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Abstract A matroid pencil is a pair of linking systems having the same ground sets in common. It
provides a combinatorial abstraction of matrix pencils. This paper investigates the properties of matroid
pencils analogous to the theory of Kronecker canonical form. As an application, we give a simple alternative
proof for a theorem of Murota on power products of linking systems.
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1. Introduction

Linking systems (or bimatroids) were introduced by Kung [3] and Schrijver [7] as a combina-
torial abstraction of matrices. They naturally provide combinatorial counterparts of linear
algebraic notions such as multiplications of matrices. In this paper, we introduce matroid
pencils as a combinatorial abstraction of matrix pencils.

A matrix pencil is a pair of matrices of the same size. It is often treated as a polynomial
matrix whose nonzero entries are of degree at most one. Based on the theory of elementary
divisors, Weierstrass established a criterion for strict equivalence, as well as a canonical form,
of regular matrix pencils. Somewhat later, Kronecker investigated singular pencils to obtain
a canonical form for matrix pencils in general under strict equivalence transformations, which
is now called the Kronecker canonical form (or the Kronecker-Weierstrass normal form). The
Kronecker canonical form of matrix pencils plays fundamental roles in application areas such
as differential algebraic equations and control theory.

The Kronecker canonical form is characterized by the structural indices determined by
the ranks of expanded matrices (Theorems 2.1 and 2.2). For matroid pencils, we define asso-
ciated linking systems corresponding to the expanded matrices. Then we show that the ranks
of these linking systems have the same properties as the expanded matrices (Lemmas 4.1–
4.11), which enables us to define “structural indices” of matroid pencils. In particular, we
will reveal that the ranks of a certain type of the associated linking systems are determined
by some periodic structure (Theorem 5.1). This result in turn brings about an alternative
proof of a theorem of Murota [4] on power products of linking systems.

The outline of this paper is as follows. Section 2 is devoted to a brief description of the
Kronecker canonical form of matrix pencils. Section 3 provides a preliminary on linking
systems. In Section 4, we introduce matroid pencils and describe their properties. Section 5
investigates the periodic structure. Finally, in Section 6, we present an alternative proof for
the theorem on power products of linking systems.

315



316 S. Iwata

2. The Kronecker Canonical Form of Matrix Pencils

Let D(s) = sA + B be an m × n matrix pencil of rank r. A matrix pencil D̄(s) is said
to be strictly equivalent to D(s) if there exists a pair of nonsingular constant matrices U
and V such that D̄(s) = UD(s)V . A matrix pencil D(s) = sA + B is said to be regular if
detD(s) �= 0 as a polynomial in s. It is strictly regular if both A and B are nonsingular
matrices.

For a positive integer μ, we consider μ× μ matrix pencils Nμ and Kμ defined by

Nμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 s 0 · · · 0

0 1 s
. . .

...
...

. . . . . . . . . 0
...

. . . 1 s
0 · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Kμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0
...

. . . s 1
0 · · · · · · 0 s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For a positive integer ε, we further denote by Lε an ε× (ε+ 1) matrix pencil

Lε =

⎛
⎜⎜⎜⎜⎜⎝

s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 s 1

⎞
⎟⎟⎟⎟⎟⎠
.

We also denote by L�
η the transpose matrix of Lη.

The following theorem establishes the Kronecker canonical form of matrix pencils under
strict equivalence transformations. See [1, §XII.4] and [5, §5.1.3 ] for its proofs.

Theorem 2.1 (Kronecker, Weierstrass) For any matrix pencil D(s), there exists a pair
of nonsingular constant matrices U and V such that D̄(s) = UD(s)V is in a block-diagonal
form

D̄(s) = block-diag(Hν ,Kρ1 , · · · ,Kρc , Nμ1 , · · · , Nμd
, Lε1, · · · , Lεp , L

�
η1
, · · · , L�

ηq
, O),

where ρ1 ≥ · · · ≥ ρc > 0, μ1 ≥ · · · ≥ μd > 0, ε1 ≥ · · · ≥ εp > 0, η1 ≥ · · · ≥ ηq > 0, and Hν

is a strictly regular matrix pencil of size ν. The numbers c, d, p, q, ν, ρ1, · · · , ρc, μ1, . . . , μd,
ε1, · · · , εp, η1, · · · , ηq are uniquely determined.

The block-diagonal matrix pencil D̄(s) in Theorem 2.1 is referred to as the Kronecker
canonical form of D(s). The numbers μ1, . . . , μd are called the indices of nilpotency. The
numbers ε1, · · · , εp and η1, · · · , ηq are the minimal column and row indices, respectively.
These numbers together with ν, ρ1, · · · , ρc are collectively called the structural indices of
D(s).

For an m×n matrix pencil D(s) = sA+B, we construct a (k+1)m×kn matrix Ψk(D)
and a km× (k + 1)n matrix Φk(D) defined by

Ψk(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A O · · · O

B A
. . .

...

O B
. . . O

...
. . .

. . . A
O · · · O B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Φk(D) =

⎛
⎜⎜⎜⎜⎜⎝

B A O · · · O

O B A
. . .

...
...

. . .
. . .

. . . O
O · · · O B A

⎞
⎟⎟⎟⎟⎟⎠
.
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We denote ψk(D) = rank Ψk(D) and ϕk(D) = rank Φk(D). We also construct a pair of
km× kn matrices Θk(D) and Ωk(D) defined by

Θk(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A O · · · · · · O

B A
. . .

...

O B
. . . . . .

...
...

. . . . . . A O
O · · · O B A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ωk(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B A O · · · O

O B A
. . .

...
...

. . . . . . . . . O
...

. . . B A
O · · · · · · O B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We denote θk(D) = rank Θk(D) and ωk(D) = rank Ωk(D). Then it is easy to see that the
ranks of these expanded matrices are expressed by the structural indices as follows.

Theorem 2.2 Let (ν, ρ1, · · · , ρc, μ1, . . . , μd, ε1, . . . , εp, η1, . . . , ηq) be structural indices of a
matrix pencil D(s). Then we have

ψk(D) = rk +
p∑

i=1

min{k, εi}, ϕk(D) = rk +
q∑

i=1

min{k, ηi},

θk(D) = rk −
d∑

i=1

min{k, μi}, ωk(D) = rk −
c∑

i=1

min{k, ρi},

where r is the rank of D(s).

This theorem enables us to determine the structural indices from the sequences ψk, ϕk,
θk, and ωk for k = 1, . . . , r. In particular, we have the following corollary.

Corollary 2.1 The size ν of the strictly regular block in the Kronecker canonical form of
D(s) is given by

ν = r − ϕr − ϕr + θr + ωr,

where r is the rank of D(s).

3. Linking Systems

Let S and T be a pair of finite sets. Let Λ be a nonempty collection of pairs of subsets of
S and T . Then the triple (S, T,Λ) is a linking system if it satisfies the following axioms.

(L1) If (X,Y ) ∈ Λ, then |X| = |Y |.
(L2) If (X,Y ) ∈ Λ and x ∈ X, then there exists y ∈ Y such that (X \ {x}, Y \ {y}) ∈ Λ.
(L3) If (X,Y ) ∈ Λ and y ∈ Y , then there exists x ∈ X such that (X \ {x}, Y \ {y}) ∈ Λ.
(L4) If (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Λ, then there exists (X◦, Y ◦) ∈ Λ such that X ⊆ X◦ ⊆

X ∪X ′ and Y ′ ⊆ Y ◦ ⊆ Y ∪ Y ′.

A member of Λ is called a linked pair. The sets S and T are respectively called the row set
and the column set of Λ.

The rank function λ : 2S × 2T → Z of L = (S, T,Λ) defined by

λ(X,Y ) = max{|W | | (W,Z) ∈ Λ,W ⊆ X,Z ⊆ Y } (X ⊆ S, Y ⊆ T )

satisfies the following properties.

(R1) 0 ≤ λ(X,Y ) ≤ min{|X|, |Y |} for any X ⊆ S and Y ⊆ T .
(R2) λ(X,Y ) ≤ λ(X ′, Y ′) for any X ⊆ X ′ ⊆ S and Y ⊆ Y ′ ⊆ T .
(R3) λ(X,Y ) + λ(X ′, Y ′) ≥ λ(X ∪X ′, Y ∩ Y ′) + λ(X ∩X ′, Y ∪ Y ′) for any X,X ′ ⊆ S and

Y, Y ′ ⊆ T .

c© Operations Research Society of Japan JORSJ (2007) 50-4



318 S. Iwata

In particular, (R3) is referred to as linking bisubmodularity. The rank of L, denoted by
r(L), is the maximum size |X| of a linked pair (X,Y ) ∈ Λ, i.e., r(L) = λ(S, T ).

Alternatively, we may define linking systems in terms of rank functions satisfying the
above (R1)–(R3). Then the family Λ of linked pairs is determined by

Λ = {(X,Y ) | λ(X,Y ) = |X| = |Y |, X ⊆ S, Y ⊆ T}.

A principal example of linking systems comes from matrices. Let A be a matrix with
row set S and column set T . For a pair of X ⊆ S and Y ⊆ T , we denote by A[X,Y ] the
submatrix of A indexed by X and Y . Then L(A) = (S, T,Λ(A)) is a linking system, where

Λ(A) = {(X,Y ) | rankA[X,Y ] = |X| = |Y |, X ⊆ S, Y ⊆ T}.

The rank function λ of L(A) is given by

λ(X,Y ) = rankA[X,Y ],

which satisfies(R1)–(R3).
Another interesting example of linking systems comes from graphs. Consider a directed

graph G with a pair of disjoint vertex subsets S and T . Let Λ(G) be the family of pairs
(X,Y ) of X ⊆ S and Y ⊆ T with |X| = |Y | such that there exist |X| pairwise disjoint
directed paths from X to Y . Then (S, T,Λ(G)) forms a linking system.

For a pair of linking systems L = (S, T,Λ) and L′ = (S ′, T ′,Λ′), the union L ∨ L′ =
(S ∪ S ′, T ∪ T ′,Λ ∨ Λ′) defined by

Λ ∨ Λ′ = {(X ∪X ′, Y ∪ Y ′) | X ∩X ′ = ∅, Y ∩ Y ′ = ∅, (X,Y ) ∈ Λ, (X ′, Y ′) ∈ Λ′}

is a linking system. Note that S ∩ S ′ and T ∩ T ′ can be nonempty.

Lemma 3.1 Let λ and λ′ be the rank functions of L = (S, T,Λ) and L′ = (S ′, T ′,Λ′). Then
the rank function λ ∨ λ′ of L ∨ L′ is given by

(λ ∨ λ′)(X,Y ) = min
W⊆X,Z⊆Y

{λ(W ∩ S,Z ∩ T ) + λ′(W ∩ S ′, Z ∩ T ′) + |X \W | + |Y \ Z|}.

The union of linking systems is analogous to the addition of matrices. Similarly, multi-
plication of linking systems is defined as follows. For a pair of linking systems A = (R,S,Λ)
and B = (S, T,Ξ), the multiplication is defined by A ∗ B = (R, T,Λ ∗ Ξ) with

Λ ∗ Ξ = {(W,Y ) | ∃X ⊆ S, (W,X) ∈ Λ, (X,Y ) ∈ Ξ}.

Let I = (S, S,Δ) denote the diagonal linking system with Δ = {(X,X) | X ⊆ S}. Then we
have the following lemma.

Lemma 3.2 The rank of A ∗ B satisfies

r(A ∗ B) = r(A ∨ I ∨ B) − |S|.

4. Matroid Pencils

A matroid pencil is a pair of linking systems having the row/column sets in common.
Consider a matroid pencil (A,B) with A = (S, T,Λ) and B = (S, T,Ξ). The rank of (A,B)
is defined by the rank of A ∨ B, which we denote by r throughout this section.

c© Operations Research Society of Japan JORSJ (2007) 50-4



Linking Systems and Matroid Pencils 319

We now introduce combinatorial counterparts of expanded matrices. For a positive
integer j, let Sj and Tj be distinct copies of S and T , respectively. Furthermore, let Aj =
(Sj, Tj ,Λj) and Bj = (Sj+1, Tj ,Ξj) be the copies of A and B, respectively.

For each positive integer k, consider the unions:

Ψk(A,B) = A1 ∨ B1 ∨ A2 ∨ · · · ∨ Ak ∨ Bk,

Φk(A,B) = B1 ∨ A2 ∨ B2 ∨ · · · ∨ Bk ∨ Ak+1,

Θk(A,B) = A1 ∨ B1 ∨ A2 ∨ · · · ∨ Bk−1 ∨ Ak,

Ωk(A,B) = B1 ∨ A2 ∨ B2 ∨ · · · ∨ Ak ∨ Bk.

We denote the ranks of Ψk(A,B), Φk(A,B), Θk(A,B), and Ωk(A,B) by ψk, ϕk, θk, and ωk,
respectively. Note that ϕk is equal to the rank of Ψk(B,A) and ωk is the rank of Θk(B,A).
For k = 0, we set ψ0 = ϕ0 = θ0 = ω0 = 0. Obviously, these four sequences are monotone
nondecreasing in k. The following lemmas show that ψk and ϕk are concave in k while θk

and ωk are convex in k.

Lemma 4.1 For any k > 0, we have 2ψk ≥ ψk−1 + ψk+1 and 2ϕk ≥ ϕk−1 + ϕk+1.

Proof. Let σ be the rank function of Ψk+1(A,B). Let S∗ and T ∗ denote the row and column
sets of Ψk+1(A,B), respectively. For Z = T2 ∪ · · · ∪ Tk, we have

σ(S∗, T1 ∪ Z) + σ(S∗, Z ∪ Tk+1) ≥ σ(S∗, T ∗) + σ(S∗, Z)

by the linking bisubmodularity of σ. Note that ψk = σ(S∗, T1∪Z) = σ(S∗, Z∪Tk+1), ψk−1 =
σ(S∗, Z) and ψk+1 = σ(S∗, T ∗). Thus we obtain 2ψk ≥ ψk−1 + ψk+1. By interchanging the
roles of A and B, we also obtain 2ϕk ≥ ϕk−1 + ϕk+1.

Lemma 4.2 For any k > 0, we have 2θk ≤ θk−1 + θk+1 and 2ωk ≤ ωk−1 + ωk+1.

Proof. Let σ denote the rank function of Θk+1(A,B). Let S∗ and T ∗ denote the row and
column sets of Θk+1. For X = S1 ∪ · · · ∪ Sk and Y = T2 ∪ · · · ∪ Tk+1, we have

σ(X,Y ) + σ(S∗, T ∗) ≥ σ(X,T ∗) + σ(S∗, Y )

by the linking bisubmodularity of σ. Note that θk−1 = σ(X,Y ), θk+1 = σ(S∗, T ∗) and
θk = σ(X,T ∗) = σ(S∗, Y ). Thus we obtain 2θk ≤ θk−1 + θk+1. By interchanging the roles of
A and B, we obtain 2ωk ≤ ωk−1 + ωk+1.

Let λ and ξ be the rank functions of A = (S, T,Λ) and B = (S, T,Ξ), respectively. Then
the rank r of (A,B) is given by

r = min
W⊆S,Z⊆T

{λ(W,Z) + ξ(W,Z) + |S \W | + |T \ Z|}.

A pair (W,Z) that attains the minimum in the right hand side is called a minimum cover
of A ∨ B. A pair of (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ is called a maximum linking if it satisfies
X ∩X ′ = ∅, Y ∩ Y ′ = ∅ and |X| + |X ′| = r.

Lemma 4.3 Let (W,Z) be a minimum cover of A ∨ B. Then we have ψk ≤ rk + |S \W |
and ϕk ≤ rk + |T \ Z|.
Proof. Let S∗ and T ∗ denote the row and column sets of Ψk(A,B). That is, S∗ = S1 ∪
· · · ∪ Sk+1 and T ∗ = T1 ∪ · · · ∪ Tk. Let Wj ⊆ Sj be the copies of W for j = 1, . . . , k + 1 and

c© Operations Research Society of Japan JORSJ (2007) 50-4



320 S. Iwata

Zj ⊆ Tj the copies of Z for j = 1, . . . , k. Put W ∗ = W1 ∪ · · · ∪Wk+1 and Z∗ = Z1 ∪ · · · ∪Zk.
Then we have

ψk ≤ (λ1 ∨ · · · ∨ λk)(W
∗, Z∗) + (ξ1 ∨ · · · ∨ ξk)(W ∗, Z∗) + |S∗ \W ∗| + |T ∗ \ Z∗|

= k λ(W,Z) + k ξ(W,Z) + (k + 1) |S \W | + k |T \ Z| = rk + |S \W |.

By interchanging the roles of A and B, we obtain ϕk ≤ rk + |T \ Z|.
Lemma 4.4 Let (W,Z) be a minimum cover of A ∨ B. Then we have θk ≤ rk − ξ(W,Z)
and ωk ≤ rk − λ(W,Z) for any k.

Proof. Let S∗ and T ∗ denote the row and column sets of Θk(A,B). That is, S∗ = S1∪· · ·∪Sk

and T ∗ = T1 ∪ · · · ∪ Tk. Let Wj ⊆ Sj and Zj ⊆ Tj be the copies of W and Z, respectively.
Then W ∗ = W1 ∪ · · · ∪Wk and Z∗ = Z1 ∪ · · · ∪ Zk satisfy

θk ≤ (λ1 ∨ · · · ∨ λk)(W
∗, Z∗) + (ξ1 ∨ · · · ∨ ξk−1)(W

∗, Z∗) + |S∗ \W ∗| + |T ∗ \ Z∗|
= k λ(W,Z) + (k − 1) ξ(W,Z) + k |S \W | + k |T \ Z| = rk − ξ(W,Z).

By interchanging the roles of A and B, we obtain ωk ≤ rk − λ(W,Z).

Lemma 4.5 Let (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ be a maximum linking. Then we have
ψk ≥ rk and ϕk ≥ rk for any k.

Proof. Let Xj, X
′
j ⊆ Sj be the copies of X,X ′ ⊆ S for j = 1, . . . , k + 1 and Yj , Y

′
j ⊆ Tj

the copies of Y, Y ′ ⊆ T for j = 1, . . . , k. Put X∗ = X1 ∪ · · · ∪ Xk ∪ X ′
2 ∪ · · · ∪ X ′

k+1 and
Y ∗ = Y1 ∪ · · · ∪ Yk ∪ Y ′

1 ∪ · · · ∪ Y ′
k . Then (X∗, Y ∗) is a linked pair in Ψk(A,B). Hence we

have ψk ≥ k |X| + k |X ′| = rk. By interchanging the roles of A and B, we obtain ϕk ≥ rk.

Lemma 4.6 Let (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ be a maximum linking. Then we have
θk ≥ rk − |X ′| and ωk ≥ rk − |X|.
Proof. LetXj, X

′
j ⊆ Sj be the copies ofX,X ′ ⊆ S and Yj , Y

′
j ⊆ Tj the copies of Y, Y ′ ⊆ T for

j = 1, . . . , k. PutX∗ = X1∪· · ·∪Xk∪X ′
2∪· · ·∪X ′

k and Y ∗ = Y1∪· · ·∪Yk∪Y ′
1∪· · ·∪Y ′

k−1. Then
(X∗, Y ∗) is a linked pair in Θk(A,B). Hence we have θk ≥ k |X|+ (k − 1) |X ′| = rk − |X ′|.
By interchanging the roles of A and B, we obtain ωk ≥ rk − |X|.
Lemma 4.7 For any k, we have θk+1 − θk ≤ r and ωk+1 − ωk ≤ r.

Proof. This is immediate from Lemmas 4.2 and 4.4.

Lemma 4.8 For any k, we have ψk+1 − ψk ≥ r and ϕk+1 − ϕk ≥ r.

Proof. This is immediate from Lemmas 4.1 and 4.5.

Lemma 4.9 If k ≥ r, we have ψk+1 − ψk = ϕk+1 − ϕk = r.

Proof. Since ψk is concave in k by Lemma 4.1, it follows from Lemmas 4.3 and 4.8 that there
exists an integer h such that ψk+1 − ψk = r holds for any k ≥ h. Let  be the smallest such
h. Then by Lemma 4.1, we have ψ� ≥ (r+1). On the other hand, a minimum cover (W,Z)
of A ∨ B satisfies ψ� ≤ r + |S \W | by Lemma 4.3. Therefore, we have  ≤ |S \W | ≤ r.
Thus we obtain ψk+1 −ψk = r for k ≥ r. Similarly, we also obtain ϕk+1 −ϕk = r for k ≥ r.

Lemma 4.10 If k ≥ r, we have θk+1 − θk = ωk+1 − ωk = r.

c© Operations Research Society of Japan JORSJ (2007) 50-4
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Proof. Since θk is convex in k by Lemma 4.2, it follows from Lemmas 4.6 and 4.7 that there
exists an integer h such that θk+1 − θk = r holds for any k ≥ h. Let  be the smallest such
h. Then by Lemma 4.2, we have θ� ≤ (r − 1). On the other hand, for a maximum linking
(X,Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ, we have θ� ≥ r − |X ′| by Lemma 4.6. Therefore, we have
 ≤ |X| ≤ r. Thus we obtain θk+1−θk = r for k ≥ r. Similarly, we also obtain ωk+1−ωk = r
for k ≥ r.

Lemma 4.11 For any k, we have ψk + ϕk − θk − ωk ≤ r.

Proof. Let S∗ and T ∗ denote the row and column sets of Θk+1(A,B). That is, S∗ =
S1 ∪ · · · ∪ Sk+1 and T ∗ = T1 ∪ · · · ∪ Tk+1. We also denote S◦ = S2 ∪ · · · ∪ Sk+1 and
T ◦ = T1 ∪ · · · ∪ Tk. By the linking bisubmodularity of the rank function σ of Θk+1(A,B),
we have

σ(S∗, T ∗) + σ(S◦, T ◦) ≥ σ(S∗, T ◦) + σ(S◦, T ∗).

Since θk+1 = σ(S∗, T ∗), ωk = σ(S◦, T ◦), ψk = σ(S∗, T ◦) and ϕk = σ(S◦, T ∗), this can be
rewritten as θk+1 + ωk ≥ ψk +ϕk. Therefore, we have ψk +ϕk − θk − ωk ≤ θk+1 − θk ≤ r by
Lemma 4.7.

Lemma 4.11 leads us to the definition of ν(A,B) = r − ψr − ϕr + θr + ωr ≥ 0, which is
analogous to the size of the strictly regular block in the Kronecker canonical form shown in
Corollary 2.1. For a matrix pencil D(s) = sA+B, consider a matroid pencil (L(A),L(B)).
It is not always true that ν(A,B) is equal to the size of the strictly regular block in the
Kronecker canonical form D̄(s) of D(s). A recent result in [2] implies that the equality holds
if D(s) is a generic matrix pencil, i.e., if the nonzero entries in A and B are independent
parameters.

5. Periodic Linking

In this section, we investigate a periodic structure of Θk(A,B). Recall that a linked pair
(X∗, Y ∗) in Θk(A,B) consists of disjoint sums X∗ = X1 ∪ · · · ∪ Xk ∪ X ′

2 ∪ · · · ∪ X ′
k and

Y ∗ = Y1∪· · ·∪Yk∪Y ′
1∪· · ·∪Y ′

k−1 such that (Xj, Yj) ∈ Λj for j = 1, . . . , k and (X ′
j+1, Y

′
j ) ∈ Ξj

for j = 1, . . . , k − 1. Then a linked pair (X∗, Y ∗) with such a decomposition is said to be
a periodic linking if (Xj, Yj) are the copies of the same (X,Y ) ∈ Λ for j = 1, . . . , k and
(X ′

j+1, Y
′
j ) are the copies of the same (X ′, Y ′) ∈ Ξ for j = 1, . . . , k − 1. This section is to

show that a maximum size |X∗| = |Y ∗| of a periodic linking (X∗, Y ∗) in Θk is equal to the
rank θk.

Let (X∪X ′, Y ∪Y ′) be a linked pair of A∨B such that (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ. Then
the periodic linking (X∗, Y ∗) determined by (X,Y ) and (X ′, Y ′) is of size k |X|+(k−1) |X ′|.

Given a linked pair (X,Y ) ∈ Λ, we construct an auxiliary directed graph GA(X,Y ) =
(S ∪ T,E) with vertex set S ∪ T and arc set E = ES ∪ ET ∪ E+ ∪ E− defined by

ES = {(u, v) | u ∈ S \X, v ∈ X, (X ∪ {u} \ {v}, Y ) ∈ Λ},
ET = {(u, v) | u ∈ Y, v ∈ T \ Y, (X,Y ∪ {v} \ {u}) ∈ Λ},
E+ = {(u, v) | u ∈ S \X, v ∈ T \ Y, (X ∪ {u}, Y ∪ {v}) ∈ Λ},
E− = {(u, v) | u ∈ Y, v ∈ X, (X \ {v}, Y \ {u}) ∈ Λ}.

Similarly, for a linked pair (X ′, Y ′) ∈ Ξ, we also construct an auxiliary directed graph
GB(X ′, Y ′) = (S ∪ T, F ). Furthermore, the auxiliary directed graph for a linked pair
(X ∪X ′, Y ∪ Y ′) in A∨B is the superposition of GA(X,Y ) and GB(X ′, Y ′). For simplicity
we denote this graph by GA∨B = (S ∪ T,E ∪ F ).
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The linked pair (X ∪X ′, Y ∪ Y ′) in A ∨ B determines a periodic linking (X∗, Y ∗). Let
S∗ and T ∗ denote the row and column sets of Θk(A,B). That is, S∗ = S1 ∪ · · · ∪ Sk

and T ∗ = T1 ∪ · · · ∪ Tk. For j = 1, . . . , k, let Ej denote the edge set of GAj
(Xj, Yj).

For j = 1, . . . , k − 1, let Fj denote the edge set of GBj
(Xj+1, Yj). The auxiliary directed

graph GΘk(A,B) = (S∗ ∪ T ∗, E∗ ∪ F ∗) for (X∗, Y ∗) is given by E∗ = E1 ∪ · · · ∪ Ek and
F ∗ = F1 ∪ · · · ∪ Fk−1.

Lemma 5.1 Suppose (X,Y ) ∈ Λ and (X ′, Y ′) ∈ Ξ form a linking in A∨B that maximizes
k |X|+ (k− 1) |X ′|. Then the periodic linking (X∗, Y ∗) that consists of the copies of (X,Y )
and (X ′, Y ′) is a maximum linking in Θk(A,B).

Proof. If (X∗, Y ∗) is not a maximum linking, there exists a directed path from S∗ \X∗ to
T ∗\Y ∗ inGΘk(A,B). Let P ∗ be such a path with minimum number of arcs. The corresponding
set of arcs in GA∨B forms a directed path from S \X to T \Y . Note that P does not include
a cycle. Let S(P ) and T (P ) denote the sets of vertices in S and T , respectively, along
P . Then the symmetric differences XP = X�S(P ), YP = Y�T (P ), X ′

P = X ′�S(P ) and
Y ′

P = Y ′�T (P ) form new linked pairs (XP , YP ) ∈ Λ and (X ′
P , Y

′
P ) ∈ Ξ.

Let s and t be the initial and terminal vertices of P . Suppose that P ∗ starts from Sh and
terminates in T�. Then we have k |XP |+(k−1) |X ′

P | = k |X|+(k−1) |X ′|+k+−h. If s /∈ X ′

and t /∈ Y ′, then XP ∩X ′
P = ∅ and YP ∩ Y ′

P = ∅, which implies that (XP , YP ) and (X ′
P , Y

′
P )

form a linking in A ∨ B. Since k +  − h > 0, this contradicts the choice of (X,Y ) and
(X ′, Y ′). If s ∈ X ′ and t /∈ Y ′, we have XP ∩X ′

P = {s}, YP ∩ Y ′
P = ∅, and h = 1. By (L2),

there exists v ∈ Y ′
P such that (X ′

P \{s}, Y ′
P \{v}) ∈ Ξ. Thus (XP , YP ) and (X ′

P \{s}, Y ′
P \{v})

form a linking in A ∨ B with k |XP | + (k − 1) |X ′
P \ {s}| = k |X| + (k − 1) |X ′| + , which

contradicts the choice of (X,Y ) and (X ′, Y ′). Similarly, if s /∈ X ′ and t ∈ Y ′, we have
XP ∩ X ′

P = ∅, YP ∩ Y ′
P = {t}, and  = k. By (L3), there exists u ∈ X ′ such that

(X ′
P \ {u}, Y ′

P \ {t}) ∈ Ξ. Thus (XP , YP ) and (X ′
P \ {u}, Y ′

P \ {t}) form a linking in A ∨ B
with k |XP |+(k−1) |X ′

P \{u}| = k |X|+(k−1) |X ′|+k+1−h, which contradicts the choice
of (X,Y ) and (X ′, Y ′). Finally, if s /∈ X ′ and t ∈ Y ′, we have XP ∩X ′

P = ∅, YP ∩ Y ′
P = {t},

h = 1 and  = k. It follows from (L2) and (L3) that (X ′
P \ {s}, Y ′

P \ {t}) ∈ Ξ or there
exist u ∈ X ′ and v ∈ Y ′ such that (X ′

P \ {s, u}, Y ′
P \ {t, v}) ∈ Ξ. In the former case,

(XP , YP ) and (X ′
P \ {s}, Y ′

P \ {t}) form a linking in A∨B with k |XP |+(k− 1) |X ′
P \ {s}| =

k |X| + (k − 1) |X ′| + k. In the latter case, (XP , YP ) and (X ′
P \ {s, u}, Y ′

P \ {t, v}) form a
linking in A ∨ B with k |XP | + (k − 1) |X ′

P \ {s, u}| = k |X| + (k − 1) |X ′| + 1. In either
case, we have contradiction to the choice of (X,Y ) and (X ′, Y ′). Thus we may conclude
that (X∗, Y ∗) is a maximum size linking in Θk(A,B).

Theorem 5.1 For a matroid pencil (A,B), we have

θk(A,B) = max{k |X| + (k − 1) |X ′| | (X,Y ) ∈ Λ, (X ′, Y ′) ∈ Ξ, X ∩X ′ = ∅, Y ∩ Y ′ = ∅}.

6. Eigensets and Power Products

In this section, we give an alternative proof to a theorem of Murota [4] on maximum eigensets
and the ranks of power products of linking systems.

Let A = (S, S,Λ) be a linking system whose row set and column set are identical.
Murota [4] introduced the concept of eigenset of such a linking system and investigated its
connection to power products. A subset X ⊆ S is called an eigenset if (X,X) ∈ Λ. Let Ak

denote the k-th power product A ∗ · · · ∗ A of A. Then r(Ak) is monotone nonincreasing
and convex in k. Hence there exists  ≤ |S| such that r(Ak) = r(Ak+1) holds for k ≥ .
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We denote this rank by r(A∞). The following theorem characterizes r(A∞) in terms of
eigensets.

Theorem 6.1 (Murota [4]) For a linking system A = (S, S,Λ), we have

r(A∞) = max{|X| | (X,X) ∈ Λ}.
We now present an alternative proof of this result using Theorem 5.1. Consider a matroid

pencil (A, I) with diagonal linking system I = (S, S,Δ) and denote the rank of Θk(A, I) by
θk(A, I). Then it follows from Lemma 3.2 that

r(Ak) = θk(A, I) − (k − 1) |S|.
Therefore, the following lemma completes the proof of Theorem 6.1.

Lemma 6.1 For k ≥ |S|, we have

θk(A, I) = (k − 1) |S| + max{|X| | (X,X) ∈ Λ}.
Proof. Applying Theorem 5.1 to (A, I), we obtain

θk(A, I) = max{k |X| + (k − 1) |Z| | (X,Y ) ∈ Λ, X ∩ Z = ∅, Y ∩ Z = ∅}.
Taking (X,Y ) = (∅, ∅) and Z = S in the right hand side, we observe θk ≥ (k − 1) |S|. If
|X|+ |Z| < |S|, we have k |X|+(k− 1) |Z| ≤ (k− 1) |S|− (k− 1)+ |X| ≤ (k− 1) |S|, where
the last inequality follows from |X| < |S| ≤ k. This implies that the maximum of the right
hand side must be attained by some X ⊆ S and Z = S \X. Thus we obtain

θk(A, I) = max{k |X| + (k − 1) |S \X| | (X,X) ∈ Λ},
which is obviously equivalent to the desired formula.

For a square matrix A, consider a linking system A = L(A). It should be noted that Ak

can be different from L(Ak). A theorem of Poljak [6], however, shows that rankAk = r(Ak)
holds if A is a generic matrix, i.e., if the nonzero entries of A are independent parameters.
An alternative proof for this theorem is also described in [2].
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