehensive
methodologies for evaluating the functions or quality in consideration of the behaviors and
the satisfaction of the end users as well. In other words, the service engineering pays at-
tention to the evaluation of the services the end users receive through the operation of the
industrial products. As to the service reliability engineering based on the above phi-
losophy of the service engineering, Tortorella [17, 18] has discussed the meaning and the
possibility of practical use of the service reliability engineering. Considering the software
systems are just the industrial products to provide the services for the users, especially in
computer network systems, it is meaningful to organize the user-oriented and -perceived
software service reliability/availability modeling. To develop the computing framework and
the interface between hardware and software systems with high service availability, the Ser-
vice Availability Forum (SAF) has been created [20]. The members of SAF include the
leading communication and computing companies.

In this paper, we discuss the stochastic modeling for the user-oriented and -perceived
software availability measurement and assessment. Software availability is defined as the
attribute that the software system is available whenever the end users want to use; this

444

User-Oriented Software Availability Assessment 445

is one of the customer- and operation-oriented attributes. Studies on stochastic software
availability measurement and assessment have been conducted [15]. In particular, we aim
at the following:

1. the difference of the operational environments between the testing and the user operation
phases,

2. consideration of the behavior of the end user.

When we conduct the software quality evaluation with stochastic software reliability or
availability models, we generally consider that the software failure-occurrence phenomenon
during the testing phase are the same property as the user operation phase. In other
words, we implicitly assume that the software reliability growth curves (e.g. the mean value
functions in nonhomogeneous Poisson process (NHPP) models) fitted to the testing data
also describe the quality characteristics in the operation phase. However, there also exist
the negative opinions against the above mention. That is, the impact of the faults latent in
the system on software quality depends on usage environment since the testing and the user
operation phases differ in terms of workloads, interaction between software and hardware
platforms, and the operational profile [6]. Accordingly, it is important to consider the
difference between the testing and the user operation environments in evaluating software
availability.

Here we characterize the difference between the testing and the operational environ-
ments, assuming that the time scale of the testing phase is proportional to that of the
operation phase in terms of the software failure-occurrence and the restoration action. We
call the time-scale transformation ratio the environmental factor. This idea is based on the
accelerated life testing model [2, 10] in hardware products, and we apply the idea to the soft-
ware availability model. We use the Markovian software availability model [13] to describe
the time-dependent behavior of the system alternating between up and down states.

Furthermore, existing software availability models often pay attention to the stochastic
behaviors of only software systems themselves. However, from the viewpoint of end users,
the traditional software availability measures such as the instantaneous software availability
and the interval software reliability are not always appropriate. It will be enough for end
users if the system is available only when usage demands occur. In other words, the users
do not care about the state of the system, even if the system is down, when the users do
not want to use it. Gaver [3] has defined the disappointment time as the time to a failure
during a usage period, or to occurrence of a usage demand during a system inoperable period,
whichever occurs first, and derived the Laplace-Stieltjes transform of the distribution of this
time. Osaki [11] has discussed the disappointment time of a two-unit standby redundant
system when it is used intermittently. In this paper, we also discuss the software availability
model incorporating the usage behavior of the end user.

Recently, studies on service availability have been taken a growing interest, however,
the definition of service availability is still not authorized. We mention several existing
definitions and studies on service or user-perceived availability as follows. For the transaction
processing systems, Mainkar [7] has considered the probability that the response time of a
transaction is less than a given deadline (i.e., the distribution of the response time) and
defined the user-perceived availability as the probability that the value of the distribution
exceeds a prespecified value. Kaâniche et al. [5] have presented a hierarchical availability
modeling framework for a web-based system and discussed the user-perceived availability
measures in the steady state. The measures they consider have involved the impact of the
performance-related and the inherent failures. Wang and Trivedi [19] have interpreted the

c© Operations Research Society of Japan JORSJ (2007) 50-4

446 K. Tokuno & S. Yamada

user-perceived service availability as the probability that all of user’s requests are successfully
satisfied during the user session and shown the service availability measures in the steady
state in the case where a single user has one or multiple requests in user session. Furthermore,
they have computed the service availability in a voice over IP system, using stochastic reward
nets to describe the user and the system behaviors.

Here we discuss the service availability modeling for software systems, based on the
definition of Wang and Trivedi. That is, we define software service availability as the
attribute that the software system can successfully complete the services the users request.
We assume the situation where an end user intermittently uses the system operating and
available anytime. For example, in the software system controlling the mobile communica-
tion system, all of the system is working at all time but each of end users uses the system
intermittently. Existing studies [5, 7, 19] have often derived the service availability mea-
sures in the steady state, whereas we derive the transient solutions of the software service
availability measures since we consider the dynamic reliability growth and restoration char-
acteristics of the software systems. In particular, we define the following new measures: (i)
the software service availability in use defined as the probability that the user’s requests are
successfully complete before a software failure occurs, (ii) the software service unavailability
due to request cancellation defined as the probability that the system is restored and the
user’s request is canceled due to the restoration action, and (iii) the software service un-
availability under restoration defined as the probability that the user’s requests occur before
a restoration action is complete when the system is restored.

The organization of the rest of this paper is as follows: Section 2 gives a brief explana-
tion of the Markovian software availability model underlying the discussion in this paper.
Section 3 proposes the operational software availability assessment method introducing the
environmental factors and derives several quantitative software availability assessment mea-
sures for the operation phase. Section 4 discusses the model with the end user’s behavior
based on the model of Section 3. The measures derived in the respective sections are given
as the functions of the time and the number of debugging activities. Section 5 illustrates
several numerical examples of software availability analysis based on the model. Finally,
Section 6 summarizes the results obtained in this paper.

2. Basic Markovian Software Availability Model [13]

The following assumptions are made for software availability modeling:

A1. The software system is unavailable and starts to be restored as soon as a software failure
occurs, and the system cannot operate until the restoration action is complete.

A2. The restoration action includes the debugging activity; this is performed perfectly with
the perfect debugging rate a (0 < a ≤ 1) and imperfectly with probability b(= 1 − a).
One fault is corrected and removed from the software system when the debugging activity
is perfect.

A3. The next software failure time, Zn, and the restoration time, Tn, when n faults have
already been corrected from the system, follow the exponential distributions with the
following distribution functions:

FZn(t)≡Pr{Zn ≤ t} = 1 − e−λnt, (1)

FTn(t)≡Pr{Tn ≤ t} = 1 − e−μnt, (2)

respectively. λn and μn are non-increasing functions of n.

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 447

R
n+1

λ1Δτλ0Δτ

R
0

R
1 R

n

W
0

W
1

W
n

W
n+1

aμ0Δτ

1–μ0Δτ

1–λnΔτ1–λ1Δτ 1–λn+1Δτ1–λ0Δτ

bμ0Δτ
λn+1ΔτλnΔτ

aμ1Δτ aμn+1ΔτaμnΔτ

bμ1Δτ bμn+1ΔτbμnΔτ

1–μ1Δτ 1–μn+1Δτ1–μnΔτ

Figure 1: A sample state transition diagram of X(t) for basic model

Let {X(t), t ≥ 0} be the stochastic process representing the state of the software system
at the time point t. The state space vector (W , R) of {X(t), t ≥ 0} is denoted as

W ={Wn; n = 0, 1, 2, . . .}: the system is operating,
R={Rn; n = 0, 1, 2, . . .}: the system is inoperable and under restoration,

where n denotes the cumulative number of corrected faults. Figure 1 illustrates the sample
state transition diagram of X(t).

For obtaining the software availability measures, we first consider the random variable
Si,n representing the transition time of X(t) from state Wi to state Wn (i ≤ n). Then the
distribution function of Si,n, Gi,n(t), is given by

Gi,n(t)≡Pr{Si,n ≤ t} = 1 −
n−1∑
m=i

[
A1

i,n(m)e−d1
mt + A2

i,n(m)e−d2
mt
]

(i, n = 0, 1, 2, . . . ; i ≤ n)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
i

d2
i

}
=

1

2

[
(λi + μi) ±

√
(λi + μi)2 − 4aλiμi

]
(double signs in same order)

A1
i,n(m) =

n−1∏
j=i

d1
jd

2
j

d1
m

n−1∏
j=i
j �=m

(d1
j − d1

m)
n−1∏
j=i

(d2
j − d1

m)

(m = i, i + 1, . . . , n − 1)

A2
i,n(m) =

n−1∏
j=i

d1
jd

2
j

d2
m

n−1∏
j=i
j �=m

(d2
j − d2

m)
n−1∏
j=i

(d1
j − d2

m)

(m = i, i + 1, . . . , n − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3)

Equation (3) is obtained by solving the following renewal equation:

Gi,n(t)=QWi,Ri
∗ QRi,Wi+1

∗ Gi+1,n(t) + QWi,Ri
∗ QRi,Wi

∗ Gi,n(t)

(i = 0, 1, 2, . . . , n − 1), (4)

where ∗ denotes the Stieltjes convolution and QA,B(t)’s (A, B ∈ {W , R}) denote the one-
step transition probability between state A and state B. We apply the Laplace-Stieltjes
(L-S) transforms to solve Equation (4) [12].

c© Operations Research Society of Japan JORSJ (2007) 50-4

448 K. Tokuno & S. Yamada

Next we derive the state occupancy probabilities, PA,B(t) ≡ Pr{X(t) = B|X(0) =
A} (A, B ∈ {W , R}). The renewal equation of PWi,Wn(t) is obtained as follows:

PWi,Wn(t) = Gi,n ∗ PWn,Wn(t)
PWn,Wn(t) = e−λnt + QWn,Rn ∗ QRn,Wn ∗ PWn,Wn(t)

}
. (5)

Solving Equation (5), we have PWi,Wn(t) as

PWi,Wn(t)≡Pr{X(t) = Wn|X(0) = Wi} =
gi,n+1(t)

aλn

+
g′

i,n+1(t)

aλnμn

, (6)

where gi,n(t) ≡ dGi,n(t)/dt denotes the density function of Si,n and g′
i,n(t) ≡ dgi,n(t)/dt.

Similarly, we have PWi,Rn(t) as

PWi,Rn(t)≡Pr{X(t) = Rn|X(0) = Wi} =
gi,n+1(t)

aμn

, (7)

where Equation (7) is the solution of the following renewal equation:

PWi,Rn(t) = Gi,n ∗ QWn,Rn ∗ PRn,Rn(t)
PRn,Rn(t) = e−μnt + QRn,Wn ∗ QWn,Rn ∗ PRn,Rn(t)

}
. (8)

Based on the above analyses, we can obtain the instantaneous software availability and
the average software availability as

A(t; l)≡
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

Pr{X(t) = Wn|X(0) = Wi}

=1 −
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

gi,n+1(t)

aμn

, (9)

Aav(t; l)≡ 1

t

∫ t

0
A(x; l)dx

=1 − 1

t

l∑
i=0

(
l

i

)
aibl−i

∞∑
n=i

Gi,n+1(t)

aμn

, (10)

respectively, where
(

l
i

)
aibl−i denotes the probability that i faults are corrected at the com-

pletion of the l-th debugging (l = 0, 1, 2, . . . ; i = 0, 1, 2, . . . , l) and we use the equation∑∞
n=i [PWi,Wn(t) + PWi,Rn(t)] = 1. Equations (9) and (10) represent the probability that the

system is operating at the time point t and the expected proportion of the system’s oper-
ating time to the time interval (0, t], given that the l-th debugging was complete at time
point t = 0, respectively.

Furthermore, the interval software reliability and the conditional mean available time [14]
are given by

RI(t, x; l)≡
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

Pr{X(t) = Wn, Zn > x|X(0) = Wi}

=
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

PWi,Wn(t)e−λnx, (11)

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 449

MAT (t; l)≡
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

E[Zn] · Pr{X(t) = Wn|X(0) = Wi}
Pr{system is up at time point t|X(0) = Wi}

=
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

PWi,Wn(t)/λn

1 −
∞∑

n=i

gi,n+1(t)/(aμn)

, (12)

respectively, Equations (11) and (12) represent the probability that the system is operable
at the time point t and will continue to be available for the time interval (t, t + x] and the
expected available time interval on the condition that the system is operating at the time
point t, given that the l-th debugging was complete at time point t = 0, respectively.

3. Operational Software Availability Assessment

Hereafter, let the notations with and without superscript O denote ones associated with the
operation phase and the testing phase, respectively. For example, ZO

i and Zi denote the
random variables representing the next software failure time in the operation phase and the
testing phase when i faults have already been corrected, respectively.

We assume the following relationships between Zi and ZO
i , and Ti and TO

i :

ZO
i =αZi, FZO

i
(t) = FZi

(t/α) (α > 0), (13)

TO
i =βTi, FT O

i
(t) = FTi

(t/β) (β > 0), (14)

where we call α and β the environmental factors. From the viewpoint of the software
reliability assessment, α > 1 (0 < α < 1) reflects the situation where the operation phase
is milder (severer) in the usage condition than the testing phase, and β > 1 (0 < β < 1)
reflects the situation where the restoration time in the operation phase is apt to be longer
(shorter) than that in the testing phase. The case of α = β = 1 means that the operational
environment is equivalent to the testing one.

Using Equations (13) and (14), we can obtain the distribution of SO
i,n as

GO
i,n(t)≡Pr{SO

i,n ≤ t} = 1 −
n−1∑
m=i

[
A1O

i,n(m)e−d1O
m t + A2O

i,n(m)e−d2O
m t
]

(i, n = 0, 1, 2, . . . ; i ≤ n)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λO
i = λi/α, μO

i = μi/β

d1O
i

d2O
i

}
=

1

2

[
(λO

i + μO
i) ±

√
(λO

i + μO
i)2 − 4aλO

i μO
i

]
(double signs in same order)

A1O
i,n(m) =

n−1∏
j=i

d1O
j d2O

j

d1O
m

n−1∏
j=i
j �=m

(d1O
j − d1O

m)
n−1∏
j=i

(d2O
j − d1O

m)

(m = i, i + 1, . . . , n − 1)

A2O
i,n(m) =

n−1∏
j=i

d1O
j d2O

j

d2O
m

n−1∏
j=i
j �=m

(d2O
j − d2O

m)
n−1∏
j=i

(d1O
j − d2O

m)

(m = i, i + 1, . . . , n − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15)

c© Operations Research Society of Japan JORSJ (2007) 50-4

450 K. Tokuno & S. Yamada

Let l = lr be the number of debuggings performed before release. Then the instantaneous
software availability and the average software availability in the operation phase are given
by

AO(t; l)=1 −
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

βgO
i,n+1(t)

aμn

(l = lr, lr + 1, lr + 2, . . .), (16)

AO
av(t; l)=1 − 1

t

l∑
i=0

(
l

i

)
aibl−i

∞∑
n=i

βGO
i,n+1(t)

aμn

(l = lr, lr + 1, lr + 2, . . .), (17)

respectively. Equations (16) and (17) represent the probability that the system is operating
at the time point t and the expected proportion of the system’s operating time to the
time interval (0, t] in the operation phase, given that the system is release after the lr-th
debugging was complete in the testing phase, respectively.

Furthermore, the interval software reliability and the conditional mean available time in
the operation phase are given by

RO
I (t, x; l)=

l∑
i=0

(
l

i

)
aibl−i

∞∑
n=i

PO
Wi,Wn

(t)e−λnx/α (l = lr, lr + 1, lr + 2, . . .), (18)

MATO(t; l)=
l∑

i=0

(
l

i

)
aibl−i

∞∑
n=i

αPO
Wi,Wn

(t)/λn

1 −
∞∑

n=i

βgO
i,n+1(t)/(aμn)

(l = lr, lr + 1, lr + 2, . . .), (19)

respectively. Equations (18) and (19) represent the probability that the system is operable
at the time point t and will continue to be available for the time interval (t, t + x] and the
expected available time interval on the condition that the system is operating at the time
point t in the operation phase, given that the system is release after the lr-th debugging
was complete in the testing phase, respectively.

4. Model with User Behavior

4.1. Model description

In the preceding section, we have discussed the software availability model considering only
the time-dependent behavior of the system itself, i.e., only up and down states. In this sec-
tion, we consider the user behavior as well and discuss the model for the software availability
assessment from the viewpoint of the user. Here we assume that a user intermittently uses
the system which is accessible anytime. We make the following additional assumptions for
the software availability modeling:

A4. The system is released and transferred to the operation phase after i(≥ 0) faults are
corrected, and then the release point in time is set to the time origin t = 0. The user
does not use the system at time point t = 0. The time to occurrence of a usage request,
Vur, and the usage time of the user, Vut, follow the exponential distributions with means
1/θ and 1/η, respectively.

A5. In the cases where the software failure occurs when the user is using the system, or the
usage request occurs under the system restoration, the corresponding usage request is
canceled.

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 451

λ1Δτλ0Δτ

R
0

R
1

W
0

W
1

aμ0Δτ

bμ0Δτ

aμ1Δτ

bμ1Δτ

R
i−1

W
i−1

λi−1Δτ

aμi−1Δτ

bμi−1Δτ

W
i+1

R
i+1

U
i+1

θΔτ

ηΔτ

W
i

R
i

U
i

ηΔτ

bμiΔτO

λiΔτO

λiΔτO

bμi+1ΔτO

λi+1ΔτO

aμiΔτO aμi+1ΔτO

λi+1ΔτO

Testing Phase Operation Phase

θΔτ

Figure 2: A sample state transition diagram of X(t) for model with user behavior

Recall that {X(t), t ≥ 0} denotes the stochastic process representing the state of the
system at the time point t during the operation phase. Then we redefine its state space
vector (W , U , R) as follows:

W ={Wn; n = 0, 1, 2, . . .}: the system is available but the user does not use the system,
U ={Un; n = 0, 1, 2, . . .}: the system is available and the user is using the system,
R={Rn; n = 0, 1, 2, . . .}: the system is restored due to a software failure-occurrence.

Figure 2 illustrates a sample state transition diagram of X(t). From Figure 2, we have the
following QO

A,B(τ)’s:

QO
Wn,Un

(τ)=
θ

λO
n + θ

[
1 − e−(λO

n +θ)τ
]
, (20)

QO
Wn,Rn

(τ)=
λO

n

λO
n + θ

[
1 − e−(λO

n +θ)τ
]
, (21)

QO
Un,Wn

(τ)=
η

λO
n + η

[
1 − e−(λO

n +η)τ
]
, (22)

QO
Un,Rn

(τ)=
λO

n

λO
n + η

[
1 − e−(λO

n +η)τ
]
, (23)

QO
Rn,Wn+1

(τ)=a
(
1 − e−μO

n τ
)
, (24)

QO
Rn,Wn

(τ)= b
(
1 − e−μO

n τ
)
. (25)

4.2. Derivation of software service availability measures

4.2.1. Distribution of transition time between state W

We have the following renewal equation of GO
i,n(t):

GO
i,n(t) = LO

Wi,Ri
∗ QO

Ri,Wi+1
∗ GO

i+1,n(t) + LO
Wi,Ri

∗ QO
Ri,Wi

∗ GO
i,n(t)

(i = 0, 1, 2, . . . , n − 1)
LO

Wi,Ri
(t) = QO

Wi,Ri
(t) + QO

Wi,Ui
∗ QO

Ui,Ri
(t) + QO

Wi,Ui
∗ QO

Ui,Wi
∗ LO

Wi,Ri
(t)

⎫⎪⎬⎪⎭ . (26)

The L-S transform of Equation (26) is given by

G̃O
i,n(s)=

n−1∏
m=i

d1O
m d2O

m

(s + d1O
m)(s + d2O

m)

c© Operations Research Society of Japan JORSJ (2007) 50-4

452 K. Tokuno & S. Yamada

=
n−1∑
m=i

(
A1O

i,n(m)d1O
m

s + d1O
m

+
A2O

i,n(m)d2O
m

s + d2O
m

)
. (27)

By inverting Equation (27), we have the identical solution with Equation (15) and should
note that GO

i,n(t) in Equation (26) has no bearing on the parameters θ and η.

4.2.2. State occupancy probability

We have the following renewal equation of PO
Wi,Wn

(t):

PO
Wi,Wn

(t) = GO
i,n ∗ PO

Wn,Wn
(t)

PO
Wn,Wn

(t) = e−(θ+λO
n)t + QO

Wn,Rn
∗ QO

Rn,Wn
∗ PO

Wn,Wn
(t) + QO

Wn,Un
∗ QO

Un,Wn
∗ PO

Wn,Wn
(t)

+ QO
Wn,Un

∗ QO
Un,Rn

∗ QO
Rn,Wn

∗ PO
Wn,Wn

(t)

⎫⎪⎬⎪⎭ . (28)

The L-S transform of PO
Wi,Wn

(t) is obtained as

P̃O
Wi,Wn

(s)=
s(s + λO

n + η)(s + μO
n)

(s + λO
n + θ + η)(s + d1O

n)(s + d2O
n)

·
n−1∏
m=i

d1O
m d2O

m

(s + d1O
m)(s + d2O

m)
. (29)

By inverting Equation (29), we obtain PO
Wi,Wn

(t) as

PO
Wi,Wn

(t)≡Pr{X(t) = Wn|X(0) = Wi}
= B0O

i,ne−(λO
n +θ+η)t +

n∑
m=i

[
B1O

i,n (m)e−d1O
m t + B2O

i,n (m)e−d2O
m t
]

(i, n = 0, 1, 2, . . . ; i ≤ n),⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0O
i,n =

−θ(μO
n − λO

n − θ − η)
n−1∏
j=i

d1O
j d2O

j

n∏
j=i

(d1O
j − λO

n − θ − η)(d2O
j − λO

n − θ − η)

(i, n = 0, 1, 2, . . . ; i ≤ n)

B1O
i,n (m) =

(λO
n + η − d1O

m)(μO
n − d1O

m)
n−1∏
j=i

d1O
j d2O

j

(λO
n + θ + η − d1O

m)
n∏

j=i
j �=m

(d1O
j − d1O

m)
n∏

j=i

(d2O
j − d1O

m)

(m = i, i + 1, . . . , n)

B2O
i,n (m) =

(λO
n + η − d2O

m)(μO
n − d2O

m)
n−1∏
j=i

d1O
j d2O

j

(λO
n + θ + η − d2O

m)
n∏

j=i
j �=m

(d2O
j − d2O

m)
n∏

j=i

(d1O
j − d2O

m)

(m = i, i + 1, . . . , n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

It should be noted that

B0O
i,i + B1O

i,i (i) + B2O
i,i (i) = 1 (i = n)

B0O
i,n +

n∑
m=i

[
B1O

i,n (m) + B2O
i,n (m)

]
= 0 (i < n)

⎫⎪⎬⎪⎭ . (31)

Similarly, we have the following renewal equation of PO
Wi,Rn

(t):

PO
Wi,Rn

(t) = GO
i,n ∗ LO

Wn,Rn
∗ PO

Rn,Rn
(t)

PO
Rn,Rn

(t) = e−μO
n t + QO

Rn,Wn
∗ LO

Wn,Rn
∗ PO

Rn,Rn
(t)

}
, (32)

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 453

where LO
Wn,Rn

(t) has appeared in Equation (26). The L-S transform of PO
Wi,Rn

(t) is obtained
as

P̃O
Wi,Rn

(s)=
s

aμO
n

· aλO
n μO

n

(s + d1O
n)(s + d2O

n)
· G̃O

i,n(s)

=
s

aμO
n

G̃O
i,n+1(s), (33)

where d1O
n d2O

n = aλO
n μO

n from Equation (15). By inverting Equation (33), we obtain PO
Wi,Rn

(t)
as

PO
Wi,Rn

(t)≡Pr{X(t) = Rn|X(0) = Wi}

=
gO

i,n+1(t)

aμO
n

(i, n = 0, 1, 2, . . . ; i ≤ n), (34)

where gO
i,n(t) is the density function of SO

i,n. We note that PO
Wi,Rn

(t) has no bearing on the
parameters θ and η.

Let {Y (t), t ≥ 0} be the counting process representing the cumulative number of faults
corrected at the time point t. Then we have the following relationship:

{Y (t) = n|X(0) = Wi} ⇐⇒
{X(t) = Wn|X(0) = Wi} ∪ {X(t) = Rn|X(0) = Wi} ∪ {X(t) = Un|X(0) = Wi}

(i ≤ n). (35)

Furthermore, the probability mass function of {Y (t), t ≥ 0} is given by

Pr{Y (t) = n|X(0) = Wi} = GO
i,n(t) − GO

i,n+1(t). (36)

Accordingly, PO
Wi,Un

(t) is given by

PO
Wi,Un

(t)≡Pr{X(t) = Un|X(0) = Wi}
=GO

i,n(t) − GO
i,n+1(t) − PO

Wi,Wn
(t) − PO

Wi,Rn
(t) (i, n = 0, 1, 2, . . . ; i ≤ n), (37)

since the events {X(t) = Wn|X(0) = Wi}, {X(t) = Rn|X(0) = Wi}, and {X(t) =
Un|X(0) = Wi} are mutually exclusive.

4.2.3. Software service availability

In the discussion below, consider that i faults have already been corrected at time point
t = 0.

The probabilities that the system is in state W , U , and R at the time point t are given
by

Pr{X(t) ∈ W |X(0) = Wi} ≡
∞∑

n=i

PO
Wi,Wn

(t), (38)

Pr{X(t) ∈ U |X(0) = Wi} ≡
∞∑

n=i

PO
Wi,Un

(t), (39)

Pr{X(t) ∈ R|X(0) = Wi} ≡
∞∑

n=i

PO
Wi,Rn

(t), (40)

respectively. Furthermore, the probabilities that the usage of the user can be complete
without cancellation, i.e., the user’s request is satisfied before a software failure occurs, and

c© Operations Research Society of Japan JORSJ (2007) 50-4

454 K. Tokuno & S. Yamada

t

Zt

V

Time
{X(t)∈U}

: up state
: down state (restored)

in Use

Not in Use

Up/Down State
 of

System

ut

Figure 3: Example of completion of user request in use

t

Tt

Time
{X(t)∈R}

: up state
: down state (restored)

in Use

Not in Use

Up/Down State
 of

System

Vur

Figure 4: Example of user-perceived system failure under restoration

that the user’s request occurs when the system is being restored, given that n faults have
already been corrected, are given by

Pr{ZO
n > Vut}=

η

η + λO
n

, (41)

Pr{Vur < TO
n }=

θ

θ + μO
n

, (42)

respectively.

Let Zt be the random variable representing the software failure-occurrence time measured
from the arbitrary time point t. The software service availability in use can be defined
as the conditional probability that the user’s requests are satisfied before a software failure
occurs, provided the system is being used at the time point t (see Figure 3), and given by

SAO
u(i)(t) ≡ Pr{Zt > Vut|X(t) ∈ U}

=

Pr

{ ∞⋃
n=i

(ZO
n > Vut, X(t) = Un)

}
Pr{X(t) ∈ U |X(0) = Wi}

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 455

=
∞∑

n=i

ηPO
Wi,Un

(t)

η + λO
n

/ ∞∑
n=i

PO
Wi,Un

(t). (43)

On the other hand, let Tt be the random variable representing the restoration time
measured from the arbitrary time point t. The software service unavailability due to
request cancellation can be defined as the probability that the system is restored at the
time point t and the user’s request is canceled due to the corresponding restoration action
(see Figure 4), and given by

SUAO
rc(i)(t) ≡ Pr{Vur < Tt, X(t) ∈ R}

= Pr

{ ∞⋃
n=i

(Vur < Tn, X(t) = Rn)

}

=
∞∑

n=i

θPO
Wi,Rn

(t)

θ + μO
n

. (44)

Furthermore, The software service unavailability under restoration can be defined
as the conditional probability that the user’s request is canceled, provided the system is
being restored at the time point t, and given by

SUAO
r(i)(t) ≡ Pr{Vur < Tt|X(t) ∈ R}

=
∞∑

n=i

θPO
Wi,Rn

(t)

θ + μO
n

/ ∞∑
n=i

PO
Wi,Rn

(t). (45)

We should note that it is too difficult to use Equations (43), (44), and (45) directly
as the software service availability measures. The reason is that the cumulative number
of faults corrected at the time origin, i.e., integer i cannot be observed immediately since
this model assumes the imperfect debugging environment. However, we can easily observe
the number of debugging activities and the cumulative number of faults corrected after
the completion of the l-th debugging, Cl, is distributed with the probability mass function
Pr{Cl = i} =

(
l
i

)
aibl−i. Similar to Section 3, we can convert Equations (43), (44), and (45)

into the functions of the number of debuggings, l, i.e., we can obtain

SAO
u (t; l)=

l∑
i=0

(
l

i

)
aibl−i

∞∑
n=i

ηPO
Wi,Un

(t)

η + λO
n

/∞∑
n=i

PO
Wi,Un

(t) (l = lr, lr + 1, lr + 2, . . .), (46)

SUAO
rc(t; l)=

l∑
i=0

(
l

i

)
aibl−i

∞∑
n=i

θPO
Wi,Rn

(t)

θ + μO
n

(l = lr, lr + 1, lr + 2, . . .), (47)

SUAO
r (t; l)=

l∑
i=0

(
l

i

)
aibl−i

∞∑
n=i

θPO
Wi,Rn

(t)

θ + μO
n

/∞∑
n=i

PO
Wi,Rn

(t) (l = lr, lr + 1, lr + 2, . . .), (48)

respectively. Equations (46), (47), and (48) represent the software service availability in use
and the software service unavailabilities due to request cancellation and under restoration,
given that the system is release after the lr-th debugging was complete in the testing phase,
respectively. We note that Equations (47) and (48) have no bearing on the parameter η.

5. Numerical Examples

Using the model discussed above, we present several numerical illustrations of operational
software availability assessment, where we apply λn ≡ Dcn (D > 0, 0 < c < 1) and
μn ≡ Ern (E > 0, 0 < r ≤ 1) to the hazard and the restoration rates, respectively [9].

c© Operations Research Society of Japan JORSJ (2007) 50-4

456 K. Tokuno & S. Yamada

0 100 200 300 400 500
0.84

0.86

0.88

0.9

0.92

0.94

Time t

AO(t;lr) α=1.5
α=1.2

α=1.0 (A(t;lr))
α=0.9
α=0.8

Figure 5: AO(t; lr) for various values of α (β = 1.0, lr = 26)

0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45

0.5

Time t

RO
I(t,x;lr)

α=0.8

α=1.2

α=1.5

α=0.9

α=1.0 (RI(t,x;lr))

Figure 6: RO
I (t, x; lr) for various values of α (β = 1.0, lr = 26)

We cite the estimates of the parameters associated with λn and μn from Ref. [16], i.e.,
we use the following values:

D̂ = 0.246, ĉ = 0.940, Ê = 1.114, r̂ = 0.960,

where we set a = 0.8. These values have been estimated based on the simulated data set
generated from data cited by Goel and Okumoto [4]; this consists of 26 software failure-
occurrence time-interval data (lr = 26) and the unit of time is day.

The inherent availabilities for one up-down cycle when n faults have been corrected in
the testing and the operation phases can be defined as

AI(n)≡ E[Zn]

E[Zn] + E[Tn]
=

1

1 + ρn

(ρn ≡ λn/μn), (49)

AO
I (n)≡ E[ZO

n]

E[ZO
n] + E[TO

n]
=

1

1 + ρO
n

(
ρO

n ≡ (β/α) · (λn/μn)
)
, (50)

respectively, where ρn and ρO
n are called the maintenance factor. AI(n) and AO

I (n) are the
simplest availability measures. From the forms of Equations (49) and (50), the difference

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 457

0 100 200 300 400 500
0.895

0.9

0.905

0.91

0.915

0.92

Time t

AO(t;lr)
k=0.8

1.0
1.5
2.0
2.5

Figure 7: AO(t; lr) for various values of α and β, given β/α = 1/1.2 (lr = 26)

0 100 200 300 400 500
0.895

0.9

0.905

0.91

0.915

Time t

AO
av(t;lr)

k=0.8
1.0
1.5
2.0
2.5

Figure 8: AO
av(t; lr) for various values of α and β, given β/α = 1/1.2 (lr = 26)

of software availability assessment between the testing and the operation phases with the
inherent availability depends on the value of β/α. In other words, the same evaluation in
software availability is given when the value of β/α is constant even though α and β take
different values. Especially in the case of α = β, we judge that the testing and the operation
phases are the same availability evaluation since AI(n) = AO

I (n).

The software availability measures shown in this paper include infinite series, however,
in practical calculation of these measures, we need to specify the supremum of n, denoted

as N0, instead of infinity. For example, we calculate
∑N0

n=i

βgO
i,n+1(t)

aμn
instead of

∑∞
n=i

βgO
i,n+1(t)

aμn

in Equation (16). If we can estimate the initial fault content in the system, n0, with some
method, it is appropriate that N0 = n0. Otherwise we set an adequate integer for practical
calculation of software availability measures to N0. In the case of Figure 5, the time axis
designated is [0, 500] and lr = 26, then, GO

26,55(500) = 1.011×10−9. That is, the probability
that the system makes a transition from state W26 to W55 in the time interval [0, 500] is
sufficiently small. Accordingly, we set N0 = 55.

Figures 5 and 6 show the dependence of the instantaneous software availability, AO(t; l),
in Equation (16) and the interval software reliability, RO

I (t, x; l), in Equation (18) on the
value of α, where the cases of α = 1.0 designated by thick lines are identical with Equa-

c© Operations Research Society of Japan JORSJ (2007) 50-4

458 K. Tokuno & S. Yamada

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Time t

RO
I(t,x;lr)

k=2.0

k=2.5

k=1.5

k=1.0

k=0.8

Figure 9: RO
I (t, x; lr) for various values of α and β, given β/α = 1/1.2 (x = 10.0, lr = 26)

0 100 200 300 400 500
5

15

25

35

45

55

Time t

MATO(t;lr)
k=2.5
k=2.0

k=1.5
k=1.0
k=0.8

Figure 10: MATO(t; lr) for various values of α and β, given β/α = 1/1.2 (lr = 26)

tions (9) and (11), respectively. We can see that software availability becomes higher as
the value of α is estimated larger. This is the same tendency as the case of the inherent
availability.

Hereafter, we set α0 = 1.2, β0 = 1.0, α = kα0, and β = kβ0, and show the numerical
examples on the dependence of the value of k, i.e., the both of the values of α and β are
varied, given β/α is constant.

Figures 7 and 8 show the dependence of AO(t; l) and the average software availability,
AO

av(t; l), in Equation (17) on the values of α and β, given β/α is constant, respectively.
These figures tell us that software availability becomes lower as both of the values of α and
β are estimated larger; this result is different from the case of the inherent availability. The
larger α and β mean that an up-down cycle period becomes longer. This fact also leads
slow software reliability growth. In other words, the shorter up-down cycle period means
that software reliability growth speeds up.

Figures 9 and 10 show the dependence of RO
I (t, x; l) and the conditional mean available

time, MATO(t; l), in Equation (19), on the values of α and β, given β/α is constant, re-

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 459

spectively. These figures display the opposite tendency to the Figures 7 and 8, i.e., software
availability becomes larger as both of the values of α and β becomes larger. The instan-
taneous and the average software availabilities are the measures focusing on time instant,
on the other hand, the interval software reliability and the conditional mean available time
focus on whether or not the system is available continuously for a time interval. The larger
α implies the following effects: (A) up time lengthens, on the other hand, (B) software reli-
ability growth slows down. As to the software availability evaluation based on the interval
software reliability or the conditional mean available time, effect (A) has a greater impact
than effect (B).

0 100 200 300 400 500
0.996

0.997

0.998

0.999

1

Time t

SAO
u(t;lr)

k=2.5
2.0
1.5
1.0
0.8

Figure 11: SAO
u (t; lr) for various values of α and β, given β/α = 1/1.2 (lr = 26; θ = 5.0, η =

24.0)

0 100 200 300 400 500
0.06

0.07

0.08

0.09

0.1

0.11

0.12

Time t

SUAO
rc(t;lr)

UAO(t;lr)
k=2.5

2.0

k=1.5
1.0
0.8

Figure 12: SUAO
rc(t; lr) for various values of α and β, given β/α = 1/1.2 (lr = 26; θ = 5.0)

Next we show the numerical examples of the software service availability measures.
Figure 11 shows the dependence of the software service availability in use, SAO

u (t; l), in
Equation (46) on the values of α and β, given β/α is constant, in the case where the user
uses the system five times a day on average (θ = 5.0) and the mean usage time is one hour
(1/η = 1/24.0). This figure tells us that software service availability becomes larger as time
elapses and both of the values of α and β becomes larger; this is a similar tendency to

c© Operations Research Society of Japan JORSJ (2007) 50-4

460 K. Tokuno & S. Yamada

0 100 200 300 400 500
0.88

0.9

0.92

0.94

0.96

0.98

Time t

SUAO
r(t;lr)

k=1.5
1.0
0.8

k=2.5
2.0

Figure 13: SUAO
r (t; lr) for various values of α and β, given β/α = 1/1.2 (lr = 26; θ = 5.0)

RO
I (t, x; l) and MATO(t; l).

Figure 12 shows the dependence of the software service unavailability due to request
cancellation, SUAO

rc(t; l), in Equation (47) on the values of α and β, given β/α is con-
stant, where the broken line designates the instantaneous software unavailability denoted
as UAO(t; l) ≡ 1 − AO(t; l) and defined as the probability that the system is down and re-
stored at the time point t. As shown in this figure, the probability that the user’s request is
canceled becomes lower with the lapse of time. We can also see that the proposed measure
shows more optimistic evaluation than the traditional measure. Furthermore, this figure
indicates that SUAO

rc(t; l) shows the opposite tendency to SAO
u (t; l), i.e., the software service

unavailability is estimated higher when α and β are estimated larger. This reasoning is that
SUAO

rc(t; l) is the measure noting the relationship between the usage frequency of the user
and the restoration time, not the usage time and the operating time of the system. The
larger β leads that the restoration time is estimated longer.

On the other hand, if we observe that the system is down and restored, then we have the
different evaluation from the above mention. Figure 13 shows the dependence of the software
service unavailability under restoration, SUAO

r (t; l), in Equation (48) on the values of α and
β, given β/α is constant. As this figure indicates, SUAO

r (t; l) increases, i.e., the software
availability evaluation becomes more unfavorable with the lapse of time. The reason for
this behavior is that the mean restoration time is assumed the non-increasing function of n
from assumption A3.

6. Concluding Remarks

In this paper, we have discussed the user-oriented software availability evaluation methods.
We have used the Markovian software availability model to describe the software failure and
restoration characteristics in the testing phase of the software development process and the
user operation phase. Assuming that the ratio of the time-scale transformation between the
testing and the operation phases is constant, we have introduced the environmental factors
to express the difference between the testing and the operation environments. Furthermore,
defining the user-perceived software failure, we have proposed the modeling for the software
service availability assessment. From this discussion, we have derived several quantitative
measures for software availability measurement and assessment oriented to operational use;

c© Operations Research Society of Japan JORSJ (2007) 50-4

User-Oriented Software Availability Assessment 461

these have been given as the functions of the operation time and the number of debug-
gings performed in the testing phase. We have presented several numerical examples of
operational software service availability analysis and investigated the impacts of the envi-
ronmental factors and the consideration of the user’s behavior on the software availability
evaluation. It is meaningful that this study has revealed a clue to quantitate “the quality
of service” of software systems.

We have illustrated the numerical examples based on the simulation data, especially,
the values of the environmental factors, α and β, have been given experimentally. In the
practical use of this model, the estimation of α and β is important. However, it seems to be
difficult to estimate the values of α and β by using the data obtained from the corresponding
software project. In the present state of affairs, we cannot help deciding the values of α and
β experimentally based on the analysis of the past field data which are obtained from the
software systems developed before by similar projects. The practical estimation of α and β
remains a future study.

Acknowledgment

This work was supported in part by Grants-in-Aid for Scientific Research (C) of the Ministry
of Education, Culture, Sports, Science and Technology of Japan under Grant No. 18510124.

References

[1] H. Asama: Service engineering and system integration. Journal of the Society of In-
strument and Control Engineering , 44 (2005), 278–283 (in Japanese).

[2] A. Birolini: Reliability Engineering — Theory and Practice — Third Edition (Springer-
Verlag, Berlin, 1999).

[3] D.P. Gaver, Jr.: A probability problem arising in reliability and traffic studies. Opera-
tions Research, 12 (1964), 534–542.

[4] A.L. Goel and K. Okumoto: Time-dependent error-detection rate model for software
reliability and other performance measures. IEEE Transactions on Reliability , R-28
(1979), 206–211.

[5] M. Kaâniche, K. Kanoun and M. Martinello: A user-perceived availability evaluation
of a web based travel agency. In Proceedings of the 2003 International Conference on
Dependable Systems and Networks (2003), 709–718.

[6] M.R. Lyu, ed.: Handbook of Software Reliability Engineering (McGraw-Hill, New York,
1996).

[7] V. Mainkar: Availability analysis of transaction processing systems based on user-
perceived performance. In Proceedings of the 16th Symposium on Reliable Distributed
Systems (1997), 10–17.

[8] H. Mizuta: Emergence of service science: Services sciences, management and engineer-
ing (SSME). IPSJ Magazine, 47 (2006), 457–472 (in Japanese).

[9] P.B. Moranda: Event-altered rate models for general reliability analysis. IEEE Trans-
actions on Reliability , R-28 (1979), 376–381.

[10] H. Okamura, T. Dohi and S. Osaki: A reliability assessment method for software prod-
ucts in operational phase —Proposal of an accelerated life testing model—. Transac-
tions of IEICE , J83-A-3 (2000), 294–301 (in Japanese).

[11] S. Osaki: Reliability analysis of a system when it is used intermittently. Transactions
of IECE , 54-C (1971), 83–89 (in Japanese).

c© Operations Research Society of Japan JORSJ (2007) 50-4

462 K. Tokuno & S. Yamada

[12] S. Osaki: Applied Stochastic System Modeling (Springer-Verlag, Heidelberg, 1992).

[13] K. Tokuno and S. Yamada: Markovian software availability measurement based on the
number of restoration actions. IEICE Transactions on Fundamentals , E83-A-5 (2000),
835–841.

[14] K. Tokuno and S. Yamada: Markovian software availability measurement for continuous
use. In H. Pham and M.-W. Lu (eds.): Proceedings of the Sixth ISSAT International
Conference on Reliability and Quality in Design (2000), 280–284.

[15] K. Tokuno and S. Yamada: Software availability theory and its applications. In H.
Pham (ed.): Handbook of Reliability Engineering (Springer-Verlag, London, 2003), 235–
244.

[16] K. Tokuno and S. Yamada: Stochastic performance evaluation for multi-task processing
system with software availability model. Journal of Quality in Maintenance Engineer-
ing , 12 (2006), 412–424.

[17] M. Tortorella: Service reliability theory and engineering, I: Foundations. Quality Tech-
nology and Quantitative Management , 2 (2005), 1–16.

[18] M. Tortorella: Service reliability theory and engineering, II: Models and examples.
Quality Technology and Quantitative Management , 2 (2005), 17–37.

[19] D. Wang and K.S. Trivedi: Modeling user-perceived service availability. In M. Malek,
E. Nett and N. Suri (eds.): Service Availability — 2nd International Service Availability
Symposium, ISAS 2005 — (Springer-Verlag, Berlin, 2005), 107–122.

[20] http://www.saforum.org.

Koichi Tokuno
Department of Social Systems Engineering
Faculty of Engineering
Tottori University
4-101, Koyama, Tottori-shi, 680-8552, Japan
E-mail: toku@sse.tottori-u.ac.jp

c© Operations Research Society of Japan JORSJ (2007) 50-4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

