
Journal of the Operations Research
Society of Japan

2007, Vol. 50, No. 4, 376-389

BI-CRITERIA FOOD PACKING BY DYNAMIC PROGRAMMING

Yoshiyuki Karuno Hiroshi Nagamochi Xiaoming Wang
Kyoto Institute of Technology Kyoto University Kyoto Institute of Technology

(Received October 31, 2006; Revised February 21, 2007)

Abstract In this paper, we deal with a certain type of automated food packing system with n hoppers.
The system repeats throwing some amount of foods into empty hoppers to make all hoppers full of foods,
and collecting the foods from several hoppers to pack them into a single package. We treat foods thrown
into each hopper as an item i with an integer weight wi. Given a set I of n items in the hoppers, the packing
system chooses a subset I ′ (⊆ I) of items, and puts them into a package so that the total weight of items
is at least a specified target weight B. The packing system then throws new items into the empty hoppers,
and the set I is updated to be the union of the remaining items in I − I ′ and the new items. Repeating
such packing operations, it produces a large number of packages one by one. In the packing system, an
item may stay for a long time in some hopper until it is chosen for packing. To avoid such a situation, we
introduce a priority γi for each item i, and formulate the problem of choosing a subset I ′ as a bi-criteria
discrete optimization problem in which one objective is to minimize

∑
i∈I′ wi such that

∑
i∈I′ wi ≥ B must

be satisfied, and the other is to maximize
∑

i∈I′ γi. In this paper, we propose an O(n2wmax) time algorithm
based on dynamic programming to obtain a nondominated solution, where wmax is an upper bound on
the weight of an item. We also report the results on computational experiments conducted to examine the
performance of the proposed approach.

Keywords: Discrete optimization, automated food packing, 0-1 knapsack problem, dy-
namic programming

1. Introduction

In this paper, we consider a discrete optimization problem arising in a certain type of
automated food packing system, so-called automatic combination weigher [5]. As depicted
in Figure 1, the food packing system consists of n weighing hoppers. An item (such as a
green pepper, a ham, a handful of potato chips, and so on) is thrown into each hopper, and
it is weighed. Given a set I = {i | i = 1, 2, . . . , n} of n items in the hoppers, the packing
system chooses a subset I ′ (⊆ I) of items, and puts the items in I ′ into a package, where
the total weight of items in a package is required to be no less than a specified target weight
B. The packing system then throws new items into the empty hoppers, and the set I is
updated to be the union of the remaining items in I − I ′ and the new items. Repeating
such packing operations, it produces a large number of packages one by one. Note that the
system always has to choose some items in the current hoppers without knowing the weights
of the next new items that will be thrown into the resulting empty hoppers.

We formulate the problem of choosing a subset I ′ from I at each packing operation as a
0-1 integer programming problem of off-line setting by using 0-1 variables xi (e.g., the xi is
set to be zero if item i is chosen, otherwise it is set to be one). In order to avoid customer’s
complaint, the total weight of items put into each package must be at least B (i.e., the
target weight). This is referred to as the target weight constraint, which is a hard constraint
of the food packing problem [5]. In this paper, two objective functions are considered in the

376

Bi-Criteria Food Packing by DP 377

problem of choosing a subset I ′. Let wi be the weight of item i, which is assumed to be an
integer. Then, one objective is to minimize

∑
i∈I′ wi under the target weight constraint (i.e.,∑

i∈I′ wi ≥ B). This aims at attaining the total weight of each package as close to the target
weight B as possible. If the problem of choosing a subset I ′ regards only this objective, it can
be viewed as the 0-1 knapsack problem. It is known to be an NP-hard problem, but can be
solved in O(n2wmax) time by applying dynamic programming if any wi is bounded by a given
integer wmax [4]. From the viewpoint of optimizing the total weight of each package, some
numerical results for the food packing system have been reported by Kameoka, Nakatani
and Inui [3], and by Murakami et al [6, 7]. However, the packing algorithms employed in
their papers basically enumerate O(2n) feasible subsets I ′.

Choosing items

Putting into a package

Hopper 1 Hopper 2 Hopper 3 Hopper 4 Hopper 5 Hopper n

Figure 1: Automated food packing system

During a series of packing operations, an item may stay for a long time in some hopper
until it is chosen to be packed [2]. It is undesirable when the packing system handles a
kind of fresh (or raw) food. In this paper, a priority γi of item i is introduced into the
off-line setting to prevent such a situation. The priority γi is given by a non-decreasing
function of the duration in the hopper of item i. The other objective is to maximize the
total priority

∑
i∈I′ γi.

Karuno, Nagamochi and Ohshima [4] have formulated the problem of choosing a subset I ′

as a lexicographic bi-criteria optimization problem, in which the first objective is to minimize
the total weight

∑
i∈I′ wi, and the second is to maximize the total priority

∑
i∈I′ γi under

the target weight constraint. They have modified the O(n2wmax) time algorithm for the 0-1
knapsack problem such that it can solve the lexicographic bi-criteria problem in the same
running time [4].

For any instance of the problem of choosing a subset I ′ at each packing operation, let
W =

∑
i∈I wi, and let W1,W2, . . . ,WA be total weights, each of which is obtained by some

feasible solution I ′ (⊆ I), such that

B ≤ W1 < W2 < · · · < WA−1 < WA = W. (1.1)

Notice that the positive integer A is bounded by nwmax (i.e., A ≤ nwmax) since any wi is
an integer.

The α-minimum weight solution is defined as a solution I ′ (or the corresponding 0-1
vector x = (x1, x2, . . . , xn)) such that

∑
i∈I′ wi = Wα, where α ∈ {1, 2, . . . , A}. We call the

α quality rank of total weight. The α-best solution is defined as a solution I ′ that maximizes
the total priority

∑
i∈I′ γi among α-minimum weight solutions. The α-nondominated solution

is defined as a solution I ′ that maximizes the total priority
∑

i∈I′ γi among α solutions of

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

378 Y. Karuno, H. Nagamochi & X. Wang

1-best, 2-best, · · ·, α-best. At this time, if there exist some solutions with the maximum of
total priority, the solution with the least total weight among them is the representative, of
course. In addition, if a given α is larger than A in Equation (1.1), it is replaced by the A.
From the viewpoint of this definition, the modified O(n2wmax) time algorithm presented
by [4] can obtain a 1-nondominated solution in pseudo-polynomial time. In this paper, we
extend the modified O(n2wmax) time algorithm to the problem of finding an α-nondominated
solution for a given α. The proposed algorithm also runs in O(n2wmax) time. By means of
numerical experiments, we also examine the effect of α-nondominated solutions for reducing
the maximum duration in the hoppers over all items thrown into the system. The problem
at each packing operation with the two objective functions, the total weight

∑
i∈I′ wi and

the total priority
∑

i∈I′ γi, is denoted by PACKING for short. In particular, the problem of
finding an α-nondominated solution is denoted by PACKING(α). The problem of finding
a 1-minimum weight solution is denoted by KNAPSACK. As mentioned above, problem
PACKING(α) corresponds to the lexicographic bi-criteria problem when α = 1.

The remainder of this paper is organized as follows. In Section 2, we provide the math-
ematical description of the problem PACKING(α). In Section 3, we propose an O(n2wmax)
time algorithm based on dynamic programming to compute an α-nondominated solution.
In Section 4, we examine the performance of the proposed approach for the food packing
problem by means of numerical experiments, and report the results. In Section 5, we make
some concluding remarks.

2. Problem Description

As in Section 1, the number of hoppers in the food packing system is denoted by n. Let N
be the iteration number of packing operations (i.e., the number of packages to be produced).

The following inputs give an instance of the PACKING at each packing operation:

• I = {i | i = 1, 2, . . . , n}: A set of n items. The item thrown into hopper i is referred to
as item i (see again Figure 1).

• wi: Positive integer weight of item i ∈ I, which is assumed to be bounded by a given
positive integer wmax.

• γi: Priority of item i ∈ I, which is assumed to be a positive integer.

• B: Target weight for any package, which is also assumed to be a positive integer.

• W =
∑n

i=1 wi: Total weight over all n items in I.

• Γ =
∑n

i=1 γi: Total priority over all n items in I.

For notational convenience, the weight vector w = (w1, w2, . . . , wn) and priority vector
γ = (γ1, γ2, . . . , γn) are used. Since any weight wi is assumed to be a positive integer, the
total weight W is also an integer, and it holds that

W ≤ n · wmax. (2.1)

Let Ci be the current duration in the hopper of item i at the ℓ-th iteration of packing
operation (1 ≤ ℓ ≤ N), which is calculated as follows. The current duration Ci is set
to be one if item i is newly thrown into an empty hopper. After the iteration of packing
operation, the packing system updates the set I by taking the union of the remaining items
in I − I ′ and new items thrown into empty hoppers. At that time, the current durations
of the remaining items are also updated as Ci := Ci + 1 (and the current durations of the

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

Bi-Criteria Food Packing by DP 379

new items are set to be one). This implies that 1 ≤ Ci ≤ ℓ holds for any i ∈ I at the ℓ-th
iteration of packing operation. In this paper, the priority γi is given by a non-decreasing
function of the current duration Ci. The simplest way of defining the priority is γi := Ci for
any i ∈ I, which we adopt in this paper.

Let

Cmax(ℓ) = max{Ci | i ∈ I at the ℓ-th iteration of packing operation}.

Then, the maximum duration over all items thrown into the system during a series of N
packing operations is defined by

Cmax = max
1≤ℓ≤N

Cmax(ℓ). (2.2)

Let nℓ be the number of items chosen at the ℓ-th iteration of packing operation (i.e., |I ′| at the
ℓ-th iteration), and let Di(ℓ) be the eventual duration of such an item i ∈ I ′. Let Dsum(ℓ) =∑

i∈I′ Di(ℓ) be the sum of eventual durations of items chosen at the ℓ-th iteration (1 ≤ ℓ ≤
N − 1), and Dsum(N) =

∑n
i=1{Ci | Ci is the current duration at the N -th iteration}. Then,

we also define the mean duration over all items by

Cmean =

N∑
ℓ=1

Dsum(ℓ)

n +
N−1∑
ℓ=1

nℓ

. (2.3)

Hereafter, instead of a subset I ′ (⊆ I), a solution of the PACKING (and also of the
PACKING(α)) is represented by the 0-1 vector x = (x1, x2, . . . , xn), where

xi =

{
0 if item i is chosen,
1 otherwise.

(2.4)

In the ordinary 0-1 knapsack problem, the xi is set to be one if item i is chosen, otherwise
it is set to be zero [1]. However, we exchange the roles of two values, zero and one, each
other for the convenience of describing the proposed algorithm later.

By using the 0-1 vector x, the bi-criteria problem PACKING is formulated as follows:

PACKING

objective 1 f(x) =
n∑

i=1

wi(1 − xi) → minimize (2.5)

objective 2 g(x) =
n∑

i=1

γi(1 − xi) → maximize (2.6)

subject to
n∑

i=1

wi(1 − xi) ≥ B, (2.7)

xi ∈ {0, 1}, i = 1, 2, . . . , n. (2.8)

The objective by Equation (2.5) aims at attaining the total weight of chosen items
as close to the target weight B as possible, together with Equation (2.7) (i.e., the target

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

380 Y. Karuno, H. Nagamochi & X. Wang

weight constraint). The other objective by Equation (2.6) is introduced to expect that the
maximum duration Cmax over all items thrown into the system during a series of packing
operations is heuristically minimized (recall that we do not solve a packing problem of on-
line setting, but of off-line setting at each packing operation). Equation (2.8) represents the
binary constraint of variables.

In particular, for a given quality rank α of total weight, the PACKING(α) asks to find
an α-nondominated solution x = x[α] for the two criteria, Equations (2.5) and (2.6). That
is, the solution x = x[α] has the maximum total priority g(x) = g(x[α]) = Γ [α] among feasible
solutions with a total weight no greater than Wα (see again Equation (1.1)).

At each iteration of packing operation, the ordinary food packing system has basically
solved the following KNAPSACK with a single objective:

KNAPSACK

objective f(x) =
n∑

i=1

wi(1 − xi) → minimize (2.9)

subject to
n∑

i=1

wi(1 − xi) ≥ B, (2.10)

xi ∈ {0, 1}, i = 1, 2, . . . , n. (2.11)

The optimal solution x = x̃ of KNAPSACK corresponds to a 1-minimum weight solution
in the PACKING(α) (i.e., the total weight of solution x̃ is equal to W1 in Equation (1.1)).

3. Dynamic Programming Approach

In this section, we propose a pseudo-polynomial time algorithm based on dynamic program-
ming to the PACKING(α). Since the proposed algorithm is an extension of the algorithm
for the KNAPSACK, we start with the algorithm to the problem of finding a 1-minimum
weight solution. We call the algorithm Simple DP. Then, we incorporate the priority con-
ception in the Simple DP. The extended algorithm is referred to as Nondominated DP(α)
for a given α.

This section is organized as follows. In 3.1, we describe the Simple DP to the KNAP-
SACK. In 3.2, we extend the Simple DP to the Nondominated DP(α). In 3.3, we provide a
problem instance of PACKING to illustrate the behavior of Nondominated DP(α).

3.1. Simple DP

First, we define 0-1 variables yk(p) (k = 1, 2, . . . , n, p = W,W − 1,W − 2, . . . , B), each of
which means that:

yk(p) = 1 ⇐⇒ There exists a 0-1 vector (x1, x2, . . . , xk) such that
W − ∑k

i=1 wixi = p.

yk(p) = 0 ⇐⇒ There exists no such a 0-1 vector.

The 0-1 variables yk(p) satisfy the following recursive equations of dynamic program-
ming [1]: For k = 1, 2, . . . , n and p = W,W − 1,W − 2, . . . , B,

y1(p) =


1 if p = W or

if p = W − w1,
0 otherwise;

(3.1)

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

Bi-Criteria Food Packing by DP 381

yk(p) =


1 if yk−1(p) = 1 or

if (p + wk ≤ W and yk−1(p + wk) = 1),
0 otherwise.

(3.2)

After computing all yk(p) (k = 1, 2, . . . , n, p = W,W − 1,W − 2, . . . , B), we find
a minimum p = pmin such that it satisfies yn(p) = 1 and p ≥ B. It is easy to see
that the pmin is equal to W1. Thus, the minimum total weight W1 can be obtained in
O(nW) = O(n2wmax) time (see Equation (2.1)). By backtracking the computation pro-
cess, we construct in O(n2wmax) time a 1-minimum weight solution x = x̃ (i.e., an optimal
solution to the KNAPSACK).

The above result has been known as the following lemma [4].

Lemma 3.1 For an instance of the KNAPSACK, the Simple DP can obtain an optimal
solution x = x̃ in O(n2wmax) time.

3.2. Nondominated DP(α)

For k = 1, 2, . . . , n, and p = W,W − 1,W − 2, . . . , B, we incorporate new variables zk(p) in
the Simple DP to record the total priority Γ−∑k

i=1 γixi of the 0-1 vector (x1, x2, . . . , xk) with
W − ∑k

i=1 wixi = p. Two kinds of additional variables uk(p) and vk(p) are also introduced.
If yk(p) = 1 holds due to yk−1(p) = 1, the uk(p) records the total priority zk−1(p), which
means that the xk is set to be zero. On the other hand, if yk(p) = 1 holds due to p+wk ≤ W
and yk−1(p + wk) = 1, the vk(p) records the total priority zk−1(p + wk) − γk, which means
that the xk is set to be one. Let zk(p) = max{uk(p), vk(p)}. Then the corresponding 0-1
vector (x1, x2, . . . , xk) to the zk(p) has the maximum of total priority among 0-1 vectors
with W − ∑k

i=1 wixi = p.
The recursive equations of dynamic programming are provided as follows: For k =

1, 2, . . . , n and p = W,W − 1,W − 2, . . . , B,

y1(p) =


1 if p = W or

if p = W − w1,
0 otherwise;

z1(p) =


Γ if p = W,
Γ − γ1 if p = W − w1,
− otherwise, undefined;

(3.3)

yk(p) =


1 if yk−1(p) = 1 or

if (p + wk ≤ W and yk−1(p + wk) = 1),
0 otherwise;

uk(p) =

{
zk−1(p) if (yk(p) = 1 and yk−1(p) = 1),
0 otherwise;

(3.4)

vk(p) =


zk−1(p + wk) − γk if (yk(p) = 1 and

(p + wk ≤ W and yk−1(p + wk) = 1)),
0 otherwise;

(3.5)

zk(p) =

{
max{uk(p), vk(p)} if yk(p) = 1,
− otherwise, undefined.

(3.6)

After computing all yk(p) and all zk(p), we find a minimum p = p[α] such that it satisfies

zn(p[α]) = max{zn(p) | yn(p) = 1, B ≤ p ≤ Wα}.

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

382 Y. Karuno, H. Nagamochi & X. Wang

This definition implies that p[1] = pmin. If all yk(p) and all zk(p) have already been computed,
the p[α] can be obtained in O(W) = O(nwmax) time. For the p[α], it is clear that p[α] ≤ Wα

and zn(p[α]) = Γ [α] (= g(x[α])) hold, where the x[α] denotes an α-nondominated solution.
Thus, as in the Simple DP, the Γ [α] can be obtained in O(nW) = O(n2wmax) time. By
backtracking the computation process, we construct the solution x[α] also in O(n2wmax)
time. The following lemma has been known [4].

Lemma 3.2 For an instance of the PACKING(α) with α = 1, the Nondominated DP(1)
can obtain a 1-nondominated solution x = x[1] in O(n2wmax) time.

From the above discussion, we can extend the result to the following theorem:

Theorem 3.1 For an instance of the PACKING(α) with any quality rank α of total weight,
the Nondominated DP(α) can obtain an α-nondominated solution x = x[α] in O(n2wmax)
time.

3.3. An example

In this subsection, we provide a problem instance of PACKING to illustrate the behavior
of Nondominated DP(α). The instance consists of five items. Let I = {1, 2, 3, 4, 5} be the
set of five items. For the I, the weights are given by w = (3, 7, 5, 8, 2), and priorities by
γ = (5, 5, 1, 1, 3). The total weight of all items is W = 25, and total priority of all items is
Γ = 15. The target weight is given by B = 14.

First, according to Equations (3.1)∼(3.6), every entry of variables yk(p) and zk(p) in
Table 1 is filled in. As mentioned in the previous subsection, each entry of the xk is set to
be zero if yk(p) = 1 holds due to yk−1(p) = 1, while it is set to be one if yk(p) = 1 holds due
to p + wk ≤ W and yk−1(p + wk) = 1. If both of the conditions hold, the xk is determined
based on the choice of zk(p) (i.e., it is set to be zero if zk(p) := uk(p), while it is set to be
one if zk(p) := vk(p)).

The computation process results in Table 1. From this table, we see that the minimum
p = p[1] = pmin with y5(p) = 1 and p ≥ B is 14. Hence, we have W1 = 14 and Γ [1] =
9 (= z5(14)). The asterisks attached to the values of yk(p) indicate the backtracking process
for the case of α = 1. By this indication, we obtain the 1-nondominated solution x[1] =
(1, 0, 0, 1, 0).

From Table 1, we also see that

W2 = 15, W3 = 16, W4 = 17, W5 = 18, W6 = 20, W7 = 22, W8 = 23, W9 = W = 25.

For α = 2 and 3, we have p[2] = p[3] = 15 since Γ [2] = max{z5(14), z5(15)} = Γ [3] =
max{z5(14), z5(15), z5(16)} = z5(15) = 11. Hence, we obtain the 2- and 3-nondominated
solutions x[2] = x[3] = (0, 0, 0, 1, 1). By the similar way, we obtain the 4-, 5-, 6-, 7-,
and 8-nondominated solutions x[4] = x[5] = x[6] = x[7] = x[8] = (0, 0, 0, 1, 0), and the 9-
nondominated solution x[9] = (0, 0, 0, 0, 0).

4. Numerical Results

In this section, we examine the effect of α-nondominated solutions obtained by the proposed
Nondominated DP(α) for reducing the maximum duration Cmax over all items thrown into
the system during a series of packing operations.

The problem instances to be tested are randomly generated as follows:

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

Bi-Criteria Food Packing by DP 383

Table 1: Behavior of Nondominated DP(α)
p y1(p) z1(p) x1 y2(p) z2(p) x2 y3(p) z3(p) x3 y4(p) z4(p) x4 y5(p) z5(p) x5

25 1 15 0 1 15 0 1 15 0 1 15 0 1 15 0
24 0 - - 0 - - 0 - - 0 - - 0 - -
23 0 - - 0 - - 0 - - 0 - - 1 12 1
22 1∗ 10 1 1∗ 10 0 1∗ 10 0 1 10 0 1 10 0
21 0 - - 0 - - 0 - - 0 - - 0 - -
20 0 - - 0 - - 1 14 1 1 14 0 1 14 0
19 0 - - 0 - - 0 - - 0 - - 0 - -
18 0 - - 1 10 1 1 10 0 1 10 0 1 11 1
17 0 - - 0 - - 1 9 1 1 14 1 1 14 0
16 0 - - 0 - - 0 - - 0 - - 1 7 1
15 0 - - 1 5 1 1 5 0 1 5 0 1 11 1
14 0 - - 0 - - 0 - - 1∗ 9 1 1∗ 9 0

n = 5, w = (3, 7, 5, 8, 2), γ = (5, 5, 1, 1, 3), B = 14

• The number of hoppers: n ∈ {10, 15, 20, 25, 30, 35}.
• Integer weights: wi’s are uniformly random integers in each of three types of intervals

[40, 50], [35, 55] and [30, 60]. In all the intervals, the (expected) mean value of wi’s is
wmean = 45.

• Target weight: B ∈ {180, 200}.
• The iteration number of packing operations: N = 10000.

• The quality rank of total weight: α ∈ {1, 2, 3, 10}.

The total weight of a typical package with green peppers sold in supermarkets in Japan
is around 150 [g]. The way of defining the priority that we adopt in this paper is γi := Ci

for any i ∈ I, where the Ci denotes the current duration in the hopper of item i at the ℓ-th
iteration of packing operation (1 ≤ ℓ ≤ N). We also give the results of Simple DP, which
can not regard the priorities γi (= Ci) of items. As an implementation of the Simple DP,
we employ the Nondominated DP(1), but give a constant priority to each item i, which is
independent of the duration Ci of the item.

The program is written in C. It is compiled by Microsoft Visual C++, and run on a
personal computer with Intel Pentium M CPU (1.20 GHz) and 1GB memory (Panasonic
CF-W4HWSAXC). In all of Table 2∼Table 5, each of the data indicates the mean value
for ten series of N packaging operations (and hence 10000 × 10 packages are produced to
obtain each data). The notations used in the tables have the following meanings:

• Cmax: The maximum duration over all items thrown into the system during a series of
N packing operations (see Equation (2.2)).

• Cmean: The mean duration for all items thrown into the system during a series of N
packing operations (see Equation (2.3)).

• RB: The accomplished rate of packages with total weight equal to the target weight B
produced during a series of N packing operations, i.e.,

RB =
The number of packages with total weight equal to B

The iteration number of packing operations, N
× 100 [%]

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

384 Y. Karuno, H. Nagamochi & X. Wang

Table 2: Performance of the proposed DP [1]

The Number of Simple DP
Hoppers, n Cmax Cmean RB [%] Wmean Wmax CPU [msec]

10 88 2.5 87.6 180.6 210 0.3
15 810 3.7 96.7 180.2 205 0.7
20 2265 4.9 98.3 180.1 200 1.4
25 5674 6.2 98.7 180.1 202 2.2
30 7144 7.4 99.1 180.0 197 3.3
35 8677 8.6 99.1 180.0 199 4.6

Nondominated DP(1)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 20.2 2.5 87.9 180.6 213 0.3
15 24.8 3.7 97.4 180.1 209 0.7
20 25.6 4.9 99.1 180.0 203 1.4
25 25.7 6.2 99.7 180.0 198 2.4
30 27.8 7.4 99.9 180.0 196 3.5
35 27.1 8.6 99.9 180.0 192 5.0

Nondominated DP(2)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 13.8 2.5 57.5 181.0 213 0.3
15 17.7 3.7 64.2 180.5 202 0.7
20 20.4 4.9 64.2 180.4 201 1.4
25 20.7 6.2 63.5 180.4 196 2.4
30 21.7 7.4 62.5 180.4 192 3.6
35 21.6 8.5 61.4 180.4 189 4.9

Nondominated DP(3)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 10.7 2.5 46.3 181.3 212 0.3
15 14.4 3.7 51.2 180.8 201 0.7
20 16.5 4.9 50.1 180.7 199 1.5
25 17.1 6.2 48.7 180.7 194 2.4
30 17.6 7.4 46.8 180.8 190 3.6
35 18.2 8.5 45.1 180.8 182 4.9

Nondominated DP(10)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 5.4 2.4 24.9 183.9 227 0.3
15 7.5 3.6 24.0 183.4 207 0.7
20 8.5 4.8 20.6 183.8 199 1.5
25 10.1 6.0 17.3 184.1 191 2.4
30 10.9 7.2 14.4 184.4 189 3.5
35 12.2 8.4 11.8 184.8 189 4.9

wi ∈ [35, 55], B = 180

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

Bi-Criteria Food Packing by DP 385

Table 3: Performance of the proposed DP [2]

Weights wi Simple DP
of Items in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]

[40, 50] 3642 4.8 90.2 182.2 215 1.2
[35, 55] 2265 4.9 98.3 180.1 200 1.4
[30, 60] 7855 4.9 86.3 180.9 227 1.7

Nondominated DP(1)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 21.8 4.8 90.9 181.9 210 1.2
[35, 55] 25.6 4.9 99.1 180.0 203 1.4
[30, 60] 38.9 4.9 97.3 180.2 216 1.6

Nondominated DP(2)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 19.6 4.8 82.1 182.2 214 1.2
[35, 55] 20.4 4.9 64.2 180.4 201 1.4
[30, 60] 28.1 4.9 56.7 180.6 216 1.6

Nondominated DP(3)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 18.0 4.8 80.9 182.3 213 1.2
[35, 55] 16.5 4.9 50.1 180.7 199 1.5
[30, 60] 24.1 4.9 40.2 180.9 214 1.6

Nondominated DP(10)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 11.5 4.8 68.8 183.1 217 1.3
[35, 55] 8.5 4.8 20.6 183.8 199 1.5
[30, 60] 11.1 4.8 8.8 184.8 212 1.6

n = 20, B = 180

• Wmean: The mean value of total weights for N packages.

• Wmax: The maximum of total weight over all N packages.

• CPU: The computation time of CPU required to obtain an α-nondominated solution at
each packing operation.

Recall that the framework of Nondominated DP(1) is employed in the implementation of
Simple DP. Therefore, the CPU times of Simple DP in Table 2∼Table 5 are just referential
data.

Table 2 shows the results of Simple DP and Nondominated DP(α) when the target
weight is given by B = 180 and the weights wi of items are generated from [35, 55]. In this
setting, B mod wmean ≡ 0 holds. The maximum durations Cmax by Simple DP are greater
than 800 for instances with n ≥ 15. On the other hand, the Nondominated DP(α) has
the maximum duration Cmax less than 30 for any tested instance with up to n = 35 and
any α ∈ {1, 2, 3, 10}. In particular, the Nondominated DP(1) attains not only the smaller
maximum durations Cmax, but also does accomplished rates RB greater than 99 [%] for
instances with n ≥ 20. The deviation of the mean value Wmean of total weights from the

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

386 Y. Karuno, H. Nagamochi & X. Wang

Table 4: Performance of the proposed DP [3]

The Number of Simple DP
Hoppers, n Cmax Cmean RB [%] Wmean Wmax CPU [msec]

10 59 2.2 67.2 202.1 240 0.2
15 530 3.3 80.5 201.4 233 0.7
20 5631 4.4 81.9 201.3 234 1.4
25 8714 5.5 82.3 201.3 235 2.4
30 9534 6.6 82.4 201.3 235 3.4
35 9836 7.7 82.6 201.3 234 4.8

Nondominated DP(1)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 13.8 2.2 68.3 201.9 238 0.2
15 22.5 3.3 84.8 201.0 233 0.7
20 28.7 4.4 89.1 200.7 231 1.4
25 35.7 5.5 91.4 200.5 231 2.3
30 40.4 6.6 92.8 200.4 230 3.4
35 46.9 7.8 93.9 200.4 226 4.8

Nondominated DP(2)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 10.0 2.2 44.7 202.4 237 0.2
15 16.1 3.3 54.3 201.3 238 0.7
20 22.1 4.4 56.1 201.0 231 1.4
25 26.7 5.5 56.1 200.8 229 2.3
30 31.9 6.6 56.0 200.7 228 3.4
35 36.9 7.7 55.3 200.6 229 4.8

Nondominated DP(3)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 8.5 2.2 35.7 202.9 238 0.2
15 13.2 3.3 43.0 201.6 233 0.7
20 18.1 4.4 43.6 201.3 231 1.4
25 21.8 5.5 43.7 201.1 228 2.3
30 25.3 6.6 43.4 201.0 226 3.5
35 29.8 7.7 42.7 201.0 223 4.8

Nondominated DP(10)
n Cmax Cmean RB [%] Wmean Wmax CPU [msec]
10 5.9 2.2 15.5 207.0 241 0.2
15 7.4 3.3 19.6 204.5 220 0.7
20 9.1 4.4 18.9 204.5 209 1.4
25 11.0 5.4 16.8 204.8 209 2.4
30 12.2 6.5 15.3 205.0 209 3.5
35 13.5 7.6 13.7 205.2 209 4.9

wi ∈ [35, 55], B = 200

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

Bi-Criteria Food Packing by DP 387

Table 5: Performance of the proposed DP [4]

Weights wi Simple DP
of Items in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]

[40, 50] 10000 4.0 0.0 222.5 244 1.3
[35, 55] 5631 4.4 81.9 201.3 234 1.4
[30, 60] 8035 4.4 99.9 200.0 213 1.6

Nondominated DP(1)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 63.4 4.0 0.0 222.5 244 1.2
[35, 55] 28.7 4.4 89.1 200.7 231 1.4
[30, 60] 9.1 4.4 100 200.0 200 1.5

Nondominated DP(2)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 54.7 4.0 0.0 222.5 242 1.3
[35, 55] 22.1 4.4 56.1 201.0 231 1.4
[30, 60] 8.7 4.4 64.0 200.4 201 1.5

Nondominated DP(3)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 39.9 4.0 0.0 222.5 241 1.3
[35, 55] 18.1 4.4 43.6 201.3 231 1.4
[30, 60] 8.4 4.4 47.6 200.7 202 1.5

Nondominated DP(10)
wi in: Cmax Cmean RB [%] Wmean Wmax CPU [msec]
[40, 50] 12.2 4.0 0.0 222.5 240 1.3
[35, 55] 9.1 4.4 18.9 204.5 209 1.4
[30, 60] 7.8 4.4 12.1 204.3 209 1.5

n = 20, B = 200

target weight B is less than 1 by Simple DP and by Nondominated DP(1) as well. For
a larger α, the Nondominated DP(α) obtains a smaller Cmax, but its RB and Wmean are
getting worse. A remarkable difference between Simple DP and Nondominated DP(α) is
not observed with respect to the mean duration Cmean.

An existent food packing system with fourteen hoppers (i.e., n = 14) can mechani-
cally weigh the items for about 140 packages per minute [5]. The CPU time of Nondomi-
nated DP(α) is less than 5.0 [msec] even for instances with n = 35, and therefore it can be
good for practical use.

Table 3 provides a referential result, in which the intervals generating weights wi of items
are alternated. The number of hoppers is fixed to n = 20, and the target weight is given by
B = 180.

Table 4 shows the results of Simple DP and Nondominated DP(α) when the target
weight is given by B = 200 and the weights wi of items are generated in [35, 55]. It does
not hold that B mod wmean ≡ 0. Each of the accomplished rate RB of Simple DP and
Nondominated DP(1) is worse than that in Table 2 where B = 180. However, the Non-
dominated DP(α) shows better performance than Simple DP with respect to the maximum

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

388 Y. Karuno, H. Nagamochi & X. Wang

duration Cmax, as observed in Table 2.
Table 5 also provides a referential result, in which the intervals generating weights wi of

items are alternated. The number of hoppers is fixed to n = 20, and the target weight is
given by B = 200. The accomplished rate RB seems to be affected not only by the relation
between the target weight B and mean weight wmean, but also by the range of weights wi.

Anyway, from these results, we can conclude that the proposed approach has a significant
effect for reducing the maximum duration Cmax over all items thrown into the system during
a series of packing operations.

5. Concluding Remarks

In this paper, we considered a discrete optimization problem arising in a certain type of
automated food packing system with n weighing hoppers, so-called automatic combination
weigher. We formulated it as a bi-criteria optimization problem, denoted by PACKING(α),
and proposed an O(n2wmax) time algorithm based on dynamic programming, where the
wmax denotes the upper bound of the weight of each item. The proposed approach aimed
at minimizing the maximum duration in the system of items heuristically, while attaining
the total weight of each package as close to the target weight as possible. By numerical
experiments, we observed that the proposed approach has a significant effect for reducing
the maximum duration.

It is left for the future research to examine the effect of some different way of defining the
priority of each item. In the numerical experiments, we solved only instances with wmax <
n2. Since the precision of weighers installed in the hoppers may be highly improved, the
CPU time of the proposed algorithm should also be reported for instances with wmax ≥ n2.

Acknowledgement

We would like to express our gratitude to the anonymous referees whose constructive sugges-
tions contributed to improving the written style of the problem description. This research
was partially supported by a Scientific Grant in Aid from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.

References

[1] T. Ibaraki: Algorithms and Data Structure (in Japanese) (Shokodo Co., Ltd., Tokyo,
1989).

[2] K. Kameoka and M. Nakatani: Feed control criterion for a combination weigher and its
effects (in Japanese). Transactions of the Society of Instrument and Control Engineers,
37 (2001), 911–915.

[3] K. Kameoka, M. Nakatani, and N. Inui: Phenomena in probability and statistics found
in a combinatorial weigher (in Japanese). Transactions of the Society of Instrument
and Control Engineers, 36 (2000), 388–394.

[4] Y. Karuno, H. Nagamochi, and Y. Ohshima: A dynamic programming approach for a
food packing problem (in Japanese). Transactions of the Japan Society of Mechanical
Engineers, Series C, 72 (2006), 1390–1397.

[5] H. Morinaka: Automatic combination weigher for product foods (in Japanese). Journal
of the Japan Society of Mechanical Engineers, 103 (2000), 130–131.

[6] Y. Murakami, J. Kurata, H. Uchiyama, K. Taniya, and M. Kawai: Efficient algorithm
for solving a bag-packing problem by excluding search space (in Japanese). Transactions
of the Japan Society of Mechanical Engineers, Series C, 69 (2003), 3431–3438.

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

Bi-Criteria Food Packing by DP 389

[7] Y. Murakami, J. Kurata, H. Uchiyama, and T. Ueno: Characterization of infeasible
solutions in a bag-packing problem for achieving desired weight (in Japanese). Trans-
actions of the Society of Instrument and Control Engineers, 38 (2002), 784–791.

Yoshiyuki Karuno
Department of Mechanical and
System Engineering
Graduate School of Science and Technology
Kyoto Institute of Technology
Matsugasaki, Sakyo
Kyoto 606-8585, Japan
E-mail: karuno@kit.ac.jp

c⃝ Operations Research Society of JapanJORSJ (2007) 50-4

