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Abstract In imprecise data envelopment analysis (IDEA) (Cooper et al. [4]), the corresponding DEA
models become non-linear and an important problem is to transform them into a linear programming one. In
most of the current approaches to this problem, the number of decision variables increases dramatically, and
usually the favorable results of these models are taken in several occasions. In this paper an additive DEA
model is employed to evaluate the technical inefficiency of decision making units (DMUs) under imprecise
data. The non-linear DEA model is transformed into an equivalent linear one, then the translation invariant
property is used and a one-stage approach is introduced in this inefficiency evaluation. The approach rectifies
the computational burden of previous methods in applications.

Keywords: DEA, efficiency, additive model, imprecise data

1. Introduction

Data envelopment analysis (DEA) is a non-parametric approach to measuring and eval-
uating the relative efficiencies of decision making units (DMUs) that utilize multiple inputs
to produce multiple outputs. The original DEA method [2] requires that the values of all
data must be known exactly without any variations. However, this assumption may not be
always true and the need to deal with categorical and ordinal data has been reported in
DEA literature (Banker and Morey [1], Kamakura [11]; Rousseau and Semple [15]; among
others). Recently, Cooper et al. [4] addressed the problem of imprecise data in DEA in some
more general cases including interval data, ordinal data and ratio bounded data. In dealing
with these data, the obtained DEA models are usually non-linear. To rectify this drawback,
Cooper et al. [4] proposed some methods to convert the non-linear model to a linear one
through scale and variable transformations. Moreover, Cooper et al. [6] extended [4] to a
general case. In addition to it, in this context, one can read Kim et al. [12], and Cooper et
al. [5]. Recently Lee et al. [14], Entani et al. [8], Zhu [16, 17], Despotis and Smirlis [7] and
Jahanshahloo et al. [9, 10] have investigated to IDEA from some different point of views.

The approach of most of these authors involves too many data and variable transforma-
tions making the measurement process unnecessarily complicated. The variable transforma-
tions alone increase dramatically the number of decision variables from (m+s) to (m+s)×n,
where m, s, and n represent the number of inputs, outputs and DMUs, respectively. These
transformations convert both the exact and imprecise data, including preference data and
interval numbers, into constraints. But, during the process, the number of iterations and
computation times increase rapidly and in some cases the favorable results of IDEA models

∗Islamic Azad University, Karaj Branch.

163



164 R. Kazemi Matin, G.R. Jahanshahloo & A. Hadi Vencheh

are taken in several occasions (for example see [14]).
There is also another problem, reduction of the ability of IDEA linear models in com-

parison with standard DEA models. This drawback is a result of some linearizing processes
which cause some difficulty in the interpretation of new variables. For example, in efficiency
evaluation problem, most of IDEA models lead only to an efficiency score, and one cannot
obtain any information on the important aspects of efficiency measurement such as the inef-
ficiency resources, peer set, slacks variables and so on. These difficulties have been removed
by introducing a one-stage approach in some important cases of imprecise data.

The rest of the paper is organized as follows. Section 2 presents an additive DEA model
under interval data and based on this formulation, we can define upper and lower bounds
of technical inefficiencies for each DMU, as the one done by Despotis and Smirlis [7]. We
take these results from envelopment form of DEA models but this is not the main purpose
of this paper. Section 3 is devoted to an extension of our interval ADD model in order to
incorporate the ordinal data, thus dealing with the more general case of imprecise data.
Our approach in this inefficiency evaluation is based on converting ordinal data into interval
data by employing the translation invariant property of ADD model. Section 4 concludes.

2. Additive Model under Interval Data

Suppose that we have n DMUs which utilize inputs xij for i = 1, · · · ,m to produce output
yrj for r = 1, · · · , s and j = 1, · · · n. Let X ∈ Rm×n and Y ∈ Rs×n be the input and output
matrix respectively. Now consider the variable return to scale (VRS) version of additive
model [3] in technical inefficiency evaluation when DMUk is under evaluation:

max

m∑
i=1

s−i +
s∑

r=1

s+
r

s.t.

n∑
j=1

xijλj + s−i = xik i = 1, · · · ,m

−
n∑

j=1

yrjλj + s+
r = −yrk r = 1, · · · , s

n∑
j=1

λj = 1

s−i ≥ 0, s−r ≥ 0, λj ≥ 0 ∀i, ∀r, ∀j

(2.1)

Now the following definition of efficiency for an efficient DMU in the above additive model
is to be considered.

Definition 1. DMUk is ADD-efficient if the optimal value of the model 2.1 is equal to zero.

If we take the dual of model 2.1, we have

min

m∑
i=1

xikvi −
s∑

r=1

yrkur + u0

s.t.

m∑
i=1

xijvi −
s∑

r=1

yrjur + u0 ≥ 0 j = 1, · · · , n
vi ≥ 1, ur ≥ 1 ∀i, ∀r
u0 free

(2.2)

The above model is useful for our purpose in dealing with imprecise data.
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2.1. Formulation as a linear model

Now assume that input and output levels of each DMU are not known exactly, so the
above models are non-linear since output/input levels are also variables whose exact values
have to be estimated. First we assume that the data have interval form. Let xij ∈ [xij, xij]
and yrj ∈ [y

rj
, yrj], where lower and upper bounds are known, i.e.

∀i, ∀j, xij ≤ xij ≤ xij

∀r, ∀j, y
rj
≤ yrj ≤ yrj

According to [7] let
xij = xij + (xij − xij)sij ; ∀i, ∀j, 0 ≤ sij ≤ 1
yrj = y

rj
+ (yrj − y

rj
)trj ; ∀r, ∀j, 0 ≤ trj ≤ 1

With these transformations the new variables sij and trj are added to the problem and
the weighted sum of inputs and outputs takes the form

∑
i xijvi +

∑
r yrjur + u0 =∑

i{xijvi + (xij − xij)sijvi} −
∑

r{yrj
ur + (yrj − y

rj
)trjur}+ u0

Now set
qij := sijvi and prj := trjur

0 ≤ qij ≤ vi and 0 ≤ prj ≤ ur

With the above substitutions, the model 2.2 is finally transformed into the following
linear programming

min zk =
m∑

i=1

{xikvi + (xik − xik)qik} −
s∑

r=1

{y
rk

ur + (yrk − y
rk

)prk}+ u0

s.t.

m∑
i=1

{xijvi + (xij − xij)qij} −
s∑

r=1

{y
rj

ur + (yrj − y
rj

)prj}+ u0 ≥ 0 ∀j
0 ≤ qij ≤ vi ∀i, ∀j
0 ≤ prj ≤ ur ∀r, ∀j
vi ≥ 1, ur ≥ 1 ∀i, ∀r
u0 free

(2.3)

The additive DEA model with exact data is derived as a special case of the model 2.3.
The above model adjusts the weights and the levels of inputs and outputs in favor of DMUk,
but with too many variables and constraints.

In the rest of this section we relax these requirements and introduce a procedure to
extract a matrix of exact data from the bounded data and to identify the inefficiencies of
DMUs in a one-stage method.

2.2. Measuring a technical inefficiency under interval data

Consider the following model:

min z′k =
m∑

i=1

xikvi −
s∑

r=1

yrkur + u0

s.t.

m∑
i=1

xijvi −
s∑

r=1

y
rj

ur + u0 ≥ 0 j = 1, · · · , n, j 6= k

m∑
i=1

xikvi −
s∑

r=1

yrkur + u0 ≥ 0

vi ≥ 1, ur ≥ 1 ∀i, ∀r
u0 free

(2.4)
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The model 2.4 is a DEA model with exact data, where the levels of inputs and outputs
are adjusted in favor of DMUk against the other DMUs. Now we have the following theorem

Theorem 1. If z∗k and z′∗k are the optimal values of the models 2.3 and 2.4, respectively,
then z∗k = z′∗k .

Proof. Assume first that (V ∗, U∗, Q∗, P ∗, u∗0) is an optimal solution of the model 2.3 with
the optimal value z∗k, where V ∗ = (v∗i ; i = 1, · · · ,m), U∗ = (u∗r ; r = 1, · · · , s), Q∗ =
(q∗ij ; i = 1, · · · ,m, j = 1, · · · , n) and P ∗ = (p∗rj ; r = 1, · · · , s, j = 1, · · · , n).
According to the objective function, zk increases monotonically with the increase of qik and
decreases with the increase of prk. Therefore, in optimality we have q∗ik = 0 and p∗rk = ur

and the kth constraints convert to
∑

i xikv
∗
i −

∑
r yrku

∗
r + u∗o ≥ 0.

For j 6= k, according to 0 ≤ q∗ij ≤ v∗i and 0 ≤ p∗rj ≤ u∗r, we have
0 ≤ ∑

i{xijv
∗
i + (xij − xij)q

∗
ij} −

∑
i{yrj

u∗r + (yrj − y
rj

)p∗rj}+ u∗0
≤ ∑

i{xijv
∗
i + (xij − xij)v

∗
i } −

∑
i{yrj

u∗r + (yrj − y
rj

)0}+ u∗0
=

∑
i xijv

∗
i −

∑
r y

rj
u∗r + u∗0

that is, (V ∗, U∗, u∗0) is a feasible solution of the model 2.4. Thus, z′∗k ≤ z∗k.
Conversely, assume that (V ∗, U∗, u∗0) is an optimal solution of the model 2.4 with z

′∗
k as

optimal value. Let

qij =

{
0 j = k
v∗i j 6= k

prj =

{
u∗r j = k
0 j 6= k

so, if Q = (qij ; i = 1, · · · ,m, j = 1, · · · , n) and P = (prj ; r = 1, · · · , s, j = 1, · · · , n),

then (V ∗, U∗, Q, P , u∗0) is a feasible solution of 2.3. Hence z∗k ≤ z′∗k , and this completes the
proof.

This theorem implies that the additive DEA model with interval data can be solved by
a sequence of linear programming with exact data of the form 2.4. If we take the dual of
the model 2.4, we have

max
∑

i

s−i +
∑

r

s+
r

s.t.
∑

j 6=k

xijλj + xikλk + s−i = xik i = 1, · · · ,m
∑

j 6=k

y
rj

λj + yrkλk − s+
r = yrk r = 1, · · · , s

∑
j

λj = 1

s−i ≥ 0, s−r ≥ 0, λj ≥ 0 ∀i, ∀r, ∀j

(2.5)

The above linear programming is in the envelopment side and based on the theorem 2,
and helps us to obtain individual slacks and determine the source of inefficiencies, efficient
projections and return to scale (RTS) classifications of units under interval data assumption.
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2.3. Upper and lower bounds of technical inefficiency using exact data and
classification of the units

Consider the following model that, contrary to the model 2.5, provides the worst possible
position for the unit k against the other units.

max
∑

i s
−
i +

∑
r s+

r

s.t.
∑

j 6=k

xijλj + xikλk + s−i = xik i = 1, · · · ,m
∑

j 6=k

yrjλj + y
rk

λk − s+
r = y

rk
r = 1, · · · , s

∑
j

λj = 1

s−i ≥ 0, s−r ≥ 0, λj ≥ 0 ∀i, ∀r, ∀j

(2.6)

We can now state the following theorem:

Theorem 2. If zk and zk are the optimal values of the models 2.5 and 2.6, respectively,
then zk ≤ zk.

Proof. Assume that (λ̃j, s̃
−
i , s̃+

r ; ∀i, ∀r,∀j) is a feasible solution of 2.5, so

s̃−i = xik −
∑

j 6=k

xijλ̃j − xikλ̃k = (1− λ̃k)xik −
∑

j 6=k

xijλ̃j for all i, similarly

s̃+
r =

∑

j 6=k

yrjλ̃j + yrkλ̃k − yrk =
∑

j 6=k

yrjλ̃j − (1− λ̃k)yrk for all r. Since 1− λ̃k ≥ 0,

we have

∀i, s̃−i ≤ (1− λ̃k)xik −
∑

j 6=k

xijλ̃j (†)

∀r, s̃+
r ≤

∑

j 6=k

yrjλ̃j − (1− λ̃k)yrk
(‡)

Now let

∀i, ŝ−i =: (1− λ̃k)xik −
∑

j 6=k

xijλ̃j

∀r, ŝ+
r =:

∑

j 6=k

yrjλ̃j − (1− λ̃k)yrk

It is easy to verify that (λ̃j, ŝ
−
i , ŝ+

r ; ∀i, ∀r,∀j) is a feasible solution of the model 2.6, and
also according to (†) and (‡) we have

∑
i s̃
−
i +

∑
r s̃+

r ≤
∑

i ŝ
−
i +

∑
r ŝ+

r

This shows that any feasible solution of the model 2.5 corresponds to a feasible solution
of the model 2.6 whose objective function value is at most equal to that of the later and
this completes the proof.

The results of the models 2.5 and 2.6 provide lower and upper bounds respectively, for
possible inefficiencies in terms of slacks for each DMUs. On the basis of the bounded interval
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Table 1: Interval data
DMU Inputs Outputs
j x1j x1j x2j x2j y

1j
y1j y

2j
y2j

1 18 20 148 151 100 105 90 92
2 25 27 160 162 154 160 54 55
3 19 23 145 152 150 151 51 52
4 26 27 175 178 135 138 72 75
5 20 22 156 158 194 195 66 69
6 56 58 253 255 131 133 72 74

[zj, zj], the units can be classified in three subsets as follows∗

E++ = {j|zj = 0}
E+ = {j|zj = 0 and zj > 0}
E− = {j|zj > 0}

The set E++ contains the units that are technically efficient in each of the data levels
and these units always lie on the frontier of the production possibility set (PPS). The set
E+ contains units that are efficient in the maximal case, but there exist data levels under
which they lose their efficiency and finally, E− contains the units that are always inefficient.

2.4. Numerical example

As an illustration, we applied the above procedure for the interval data setting of Table
1 (6 units with 2 inputs and 2 outputs). The inefficiencies and classifications of the units
obtained by applying the models 2.5 and 2.6 are presented in Table 2.
Also, the last two columns of this table give the values of individual slacks and lambda
variables by evaluating each unit with the model 2.5.

Table 2: Inefficiency evaluation and classification of 6 unitsa

DMU Inefficiency DMUs Slacks Lambdas
j zj zj classes (> 0) (> 0)
1 0 0 E++ None λ∗1 = 1
2 50 69 E− s−∗1 = 3 λ∗5 = 1

s−∗2 = 2
s+∗
1 = 34

s+∗
2 = 11

3 0 33.5 E+ None λ∗3 = 1
4 45.125 78.565 E− s−∗1 = 4.75 λ∗1 = 0.375

s−∗2 = 19.625 λ∗3 = 0.625
s+∗
1 = 20.75

5 0 0 E++ None λ∗5 = 1
6 161.668 190.565 E− s−∗1 = 34.667 λ∗1 = 0.334

s−∗2 = 97.334 λ∗3 = 0.666
s+∗
1 = 29.667

a LINDO solver used for these computations.

∗For similar classifications in terms of efficiency score intervals, see [7].
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3. An Extension of Inefficiency Evaluation for Dealing with Imprecise Data

To formulate the general case, which is the main purpose of this paper, let us introduce
the following sets by which one can distinguish the inputs and the outputs into cardinal
(exact and/or interval) and ordinal data:
I = {1, ..., m}: the index set for inputs.
O = {1, ..., s}: the index set for outputs.
CI: the subset of indices for cardinal inputs (CI ⊆ I)
OI: the subset of indices for ordinal inputs (OI ⊆ I, CI ∪OI = I)
CO: the subset of indices for cardinal outputs (CO ⊆ O)
OO: the subset of indices for ordinal outputs (OO ⊆ O, CO ∪OO = O)
So, the ADD model with imprecise data can be demonstrated as follows:

min
∑
i∈CI

xikvi +
∑
i∈OI

xikvi −
∑

r∈CO

yrkur −
∑

r∈OO

yrkur + u0

s.t.
∑
i∈CI

xijvi +
∑
i∈OI

xijvi −
∑

r∈CO

yrjur −
∑

r∈OO

yrjur + u0 ≥ 0 ∀j

ordinal relations among {xij | i ∈ OI and j = 1, · · · , n}
ordinal relations among {yrj | r ∈ OO and j = 1, · · · , n}
vi ≥ 1 , ur ≥ 1 ∀i, ∀r
u0 free

(3.1)

Obviously the above model is non-linear. This drawback is rectified by converting ordinal
data into interval data, employing the translation invariant property of the ADD model.
We deal with the weak ordinal relation case. For the sake of illustration and to simplify
the presentation, following [16], let us assume that the weak ordinal relations represented
as follows

xi1 ≤ xi2 ≤ · · · ≤ xik ≤ · · · ≤ xin

yr1 ≤ yr2 ≤ · · · ≤ yrk ≤ · · · ≤ yrn

where i ∈ OI and r ∈ OO. Now, according to the “translation invariant” property of the
model 2.1(see [13]),

x∗i1 ≤ x∗i2 ≤ · · · ≤ x∗ik = 1 ≤ · · · ≤ x∗in
y∗r1 ≤ y∗r2 ≤ · · · ≤ y∗rk = 1 ≤ · · · ≤ y∗rn.

Then, we can have a set of optimal solutions for the weak ordinal data such that

−M ′
i ≤ xi1 ≤ xi2 ≤ · · · ≤ xik = 1 ≤ · · · ≤ xin ≤ Mi

−M ′
r ≤ yr1 ≤ yr2 ≤ · · · ≤ yrk = 1 ≤ · · · ≤ yrn ≤ Mr

where M ′
i ,Mi,M

′
r and Mr, for i ∈ OI and r ∈ OO, are sufficiently large positive numbers.

Now, for the inputs and outputs in the weak ordinal relations, we can set up the following
intervals

if i ∈ OI, set :





xij ∈ [−M ′
i , 1] j = 1, · · · , k − 1

xik = 1
xij ∈ [1,Mi] j = k + 1, · · · , n

(3.2)

and if r ∈ OO, set





yrj ∈ [−M ′
r, 1] j = 1, · · · , k − 1

yrk = 1
yrj ∈ [1,Mr] j = k + 1, · · · , n.

(3.3)
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3.1. Formulation as a linear model

Based on 3.2 and 3.3, we can write

xij = −M ′
i + (1 + M ′

i)sij ; 0 ≤ sij ≤ 1 for j = 1, · · · , k − 1
and xij = 1 + (Mi − 1)sij ; 0 ≤ sij ≤ 1 for j = k + 1, · · · , n.

Similarly

yrj = −M ′
r + (1 + M ′

r)trj ; 0 ≤ trj ≤ 1 for j = 1, · · · , k − 1
and yrj = 1 + (Mr − 1)trj ; 0 ≤ trj ≤ 1 for j = k + 1, · · · , n.

Under this setting, the ordinal relations can be established among the variables sij and trj.
In the case of ordinal inputs, consider the following relations
i) If l ≤ k < l′ (or l < k ≤ l′), then we have xil ≤ xil′ and these relations are satisfied
automatically.
ii) For l < l′ ≤ k or k ≤ l < l′, the ordinal relation xil ≤ xil′ , takes the form sil ≤ sil′ .
The same relations can be considered for the ordinal outputs case. We now use the above
transformations to convert the obtained nonlinear model into a linear model as follows:

min žk =
∑

i∈CI

{xikvi + (xik − xik)qik}+
∑

i∈OI

vi −
∑

r∈CO

{y
rk

ur + (yrk − y
rk

)prk} −
∑

r∈OO

ur + u0

s.t.
∑

i∈CI

{xijvi + (xij − xij)qij}+
∑

i∈OI

{(−M ′
i)vi + (1 + M ′

i)qij} +

−
∑

r∈CO

{y
rj

ur + (yrj − y
rj

)prj} −
∑

r∈OO

{(−M ′
r)ur + (1 + M ′

r)prj}+ u0 ≥ 0 j = 1, · · ·, k − 1

∑

i∈CI

{xikvi + (xik − xik)qik}+
∑

i∈OI

vi −
∑

r∈CO

{y
rk

ur + (yrk − y
rk

)prk} −
∑

r∈OO

ur + u0 ≥ 0

∑

i∈CI

{xijvi + (xij − xij)qij}+
∑

i∈OI

{vi + (Mi − 1)qij} +

−
∑

r∈CO

{y
rj

ur + (yrj − y
rj

)prj} −
∑

r∈OO

{ur + (Mr − 1)prj}+ u0 ≥ 0 j = k + 1, · · ·, n

ordinal relations on the set {qij | i ∈ OI and j = 1, · · · , k − 1}
ordinal relations on the set {qij | i ∈ OI and j = k + 1, · · · , n}
ordinal relations on the set {prj | r ∈ OO and j = 1, · · · , k − 1}
ordinal relations on the set {prj | r ∈ OO and j = k + 1, · · · , n}
0 ≤ qij ≤ vi , 0 ≤ prj ≤ ur ∀i, ∀r, ∀j
vi ≥ 1 , ur ≥ 1 ∀i, ∀r

(3.4)

As can be seen, the above model is linear and the ordinal relations represented among
the variables qij and prj, that were defined in the same way as interval data case. Also this
model is a natural extension of the ordinal ADD model, but it has too many variables and
constraints. So similar to the bounded data case, we introduce an equivalent linear model
that helps us to form a matrix of exact data in determining the efficiency or inefficiency of
the units and also the individual slacks, under the normal size of variables and constraints.

c© Operations Research Society of JapanJORSJ (2007) 50-3
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3.2. An exact data model for inefficiency evaluation

We use the inherent property of the model 3.4 in the inefficiency evaluation of DMUk, to
introduce the following model:

min ž′k =
∑

i∈CI

xikvi +
∑

i∈OI

vi −
∑

r∈CO

yrkur −
∑

r∈OO

ur + u0

s.t.
∑

i∈CI

xijvi +
∑

i∈OI

vi −
∑

r∈CO

y
rj

ur −
∑

r∈OO

(−M ′
r)ur + u0 ≥ 0 j = 1, · · · , k − 1

∑

i∈CI

xikvi +
∑

i∈OI

vi −
∑

r∈CO

yrkur −
∑

r∈OO

ur + u0 ≥ 0

∑

i∈CI

xijvi +
∑

i∈OI

Mivi −
∑

r∈CO

y
rj

ur −
∑

r∈OO

ur + u0 ≥ 0 j = k + 1, · · · , n

vi ≥ 1 , ur ≥ 1 i = 1, · · · ,m, r = 1, · · · , s
u0 free

(3.5)

Before introducing a one-stage approach in the inefficiency evaluation of units under
imprecise data with an envelope form of the ADD model, we prove the following theorem
which establishes the relationship between models 3.4 and 3.5, justifying our use of 3.5 in
the subsequent development.

Theorem 3. If z̃k and z̃′k are the optimal values of the models 3.4 and 3.5 respectively, then
z̃k = z̃′k.

Proof. Let (V ∗, U∗, Q∗, P ∗, u∗0) be an optimal solution of the model 3.4 with z̃k as an optimal
value, where V ∗ = (v∗i ; i = 1, · · · , m), U∗ = (u∗r ; r = 1, · · · , s), Q∗ = (q∗ij ; i = 1, · · · ,m, j =
1, · · · , n) and P ∗ = (p∗rj ; r = 1, · · · , s, j = 1, · · · , n).
It is easy to verify that for i ∈ CI and r ∈ CO we have q∗ik = 0 and p∗rk = u∗r, so the kth
constraint of 3.4 takes the form

∑
i∈CI

xikv
∗
i +

∑
i∈OI

v∗i −
∑

r∈CO

yrku
∗
r −

∑
r∈OO

u∗r + u∗0 ≥ 0; (†)

Now for j 6= k we have two cases:
i) j < k: In this case:

0 ≤
∑
i∈CI

{xijv
∗
i +(xij−xij)q

∗
ij}+

∑
i∈OI

{(−M ′
i)v

∗
i +(1+M ′

i)q
∗
ij}−

∑
r∈CO

{y
rj

u∗r +(yrj−y
rj

)p∗rj}−
∑

r∈OO

{(−M ′
r)u

∗
r + (1 + M ′

r)p
∗
rj}+ u∗0

Now using 0 ≤ qij ≤ vi, 0 ≤ prj ≤ ur, −1 ≤ M ′
i , M

′
r and 1 ≤ Mi,Mr ∀i,∀r,∀j, we obtain

∑
i∈CI

xijv
∗
i +

∑
i∈OI

v∗i −
∑

r∈CO

y
rj

u∗r −
∑

r∈OO

(−M ′
r)u

∗
r + u∗0 ≥ 0 (‡)

ii) j > k: Similar to the first case we obtain

∑
i∈CI

xijv
∗
i +

∑
i∈OI

Miv
∗
i −

∑
r∈CO

y
rj

u∗r −
∑

r∈OO

u∗r + u∗0 ≥ 0 (])
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Now according to (†), (‡) and (]) we conclude that (V ∗, U∗, u∗0) is a feasible solution of the
model 3.5, so z̃′k ≤ z̃k.
Conversely, assume that (V ∗, U∗, u∗0) is an optimal solution of the model 3.5 with z̃′k as the
optimal value. Now let

qij =

{
v∗i ∀i, ∀j (j 6= k)
0 i ∈ CI, j = k

p̄rj =

{
0 ∀r, ∀j (j 6= k)
u∗r r ∈ CO, j = k

If we define Q̄ := (qij; i = 1, · · · ,m, j = 1, · · · , n) and P̄ := (prj; r = 1, · · · , s, j = 1, · · · , n),
then (V ∗, U∗, Q̄, P̄ , u∗0) is a feasible solution of the model 3.4. This implies z̃k ≤ z̃′k, and
thus, completes the proof.

Consider now the dual of the model 3.5:

max
∑

i s
−
i +

∑
r s+

r

s.t.
∑

j 6=k

xijλj + xikλk + s−i = xik i ∈ CI

∑

j≤k

λj +
∑

j>k

Miλj + s−i = 1 i ∈ OI

∑

j 6=k

y
rj

λj + yrkλk − s+
r = yrk r ∈ CO

−
∑

j<k

M ′
rλj +

∑

j≥k

λj − s+
r = 1 r ∈ OO

∑
j

λj = 1

s−i ≥ 0, s+
r ≥ 0, λj ≥ 0 ∀i, ∀r, ∀j

(3.6)

Based on the theorem 3, we can apply the model 3.6 for inefficiency evaluation of DMUs
with imprecise data in one stage, under the normal size of constraints and variables. Also
from the optimal solutions of this model, we get some information about the inefficiency
resources, peer set, slacks variables and so on.
This approach can be used for strong ordinal case. Note that for the application of the
model 3.6, we need only set Mi and M ′

r for some i ∈ OI and r ∈ OO. Indeed upper and
lower bounds for inefficiencies, as formulated in the models 2.5 and 2.6, and the classification
of the units are also applicable in the imprecise data setting provided that the models be
expanded for this case.

3.3. Numerical examples

To illustrate the above procedure and for the comparison purposes, we apply the model 3.6
to the example given in [4] and presented in Table 3.
Five units are considered with two inputs (one exact and one interval) and two outputs
(one exact and one ordinal). For comparison purposes, we use Lee et al. [14] method by
employing the VRS version of the ADD model in stage two. In computation, Mi and M ′

r

do not have to be set equal to very large numbers, and the results are not very sensitive to
them. In this example, we use M ′

2 equal to 30,10,40,1 and 20, for inefficiency evaluation of
the units 1, 2, 3, 4 and 5 respectively, but this is not the unique choice to get these results.

c© Operations Research Society of JapanJORSJ (2007) 50-3



Inefficiency Evaluation with an ADD Model in IDEA 173

Table 3: Exact and imprecise data
DMU Inputs Outputs

Exact Interval Exact Ordinal
x1 x2 x2 y1 ya

2

1 100 0.6 0.7 2000 4
2 150 0.8 0.9 1000 2
3 150 1 1 1200 5
4 200 0.7 0.8 900 1
5 200 1 1 600 3

Source: Cooper et al. (1999), a Ordinal rank (5=the best; 1=the worst).

Table 4: Inefficiency evaluation results with two methodsa

DMU Ineff with Lee et al. methodb Ineff with model 3.6
j Ineff Slacks Lambdas Ineff Slacks Lambdas

z
′∗
k (> 0) (> 0) z∗k (> 0) (> 0)

1 0 None λ∗1 = 1 0 None λ∗1 = 1

2 1321.43 s−∗1 = 33.33 λ∗1 = 0.666 1050.1 s−∗1 = 50 λ∗1 = 1
s−∗2 = 733.34 λ∗3 = 0.334 s−∗2 = 0.1
s+∗
2 = 554.76 s+∗

1 = 1000

3 0 None λ∗3 = 1 0 None λ∗3 = 1

4 1200 s−∗1 = 100 λ∗1 = 1 1200 s−∗1 = 100 λ∗1 = 1
s+∗
1 = 1100 s+∗

1 = 1100

5 2314.29 s−∗1 = 50 λ∗1 = 1 1500.3 s−∗1 = 100 λ∗1 = 1
s+∗
1 = 600 s−∗2 = 0.3

s+∗
2 = 1664.29 s+∗

1 = 1400

a LINDO solver used for these computations.
b Here, we used Lee et al. [14] model with VRS version of ADD model in stage two.

As can be seen, the results of our one-stage approach in classifying the units into techni-
cally efficient or inefficient, is the same as the results obtained using Lee et al. [14] method.
The differences in amounts of individual slacks may have been caused by different methods
in achieving the matrix of exact data in these methods.

We now apply this IDEA approach to the 42 departments of IAUK. Table 5 reports
the data with post graduate students (x1), bachelor students (x2), masters students (x3),
graduated students (y1), members for scholarship (y2), research products (y3) and manager
satisfaction (y4). Note that y4 is an ordinal data.

With respect to Kim et al.(1999), the current paper reports y4 differently with “1” for
the worst and “4” for the best, since larger output values are preferred in DEA. The result
of the application 3.6 and Lee et al. method for this data setting is presented in Table 6.

In addition to inefficiency scores, our method provides benchmarks with magnitudes and
can reflect information on return to scale classification. It can be seen that our approach
yields the same efficient DMUs and larger efficiency scores for inefficient DMUs compared
to those in Lee et al. [14] are assumed.

We finally note that one advantage of converting imprecise data and using standard DEA
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models is that the additional information can be obtained in the normal size of variables
and constraints.

Table 5: Data for the 42 departments
DMU x1 x2 x3 y1 y2 y3 ya

4

1 0 261 0 225 1 1 3
2 0 170 56 213 2 0 3
3 0 281 70 326 2 0 3
4 0 138 33 159 1 0 2
5 164 0 0 52 1 0 3
6 291 815 0 1014 2 2 2
7 0 0 61 50 0 0 4
8 113 95 0 73 0 0 2
9 0 727 0 675 3 0 3
10 0 773 0 697 2 0 3
11 0 0 66 46 0 0 3
12 346 197 0 132 0 0 1
13 0 988 0 812 8 10 2
14 0 0 34 32 0 0 2
15 0 795 0 601 6 2 2
16 0 672 0 591 6 12 2
17 0 166 0 166 7 0 4
18 0 761 0 761 0 3 2
19 193 124 0 293 0 0 3
20 484 0 0 361 0 0 1
21 0 517 0 434 0 4 2
22 0 584 0 492 1 4 2
23 0 682 0 565 2 3 2
24 0 565 0 423 1 2 2
25 0 603 0 433 1 3 2
26 0 373 0 332 1 1 1
27 0 347 0 328 2 3 3
28 0 0 70 51 0 3 4
29 0 328 0 170 0 1 3
30 0 267 0 123 0 0 3
31 262 0 0 219 3 0 3
32 0 1023 0 794 2 0 4
33 366 995 0 1111 2 2 3
34 0 266 15 238 3 4 3
35 172 375 0 547 4 3 3
36 0 460 0 385 4 8 3
37 223 0 535 232 14 6 4
38 0 1202 58 1158 12 0 3
39 0 1025 61 394 4 1 3
40 0 0 69 50 0 2 4
41 314 0 0 204 0 0 1
42 371 0 0 226 0 0 1

a Four ordinal scales (4=the best; 1=the worst)
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Table 6: Inefficiency evaluation resultsa

DMU Model 3.6 Lee et al. method
Ineff Slacks Lambdas Ineff Slacks Lambdas

z∗k (> 0) (> 0) z
′∗
k (> 0) (> 0)

1 33.45 s−∗2 =29.16 s+∗
2 =4.29 λ∗9=0.01 37.35 s+∗

1 = 31.53 λ∗16 = 0.06

λ∗17=0.66 s+∗
2 = 5.16 λ∗17 = 0.83

λ∗27=0.33 s+∗
4 = 0.66 λ∗18 = 0.11

2 0 None λ∗2=1 0 None λ∗2=1
3 0 None λ∗3=1 0 None λ∗3=1

4 11.55 s−∗3 =10.69 s+∗
2 =0.45 λ∗14=0.65 12.2 s−∗3 =7.38 s+∗

2 = 2.57 λ∗7=0.42

s+∗
3 =0.41 λ∗17=0.21 s+∗

3 = 0.21 λ∗17=0.51

λ∗18=0.14 s+∗
4 = 1.86 λ∗18=0.07

5 0 None λ∗5=1 0 None λ∗5=1
6 0 None λ∗6=1 0 None λ∗6=1
7 0 None λ∗7=1 0 None λ∗7=1

8 121.90 s−∗1 =0.94 s+∗
1 =115.67 λ∗17=0.57 123.47 s−∗1 = 0.94 s+∗

1 = 115.67 λ∗17 = 0.57

s+∗
2 =5.29 λ∗31=0.43 s+∗

2 = 5.29 λ∗31 = 0.43

s+∗
4 = 1.57

9 0 None λ∗9=1 0 None λ∗9=1
10 0 None λ∗10=1 0 None λ∗10=1

11 9 s−∗3 =5 s+∗
1 =4 λ∗7=1 11.56 s−∗3 = 11 s+∗

4 = 0.56 λ∗7 = 0.78
λ∗14 = 0.22

12 418 s−∗1 =40.80 s+∗
1 =45.51 λ∗17=0.97 421 s−∗1 = 46 s+∗

1 = 34 λ∗17 = 1

s−∗2 =24.68 s+∗
2 =6.91 λ∗35=0.03 s−∗2 = 31 s+∗

2 = 7

s+∗
3 =0.09 s+∗

3 =3
13 0 None λ∗13=1 0 None λ∗13=1
14 0 None λ∗14=1 0 None λ∗14=1

15 120.37 s−∗2 =110.5 s+∗
3 =9.82 λ∗13=0.04 120.37 s−∗2 = 110.55 s+∗

3 = 9.82 λ∗13 = 0.04
λ∗16=0.95 λ∗16=0.95
λ∗18= 0.01 λ∗18= 0.01

16 0 None λ∗16=1 0 None λ∗16=1
17 0 None λ∗17=1 0 None λ∗17=1
18 0 None λ∗18=1 0 None λ∗18=1
19 0 None λ∗19=1 0 None λ∗19=1
20 0 None λ∗20=1 0 None λ∗20=1

21 67.92 s+∗
1 =63.88 λ∗16=0.24 68.67 s+∗

1 = 63.88 λ∗16 = 0.24

s+∗
2 =4.04 λ∗17=0.37 s+∗

2 = 4.04 λ∗17 = 0.37

λ∗18=0.39 s+∗
4 = 0.75 λ∗18 = 0.39

22 77.85 s+∗
1 =75.78 λ∗16=0.20 78.39 s+∗

1 = 75.78 λ∗16 = 0.20

s+∗
2 =2.07 λ∗17=0.27 s+∗

2 = 2.07 λ∗17 = 0.27

λ∗18=0.53 s+∗
4 = 0.54 λ∗18 = 0.53

23 111 s−∗2 =59.81 s+∗
1 =51.19 λ∗16=0.07 111.44 s−∗2 = 59.81 s+∗

1 =51.19 λ∗16 = 0.07

λ∗17=0.22 s+∗
4 =0.44 λ∗17=0.22

λ∗18=0.70 λ∗18=0.70

24 143.33 s−∗2 =2.33 s+∗
1 =139.67 λ∗17=0.33 144 s−∗1 = 2.33 s+∗

1 = 139.67 λ∗17=0.33

s+∗
2 =1.33 λ∗18=0.67 s+∗

2 = 1.33 λ∗18=0.67

s+∗
4 = 0.67

25 164.45 s+∗
1 =163.17 λ∗16=0.08 164.95 s+∗

1 =163.17 λ∗16=0.08

s+∗
2 =1.28 λ∗17=0.25 s+∗

2 =1.28 λ∗17=0.25

λ∗18=0.66 s+∗
4 =0.51 λ∗18=0.66

26 44.67 s−∗2 =8.67 s+∗
1 =32.33 λ∗17=0.67 47 s−∗2 =8.67 s+∗

1 =32.33 λ∗17=0.67

s+∗
2 =3.67 λ∗18=0.33 s+∗

2 =3.67 λ∗18=0.33

s+∗
3 =2.33

27 5.07 s+∗
1 = 1.11 λ∗16=0.22 5.40 s+∗

1 = 1.11 λ∗16=0.22

s+∗
2 =3.96 λ∗17=0.66 s+∗

2 =3.96 λ∗17=0.66

λ∗18=0.12 s+∗
4 =0.33 λ∗18=0.12

28 0 None λ∗28=1 0 None λ∗28=1

29 157 s−∗2 =101.67 s+∗
1 =50 λ∗17=0.67 162.07 s+∗

1 =156.43 λ∗16=0.02

s+∗
2 =5.33 λ∗18=0.33 s+∗

2 =5.19 λ∗17=0.72

s+∗
4 =0.45 λ∗18=0.26

30 151 s−∗2 =101 s+∗
1 =43 λ∗17=1 152 s−∗2 =101 s+∗

1 =43 λ∗17=1

s+∗
2 =7 s+∗

2 =7

s+∗
4 =1

31 0 None λ∗31=1 0 None λ∗31=1
32 0 None λ∗32=1 0 None λ∗32=1
33 0 None λ∗33=1 0 None λ∗33=1

34 9.60 s+∗
1 =9.03 λ17=0.26 16.58 s+∗

1 =15.17 λ14=0.20

s+∗
2 =0.57 λ18=0.17 s+∗

2 =1.41 λ16=0.29
λ28=0.21 λ17=0.37
λ36= 0.35 λ28=0.12

λ36=0.03
35 0 None λ∗35=1 0 None λ∗35=1
36 0 None λ∗36=1 0 None λ∗36=1
37 0 None λ∗37=1 0 None λ∗37=1
38 0 None λ∗38=1 0 None λ∗38=1

39 669.99 s−∗2 =616.95 s+∗
2 =2.21 λ∗17=0.49 692.70 s−∗2 =631 s+∗

2 =0.32 λ∗17=0.62

s−∗3 =50.83 λ∗27=0.33 s−∗3 =61 s+∗
3 =0.15 λ∗18=0.38

λ∗38=0.18 s+∗
4 =0.23

40 2.67 s−∗3 =2 s+∗
1 =0.67 λ∗7=0.33 2.67 s−∗3 =2 s+∗

1 =0.67 λ∗7=0.33
λ∗28=0.67 λ∗28=0.67

41 70 s−∗1 =52 s+∗
1 =15 λ∗31=1 72 s−∗1 =52 s+∗

1 =15 λ∗31=1

s+∗
2 =3 s+∗

2 =3

s+∗
4 =2

42 100.91 s−∗1 =98.06 s+∗
2 =2.85 λ∗20=0.05 102.81 s−∗1 =98.06 s+∗

2 =2.85 λ∗20=0.05

λ∗31=0.95 s+∗
4 =1.90 λ∗31=0.95

a LINDO solver used for these computations.
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4. Conclusion

In this paper an alternative approach in evaluating the technical inefficiencies of decision
making units under imprecise data setting is developed. The translation invariant property
of an additive DEA model is used for converting the obtained non-linear models into equiva-
lent linear ones. Then an envelopment form model is introduced for inefficiency evaluation of
DMUs with imprecise data in one stage, under the normal size of constraints and variables.
Also, based on the optimal solutions of this model, one can find some information about the
inefficiency resources, peer set, slacks variables and the other important aspects of efficiency
measurement. The proposed approach is classification invariant with the other methods in
this case, can be easily implemented and can lighten in the application the computational
burden of the previous methods.
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