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Abstract  We show that enumerating all minimal spanning and connected subsets of a given matroid can
be solved in incremental quasi-polynomial time. In the special case of graphical matroids, we improve
this complexity bound by showing that all minimal 2-vertex connected subgraphs of a given graph can be
generated in incremental polynomial time.
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1. Introduction

The level of connectivity in communications and computer networks is an important pa-
rameter influencing the reliability of the service such networks provide. The problem of
computing network reliability, that is calculating the probability that the network is able
to provide its services without interruption, assumes the enumeration of minimal subsets of
links in the network which guarantee the required level of connectivity [6, 22].

In the simplest case the connectivity of an undirected graph is required. In this case
minimal working subsets are the spanning trees, and reliability computations call for the
enumeration of all spanning trees of the given graph. In case of a (directed) communication
network, minimal working subnetworks are determined by subsets of the arcs which guar-
antee strong connectivity. Both minimal spanning trees and minimal strongly connected
subgraphs can be efficiently enumerated [4, 18, 21].

Practical applications frequently demand higher levels of connectivity, resulting in higher
reliability. Numerous research articles consider the problem of increasing efficiently the
connectivity of a given (directed) graph, see e.g. [1,11]. Determining the reliability of such
highly connected networks requires the enumeration of all minimal edge (arc) sets ' C F
of a given (directed) graph G = (V, E') which guarantee the required level of connectivity of
the subgraph (V, F).

In this paper we consider such enumeration problems, corresponding to the next levels
of connectivity. An undirected graph G = (V, F) is called 2-vertex connected if between
any pair u,v € V of its vertices there are at least two paths connecting v and v and
having no other vertex in common. Obviously, adding edges to a graph can only increase
its connectivity. In other words, the property that for a subset X C F the subgraph (V, X)
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is 2-vertex connected is a monotone property, i.e., if X C X’ C E, and (V, X) is 2-vertex
connected, then (V, X’) must also be 2-vertex connected. Thus, determining the reliability
of such a graph, that is the probability that it remains 2-vertex connected if its edges are
deleted (fail) according to some probability distribution, requires the enumeration of all
minimal 2-vertex connected subgraphs of G

Minimal 2-Vertex-Connected Spanning Subgraphs: Given a 2-vertex connected
undirected graph G = (V, E), enumerate all minimal edge sets X C E such that G' =
(V, X) is still 2-vertex connected.

Undirected graphs can be viewed as special cases of matroids (so called graphical or
cycle matroids), and thus the above enumeration problems have a natural generalization for
matroids. In our presentation we follow standard terminology of matroid theory (see e.g.,
[17] or [23]). Given a matroid M on ground set E, a subset 7' C E is called connected if for
every pair of distinct elements x, y of T there is a circuit C' of M such that 7' 2 C D {z,y}.
It is well-known that connectivity defines an equivalence relation on F, whose equivalence
classes are called the connected components of M. Let us also recall that a subset X C F
is said to span the matroid M if r(X) = r(F), where r : E — Z denotes the rank function
of M and we define (M) = r(E).

Note that in the cycle matroid of a graph G = (V, E') spanning trees are the bases. Thus,
the problem of enumerating all bases of a matroid includes as a special case the spanning
tree enumeration problem. Note also that edge subsets X C E for which (V, X) are 2-vertex
connected are exactly the spanning and connected subsets in the cycle matroid of G (see
e.g., [23, Theorem 3 on page 70]). Let us add that spanning and connected subsets in a
matroid form a monotone system (see Lemma 2.3), while connected subsets of a matroid
may not form a monotone system. The following enumeration problem generalizes naturally
the problem of enumerating minimal 2-vertex-connected spanning subgraphs:

Minimal Spanning and Connected Subsets in Matroids: Given a connected
matroid M on ground set E, generate all minimal spanning and connected subsets of E.

1.1. Main results

It is easy to see that in enumeration problems, such as the ones mentioned above, the
size of the output may be exponential in terms of the input size. For such problems the
efficiency of the enumeration method is measured both in the input and output sizes (see
e.g., [15,18,22]). In particular, the enumeration procedure is said to run in incremental
(quasi-) polynomial time, if generating k elements of the target (or generating all if it has
less than k elements) can be done in (quasi-) polynomial time in the size of the input and
k, for an arbitrary integer k.

Note that all of the above mentioned enumeration problems involve monotone systems.
Among such monotone generation problems perhaps the most widely known is the so called
hypergraph transversal problem (or equivalently, monotone Boolean dualization). For a
hypergraph H C 2" on finite set of vertices V. = {1,2,...n}, a set X C V is called
transversal if X N H # () for all H € H. The hypegraph transversal problem is to generate
all (inclusion-wise) minimal transversals of a given hypergraph. This problem has numerous
applications in several different areas (see e.g., [2,7-9]).

Our first result shows that the problem of generating minimal spanning and connected
subsets of a matroid generalizes the hypergraph transversal problem:

A function f(z) is called quasi-polynomial if f(x) = O(2pPovles(@)),
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Theorem 1.1 The problem of enumerating all minimal spanning and connected subsets of
a matroid includes, as a special case, the hypergraph transversal problem.

This theorem implies that generating minimal spanning and connected subsets of a
matroid is at least as hard as the hypergraph transversal problem, for which the most
efficient currently known algorithm is incrementally quasi-polynomial [10]. Our next result
shows that minimal spanning and connected subsets in a matroid can also be generated in
incremental quasi-polynomial time.

Theorem 1.2 All minimal spanning and connected subsets in a matroid can be generated
wmn incremental quasi-polynomaial time.

As we noted above, the problem of generating minimal spanning and connected subsets
in a graphical matroid coincides with the problem of generating minimal 2-vertex-connected
subgraphs of the underlying undirected graph. Our third result shows that in this special
case the problem can be solved more efficiently:

Theorem 1.3 All minimal 2-vertex connected spanning subgraphs of a given graph can
be generated in incremental polynomial time. The total running time of the algorithm is
O(m2N?), where m = |E| and N is the total number of 2-vertex connected subgraphs.

The remainder of the paper is organized as follows. We prove Theorems 1.1 and 1.2 in
Section 2, and the proof of Theorem 1.3 is included in Section 3.

2. Minimal Spanning and Connected Subsets in Matroids
2.1. Proof of Theorem 1.1

Let 'H be a hypergraph on n vertices consisting of m = |H| hyperedges. We denote by
Vi,...,V, the column vectors of the edge-vertex incidence matrix of H.

We shall associate to H a binary matroid M = My, defined by n+2m+ 2 binary vectors
of dimension 2m + 2. For this, let us introduce o = (0, ...,0) denoting the zero vector of
dimension m, and let e; denote the ith unit vector of dimension m, for ¢« = 1,....m. We
shall define the vectors of My by concatenations from the above vectors, as follows: Let
pu(vj) = (vj,0,1,0) for j=1,...,n, let a; = (e;,€;,0,0) and b; = (0,e;,0,0) for i =1, ..., m,
and finally let ¢; = (0,0,1,1) and ¢ = (0, 0,0, 1).

We group the above defined vectors into four groups: H = {u(v;) | j = 1,...,n},
A={a;|i=1,...,m}, B={b;|i=1,...,m} and C = {cy,c3}, and finally we consider
the binary matroid M = My on the ground set £ = H U AU B UC. For simplicity, we
re-interpret H as a family of subsets of H.

Example 2.1 Consider the hypergraph 'H defined by the incidence matrix
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Then the binary matroid My on the ground set H U AU B U C' is represented by a matriz
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The following two lemmas complete the proof of Theorem 1.1. Let us recall (e.g., from
[23]) that in a matroid M on ground set E with rank function r a subset X C E is spanning
and connected if and only if for every nontrivial partition X = Y UZ (i.e., for which |Y| > 1
and |Z] > 1) we have r(Y) +r(Z) > r(M) + 1.

Lemma 2.1 Let X be a spanning and connected subset in M. Then AUBUC C X and
X N H is a transversal of H.

Proof: First we show that for each i = 1,...,2m + 2 at least two vectors of X have their
1th coordinates equal to 1. Indeed, since X is spanning and the matrix representing M has
full row rank, there is at least one vector in X whose ith coordinate is 1. Suppose that there
is exactly one such vector x € X. Then we consider the partition of X into Y = {x} and
Z = X ~ {x}. For this partition we have r(Y) = 1, and r(Z) < r(M) since all vectors of
Z have their ith coordinates equal to 0. Consequently, r(Y') + r(Z) < r(M), contradicting
the assumption that X is spanning and connected.

The above implies that X must contain all vectors of A, B and C, in order to have two
1’s in rows from m + 1 to 2m and in row 2m + 2. In order to contain two 1’s in the first m
rows, H N X must form a transversal of H. O

Lemma 2.2 If X is a transversal of H, then X U AU B U C s a connected and spanning
subset in M.

Proof: First note that (M) = 2m + 2, and observe that X U AU B UC is spanning, since
r(AUBUC) =2m+ 2.

To prove the statement, we show that »(Y') + r(Z) > r(M) +1 = 2m + 3 for every
partition Y UZ = XUAUBUC for which |Y| > 1 and |Z] > 1.

Suppose that all vectors of AU B UC belong to Y. Then r(Y) =2m +2 and r(Z) > 1,
since Z is nonempty. For all other nontrivial partitions of X U AU B U C' the vectors of
AU B UC must be split between Y and Z.

Without loss of generality assume that Y contains k& vectors of AU B U C' including c;,
where 1 < k < 2m+1. Since AUBUC are independent, r(Y) > k and r(Z) > 2m+2—k.
Let I; € {1,...,m} denote the set of coordinates of v; equal to 1. Observe that u(v;) =
c1+ ¢+ p.(a; +by) is the only combination of vectors in AU B U C' producing ju(v;).
Depending on whether Z contains a vector p(v;) € X, or not, we have two cases:

Case 1: Z contains at least one vector of X. Since vectors of X cannot be obtained as a
linear combination of vectors from AU B UC, without ¢y, we must have r(Z) > 2m+3 — k
implying thus r(Y) +r(Z) > 2m + 3.
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Case 2: Y contains all vectors of X. Since X is a transversal of H, we have U#(Vi)ex I, =
{1,...,m}. As Y does not contain all vectors of AU B U C, there is a vector in X which
cannot be obtained as a combination of vectors in Y ~\. X. Thus r(Y) > k + 1, which again
implies 7(Y) +r(Z) > 2m + 3. O

The statement of the theorem follows from Lemmas 2.1 and 2.2.
2.2. Proof of Theorem 1.2

Let M be a matroid on ground set £ with rank function r : £ — Z,. Since no X C F is
connected if X contains a loop, i.e., a singleton of rank 0, we assume that M contains no
loop.

Let us show first that spanning and connected subsets of a matroid form a monotone
family.

Lemma 2.3 If X C FE is spanning and connected then for an arbitrary element f € B~ X
the set X U f is again spanning and connected.

Proof: Let X C E be a spanning and connected subset and let f € £~ X. Clearly X U f
is spanning. According to [23], to see that X U f is also connected it is enough to show that
r(Y)+7r(Z) > r(XUf)+1 holds for an arbitrary partition YUZ = XU f with |Y[,|Z| > 1.
Note that, since X is spanning, 7(X)+1 = r(X U f) + 1. Without loss of generality assume
that f € Z. If |Z| = 1 we have r(Y)+r(Z) = r(X)+r(f) = r(X)+1, since we assume that
all singletons of M have rank 1. In case |Z] > 2, we have r(Y) +r(Z) > r(Y)+r(Z~ f) >
r(X) + 1, since r(Z) > r(Z ~ f) and the sets Y and Z \ f form a partition of X, with
Y| > 1, |Z ~ f| > 1, completing the proof of our claim. O

To prove Theorem 1.2, we show that for every matroid M, the family F of all minimal
spanning and connected subsets in M is exactly the set of minimal solutions of a polymatroid
inequality f(X) > t with polynomially bounded right hand side ¢. Here f : 2¥ — Z is called
polymatroid if it is nondecreasing (i.e., X C Y (C FE) always implies f(X) < f(Y)), and
submodular (i.e., f(X)+ f(Y) > f(XNY)+ f(XUY) holds for any X,Y C FE). In this
paper, we call f polymatroid, even though f(()) # 0. For such inequalities, it is known that
the generation of minimal feasible sets can be done in incremental quasi-polynomial time
(see Theorem 3 in [3]).

Toward this end, let us define a set function f(X) on subsets of E by:

f(X) =|E[r(X) - 1.
The Dilworth truncation of f(X) is the set function f.(X) defined as follows:
fe(0) =0,
[o(X) =min{f(X1) + ...+ f(Xk) | {X1,..., Xk} is a partition of X} for X # 0.
It is known [16] that if f(X) is submodular then so is f.(X), and moreover f.(X) can
be evaluated in polynomial time using poly(|E|) calls to the membership oracle defining

the matroid M. We next show that f.(X) is also nondecreasing, implying that f.(X) is
polymatroid.

Lemma 2.4 f.(X) is nondecreasing.
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Proof: We will show that f.(X Ue) > f.(X), where X C E and e € F ~ X. Let
X1, X, ..., Xi be an optimal partition for XUe, i.e., fu(XUe) = f(X1)+f(Xa)+...+f(Xk).
Without loss of generality assume that e € X;. There are two cases:

Case 1: X; N e # (). Then {X; \ e, Xs,..., Xx} is a partition of X. Hence

k k
FX) < F(XaNe)+ ) f(X) < (X)) + ) f(Xi) = f(X Ue),
=2 =2
where the last inequality in the chain follows from f(Xi\e) = |E|r(Xi~e)—1 < |E|r(X;)—

1= f(Xy).
Case 2: X; = {e}. Consider the partition {Xs,..., Xi} of X, which again gives

k

FAX) <D F(X) < fle) + Y f(X) = f(X Ue),

=2 =2

where the last inequality in the chain follows from the fact that r(e) = 1, thus f(e) =
|E| —1>0, for all e € X. O

Consider now the polymatroid inequality
fo(X) = [E[r(M) - 1.

Note that the right hand side of the above inequality is bounded by |E|>. We prove that
minimal connected spanning subsets are exactly minimal solutions to the above polymatroid
inequality.

Lemma 2.5 X is connected in M if and only if f.(X) > f(X).

Proof: Let X be a connected subset in M. Consider a partition {X3,..., X} of X into at
least £ > 2 sets. Since the rank function is submodular and by the definition of connectivity
we have r(A)+7r(X ~\ A) > r(X) for every proper subset A of X, we obtain r(X;)+r(X3)+
cor(Xg) > (X)) +r(Xo UL U XE) > (X)) + 1. Hence

FX0) + f(Xa) + .+ f(Xe) 2 [E[r(X) + [E] — k> |E|r(X) = 1= f(X).

Comparing that with the trivial partition X = X; for &k = 1, we conclude that f.(X) =
f(X).

On the other hand, if X is not connected, then we can decompose X into two disjoint
sets X7 and X3 such that 7(X;) +7(X2) = r(X). Hence f(X1)+ f(X2) = |E|r(X) —2, and
consequently, f.(X) < |E|r(X) — 1 = f(X). O

Lemma 2.6 X is connected and spanning subset in M if and only if f.(X) > |E|r(M)—1.

Proof: If X is connected and spanning, the claim follows from Lemma 2.5 and the fact that
r(X) =r(M).

Conversely, suppose X satisfies f.(X) > |E|r(M) — 1 and also suppose that X is not
spanning. Then since 7(X) < r(M) for the trivial partition X = X;, we obtain f(X;) =
|E|r(X1) —1 < |E|r(M) — 1, which implies f.(X) < |E|r(M) — 1, a contradiction. Thus X
must be spanning and by Lemma 2.5 X must also be connected. 0

This completes the proof of Theorem 1.2.
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2.3. The X —e+Y method

In the next section we present another proof of Theorem 1.2, which is somewhat more
direct, based on a general approach, called the X — e + Y method. This approach will be
particularly useful in the special case of graphical matroids, i.e., for the proof of Theorem
1.3.

Let us first recall the X — e+ Y method from [12, 13|, which is a variant of the so called
supergraph approach introduced in [19]. Let E be a finite set, and 7 : 28 — {0,1} be a
monotone Boolean function, i.e., one for which X C Y implies 7(X) < 7(Y). We assume
that 7(0) = 0 and 7(F) = 1. We also assume that an efficient algorithm for evaluating
7(X) in polynomial time in the size of E is available for every X C E. Let

F ={X | X C F is a minimal set satisfying 7(X) = 1}.

Our goal is to generate all sets belonging to F.

Let us remark first that for every X C E for which 7(X) = 1 we can derive a subset
Y C X such that Y € F, by evaluating 7 exactly |X| times. This can be accomplished
(typically in many different ways) by deleting one-by-one elements of X the removal of
which does not change the value of 7. To formalize this, let us denote by u(X) =Y such
a minimal subset of X, i.e., u is a mapping from {X C E | n(X) = 1} to F such that
p(X) € X.

We next introduce a directed graph G = (F, £) on vertex set F, where the edge set £ is
defined by specifying the neighborhood N(X) for every X € F as

NX)={u((X~e)uUY)|eec XY € Vx.},
where
Yxe={Y | Y C E~ X is a minimal set satistying 7((X ~e)UY) = 1}.

In other words, for every set X € F and for every element e € X (since X € F, we have
(X N e) = 0) we extend X \ e in all possible ways to a set X’ = (X \ e) UY for which
7(X’) = 1, and introduce each time a directed arc from X to p(X’). We call the obtained
directed graph G a supergraph of our generation problem.

Proposition 2.1 ([12,13]) The supergraph G = (F, &) is strongly connected. a

Since G is strongly connected by performing a breadth-first search in G we can generate
all elements of F as follows:

Traversal(G)
Find an initial vertex X° « p(FE), initialize a queue @ = () and a dictionary of
output vertices D = ().
Perform a breadth-first search of G starting from X°:

1 output X° and insert it to Q and to D
2 while Q # () do
3  take the first vertex X out of the queue Q
for every e € X do
for every Y € Vx . do
compute the neighbor X' « pu((X \e)UY)
if X’ ¢ D then
output X'’ and insert it to @ and to D

O Ot
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Proposition 2.2 ([12,13]) If the sets of Yx.. can be generated in incremental polynomial
time for every X € F and e € X, then Traversal(G) generates all elements of F in incre-
mental polynomual time. 0

2.4. Second proof of Theorem 1.2

In this section, we present another proof of Theorem 1.2 by applying the X —e+Y method.
For the problem of generating all minimal connected spanning subsets of a matroid M, let
us define 7(X) = 1 if X is connected and spanning of M, and 0 otherwise. By Lemma 2.3, 7
is monotone, and the corresponding family F of all minimal subsets X for which 7(X) =1
is exactly the family of minimal spanning and connected subsets of M.

We apply the X — e +Y method for the generation of F, as described in the previous
subsection. By Proposition 2.2, it is sufficient to prove the following statement.

Proposition 2.3 All elements of Vx. can be generated in incremental quasi-polynomial
time.

Proof: First we show that X \ e is spanning. Since X is connected there is a circuit C'in X
containing e. Thus the independent set C' \ e must be contained in a maximal independent
set B C X such that e ¢ B. Since X is spanning and B C X, B is a basis. Thus X \ e is
spanning.

Since X is a minimal connected spanning subset of ' and X \ e is spanning, X ~\ e must
be partitioned into connected components Ki,..., K., r > 2. For a cycle C' we denote by
I(C) the set of indices of components having some elements belonging to C':

I(C)y={ie{l,...,r} | KinC #0}.
Fory € £~ X let
C,={C|Cisacycle,y e Cand C C (X \e)Uy}

be a family of all cycles containing y and some elements of X \ e. Note that C} is nonempty
for every y € E ~ X, since X \ e is spanning.
We show that for every cycle C' € C, the set I(C') contains the same indices.

Lemma 2.7 There is I, C {1,...,r} such that I(C) = I, for every C € C,.

Proof: Let I, = I(C), where C' € C, is an arbitrary cycle. Suppose that there is a cycle C' €
Cy such that I(C") NI, # 0. Let i € I(C’) \ I,. Then there is an element z € K; belonging
to C’ but no element of K; belongs to C. By the strong circuit axiom there is a cycle
C" C (CUC") Ny such that z € C". Since y ¢ C”, all elements of C” belong to K, ..., K,.
Observe that C” must contain at least one element of C, since C’ \ y is independent. Thus
C" contains elements of two different connected components, a contradiction. 0

We construct a hypergraph H on vertex set {1,...,r} whose edges are the sets I, for
y € E~X. A connected set cover Y of H is a subset of hyperedges satisfying:
(1) Uyey Iy ={1,...,r} and
(ii) there is no partition of Y into Y; and Y such that (J,y, Iy and ey, I, are disjoint
subsets of vertices.
We now prove that generating all minimal connected set covers of H is equivalent to the
generation of all elements of Vy .

Lemma 2.8 LetY C EN X. Then {I, | y € Y} is a connected set cover of H if and only
if (X Ne)UY is connected.
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Proof: If {1, | y € Y} is a connected set cover of H then by Lemma 2.7 and by the definition
of a connected set cover it reconnects all components K1, ..., K,.

Conversely suppose that (X \ e) UY is connected. Let C' C (X ~\ e)UY be a cycle
containing at least one element of Y. We prove that I(C) C Uyecmy I, by induction on
the size of CNY. If CNY = {z}, then by Lemma 2.7 I(C') = I,. Suppose that there is
j € I(C)N\U,ecny Iy- Then there is an element z € K belonging to C' but no element of Kj
belongs to cycles in C,, for each y € CNY. Pick an arbitrary w € CNY. Let C' € C,. By
the strong circuit axiom, there is a cycle C” C (CUC’) N\ w such that z € C". If C" does not
contain any elements of Y, then C” connects K; to some other component, a contradiction.
Thus C" MY is nonempty. Since [C" NY] < [C'NY|, we have I(C") C U, conny 1y As
z € (" we obtain j € UyGC’”ﬁY I,, a contradiction. Hence we have I(C') C Uyecm, I,.

By the above and since all components are connected by the cycles contained in (X ~\
e) UY, we have (J, oy Iy = {1,...,7}. Hence Y satisfies (i).

Suppose that Y does not satisfy (ii), thus there is a partition of Y into ¥; and Y3 such
that U,ey, Iy = R1 and U, ey, Iy = Rz, where Ry and R are disjoint subsets of vertices.
Since X \ eUY is connected, there is a cycle C' containing elements of components in R;
and Ry with |C'NY| minimal. Observe that C' must contain at least two elements of Y. Pick
ye CNY and Cy € Cy. Assume y € Y;. Let w € C be an element of a component in Rs.
By the strong circuit axiom, there is a cycle C” C (C'UC,) \ y such that w € C”. C" must
contain an element of C, belonging to a component in Ry, since C' \ y is independent. Thus
C" is the cycle containing elements of components in R and R, and |[C”" NY| < |[CNY]|,
because y ¢ C”, a contradiction to the selection of C'. O

To prove that all minimal connected set covers of H can be generated in incremen-
tal quasi-polynomial time, we show that this problem reduces to generating all minimal
spanning collections of a graph, which can be done in incremental quasi-polynomial time
(see Section 2.6 in [3]). Let R = {1,...,7} be a vertex set. For every y € E ~\ X, let
E, ={(i,j) | i,j € I,,i # j} be a clique on vertices of I,. Recall that f(Y)=r—k(Y) >t
is a polymatroid inequality, where k(Y) be the number of connected components in the
graph (R, Jey E,). Thus we can generate elements of the family B, of all minimal subsets
Y C E \ X satisfying the inequality f(Y) > ¢ in incremental quasi-polynomial time for
every t € {1,...,r}. Now observe that elements of B,_; are minimal subsets of £ ~\. X such
that the graph (R, Uyey E,) is connected. Hence they are minimal connected set covers of

H.
This completes the proof of Theorem 1.2. O

Let us finally remark that our first proof of Theorem 1.2, which shows that the family
F of minimal spanning and connected subsets of a matroid is exactly the family of all
minimal feasible solutions of a corresponding polymatroid inequality, implies (by [3]) quasi-
polynomially dual-boundedness, that is, that the inequality |F*| < ¢(|F]) holds for a quasi-
polynomial function ¢(), where F* denotes the family of all maximal non-connected spanning
subsets of M. Thus the so-called joint generation approach would also provide us with a
quasi-polynomial generation algorithm (see [5] for details and precise definitions). However,
it is still open whether the problem is polynomially dual-bounded.
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3. Minimal 2-Connected Spanning Subgraphs
3.1. Proof of Theorem 1.3

We apply the X —e+Y method to the generation of all minimal 2-vertex connected spanning
subgraphs of a 2-vertex connected graph G = (V, E).
For X C E, we define a Boolean function 7 as follows:

[ 1, if (V,X) is 2-vertex connected;
m(X) = { 0, otherwise.

Clearly 7 is monotone and it can be evaluated in O(|V| + |E]) time [20]. Then F = {X |
X C E is a minimal set satisfying 7(X) = 1} is a family of edge sets of all minimal 2-vertex
connected spanning subgraphs of (V, E). It is not difficult to see that we can compute from
GG a minimal 2-vertex connected spanning subgraph X in O(|V|+ |E|) time. This implies
that we have a mapping p: {X C E' | 7(X) = 1} — F such that u(X) C X, in which pu(X)
is linearly computable from X. For X € F and e € X we define

Yxe={Y |Y C E~ X is a minimal set satisfying 7((X ~e)UY) = 1}.

Therefore by Proposition 2.2 we only need to prove that we can generate all elements of Vx .
in incremental polynomial time. In fact, we show that we can do it, more efficiently, with
polynomial delay, i.e., in which the generation of the first k£ elements can be accomplished
in time polynomial in the input size and linear in k.

Recall that a maximal connected subgraph without a cutvertex is called a block. Thus,
every block of a connected graph H is either a maximal 2-vertex connected subgraph, or a
bridge (with its ends). Different blocks overlap in at most one vertex, which is a cutvertex
of H. Hence, every edge of the graph lies in a unique block.

Let A denote the set of cutvertices of H and let B denote the set of its blocks. We then
have a natural bipartite graph on vertex set A U B in which two vertices B € B, a € A are
connected if a is a cutvertex of H belonging to B. We call such graph a block graph of H.
Observe that the block graph of a connected graph is a tree.

Proposition 3.1 All elements of Yx . can be generated with polynomial delay.

Proof: Let (V, X) be a minimal 2-vertex connected spanning subgraph of (V, E) (see Fig-
ure 1).

G (V, X)

Figure 1: 2-vertex connected graph G = (V, E) and a minimal 2-connected spanning sub-
graph (V, X) of G.

First we show that the block graph of (V, X \ e) is a path such that endpoints of e
belong to its ends. As we observed above the block graph of (V, X \ e) is a tree. Suppose
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it has a leaf B that does not contain an endpoint of e. Let a be a cutvertex of (V, X \ e)
adjacent to B in the block graph. But removing the vertex a from the 2-vertex connected
graph (V, X)) disconnects vertices of B from other vertices, a contradiction. Thus the block
graph of (V, X \ e) has only two leaves, each containing one endpoint of e.

We denote by By, ..., B, the blocks of (V, X~\¢) and by a4, . . ., a,_1 its cutvertices. With-
out loss of generality we assume that the block graph of (V, X'\e) isa path Bya1Bs ... a,-1 B,
(see Figure 2).

@ —o—0—o—0 o0 o0
Bl ay B2 az 33 as B4 a4 B5

Figure 2: (V, X \ e) and its block graph

Let f = uv be an edge of EJ \. X, such that u belongs to the block B; and v belongs to Bj,
where 7 < 7. We define

- 7, ifveB;~\a;; - 7, ifvij\aj_l;
O‘m_{ i+1, ifv=a, and 5<f)_{j—1, if v=a;_i.

Then we construct a directed multigraph D on vertex set By, ..., B, whose arc set is defined
as follows:
e foreachi=1,...,7r— 1, we add an arc B;,1B;,

o for each edge f € £\ X, such that a(f) < B(f), we add an arc B,(s)Bga(y (see Figure 3).

Figure 3: Directed multigraph D.

Claim 3.1 The directed multigraph D has at most |V | vertices and |V |+ |E| arcs and it
can be constructed in O(|V |+ |E|).

Proof: The number r of vertices of D is equal to the number of blocks of (V, X \ e), which
is at most |V|. D has exactly r — 1 arcs between subsequent vertices and at most |F| arcs
corresponding to edges of '~ X. Thus D has at most |V|+ |E| arcs.

We can construct D as follows:
e find all blocks of (V, X N e) in O(|V] + |E|) time [20],
e create r vertices and add r — 1 arcs between subsequent vertices and at most |F| arcs

corresponding to edges of E ~\ X; this step also takes O(|V| + | E|) time.

U

Now we show that the generation of elements Y € YVx . is equivalent to the generation
of minimal directed B;-B, paths in D.
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For every cutvertex ay, there is an edge f € Y such that a(f) < k < (f). By minimality
of Y, edges of £ ~. X whose both endpoints belong to the same block cannot be in Y. We
conclude that Y = {fi,..., fs} such that

L=a(fy) <alf2) <B(N) <alfs) <. <alfs) < B(fsr) < B(fs) =

Thus Y corresponds to a directed path

Ba(r)Ba() Ba(f1)-1 - - - Ba(fa)+1Ba(£2) Ba(£2) Bo(f2)-1 - - - Ba(fs)+1Ba(ss) Ba(ss) - - - Bp(ss)

(see Figure 4).

Figure 4: Y = {f1, fo} and corresponding directed path By B4B3;Bs.

Since all minimal directed paths between two vertices can be generated via backtracking
with polynomial delay [18], Proposition 3.1 follows. O

This completes the proof of Theorem 1.3.
3.2. Complexity

In this section we analyze the total running time of the procedure Traversal(G). Let n = |V|,
m = |E| and N = |F|. We observe m > n, since G is 2-vertex connected.

As noticed in the previous section, the initial vertex X° of the supergraph can be com-
puted in O(m) time. Outputting a vertex of the supergraph takes O(m) time and we output
each vertex only once. Thus the total time of outputting vertices is O(mN).

Each vertex of the supergraph is inserted to the queue Q and removed from Q only once.
The operations of enqueuing and dequeuing take O(1) time, so the total time devoted to
queue operations is O(NN). We implement the dictionary D for F as a binary tree with depth
m. Here leaves in the tree store elements X € F, and the components of X correspond
to the path from the root to the leaf. Since the insert and find operations in the tree take
O(m) time, the total time devoted to insert operations is O(mN).

Since a vertex is removed from Q every time we execute the while loop (lines 2-8) and
it will never be reinserted to Q, the while loop is executed at most N times. As a vertex of
the supergraph is a subset of edges of the input graph, the for loop (lines 4-8) is executed at
most m times. We now analyze the time Traversal(G) spends performing lines of the main
loop.

line 5: As we noted above we generate at most m/N families Vx.. Also note that we
always have |Vx.| < N. By the claim, the construction of the directed multigraph
D takes O(m) time and this graph has at most n vertices and n 4+ m arcs. Since the
generation of elements of Vyx . is equivalent to the generation of directed paths in D we
obtain that for a given X and e we can compute Vx . in O(mN) time [18]. Thus the
total time spent generating families Yy . is O(m2N?).

line 6: We compute p at most mN? times. Thus the total time of computing u is O(m?*N?).
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line 7: We test if D contains X’ at most mN? times. Thus the total running time of the
test is O(m2N?).

Therefore, in total Traversal(G) runs in O(m?N?) time.
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