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Abstract The minimum maximal flow problem is the problem of minimizing the flow value on the set
of maximal flows of a given network. The optimal value indicates how inefficiently the network can be
utilized in the presence of some uncontrollability. After extending the gap function characterizing the set
of maximal flows, we reformulate the problem as a D.C. optimization problem, and then propose an outer
approximation algorithm. The algorithm, based on the idea of ε-optimal solution and local search technique,
terminates after finitely many iterations with the optimal value of the problem.
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1. Introduction

We are given a connected network (V, s, t, E, c), where V is the set of m+2 nodes containing
the source node s and the sink node t, E is the set of n arcs and c is the n-dimensional
real column vector whose hth element ch is the capacity of arc h. The set of feasible flows,
denoted by X, is given by

X = {x ∈ R
n | Ax = 0, 0 � x � c }, (1.1)

where m × n matrix A is the matrix whose (v, h) element avh is

avh =

⎧⎪⎨
⎪⎩

+1 if arc h leaves node v

−1 if arc h enters node v

0 otherwise,

and R
n is the set of n-dimensional real column vectors. Note that the equation Ax = 0 is

the flow conservation equation for all nodes except the source node s and the sink node t.
The well-known conventional maximum flow problem is∣∣∣∣∣ max

x
dx

s.t. x ∈ X,

where d is the n-dimensional row vector whose hth element is

dh =

⎧⎪⎨
⎪⎩

+1 if arc h leaves source s

−1 if arc h enters source s

0 otherwise.
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Definition 1.1 (minimum maximal flow problem) A vector x ∈ X is said to be a
maximal flow if there is no y ∈ X such that y � x and y �= x. We use XM to denote the
set of maximal flows, i.e.,

XM = {x ∈ X | there is no y ∈ X such that y � x and y �= x }. (1.2)

A minimum maximal flow problem, abbreviated to (mmF ), is defined as

(mmF )

∣∣∣∣∣ min
x

dx

s.t. x ∈ XM .

The purpose of this paper is to propose an algorithm for (mmF ), which is based on the
outer approximation method (OA method for short) for a D.C. optimization problem. D.C.
stands for difference of two convex sets (or functions), which will be defined in Section 3.

Our motivation to consider (mmF ) is shown below. When we attempt to solve a max-
imum flow problem on condition that we are not be allowed to decrease arc flows, we often
fail to obtain the maximum flow and are obliged to put up with a maximal flow. Under
this restricted controllability, the minimum flow value attained by a maximal flow, i.e., the
optimal value of (mmF ), indicates how inefficiently the network can be utilized. Figure 1
highlights the difference between maximum flow and minimum maximal flow. For net-
work (a), both are 3. On the other hand, for network (b), the minimum maximal flow value
reduces to 2 while the maximum flow value remains 3. The minimum maximal flow value
does not monotonically increase as the capacities grow.
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Figure 1: Maximum flow vs. minimum maximal flow

Shi-Yamamoto [24] first raised (mmF ) and proposed an algorithm. Several algorithms
for (mmF ) combining local search and global optimization technique have been proposed
in, e.g., Gotoh-Thoai-Yamamoto [15] and Shigeno-Takahashi-Yamamoto [25]. An approach
of D.C. optimization is proposed in Muu-Shi [18]. The difficulty of (mmF ) is mainly due
to the nonconvexity of XM . Indeed, (mmF ) embraces the minimum maximal matching
problem, which is NP-hard (see, e.g., Garey-Johnson [14]).

It is known that (mmF ) is a special and relatively difficult case of optimization problems
over the efficient set of a multicriteria problem, which was first studied by Philip [20].
Applying a well-known result of multi objective optimization, we characterize XM as follows:
The point x̄ is in XM if and only if there exists λ ∈ Rn++ such that x̄ is an optimal solution
of

(SC(λ))

∣∣∣∣∣ max
x

λx

s.t. x ∈ X,
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16 Y. Yamamoto & D. Zenke

where Rn++ is the set of n-dimensional real row vectors whose elements are positive. There-
fore we can easily obtain a point x ∈ XM by solving (SC(λ)) for an arbitrarily chosen
λ ∈ Rn++. Furthermore, for a sufficiently large M > 0 the following set Λ substitute for
Rn++ above:

Λ = {λ ∈ Rn++ | λ � e, λ1 = M }. (1.3)

Shigeno-Takahashi-Yamamoto [25] showed that n2 suffices for M defining Λ of (1.3) for
(mmF ). It is also known and easily seen by applying the parametric linear optimization
technique for (SC(λ)) that XM is a connected union of several faces of X. As for the
optimization problem over the efficient set, the reader should refer to, e.g., White [31],
Sawaragi-Nakayama-Tanino [22], Steuer [26] and Yamamoto [33]. For solution methods, see
Benson [4–6], Bolintineanu [7], Ecker-Song [11], Fülöp [13], Dauer-Fosnaugh [10], Thach-
Konno-Yokota [27], Sayin [23], Phong-Tuyen [21], Thoai [28], Muu-Luc [17], An-Tao-Thoai
[3] and An-Tao-Muu [1, 2].

Most of the existing algorithms for (mmF ) are mainly based on the methods in opti-
mization over the efficient set of a multicriteria problem. These methods anticipate a small
number of criteria of the multicriteria problem and convert the problem to a global opti-
mization problem in variables of the number of criteria or so. The number of criteria in
(mmF ) is, however, equal to the number of arcs. Hence these methods usually do not work
efficiently for (mmF ). On the other hand our algorithm proposed in this paper does not
depend on the number of criteria. Therefore our algorithm is advantageous to (mmF ) than
the existing algorithms.

For simplicity we assume throughout this paper that the given network satisfies the
following three assumptions as well as the connectivity.

Assumption 1.2
(i) Each capacity takes a positive integer, i.e., ch ∈ Z and ch > 0 for each h ∈ E.

(ii) There is some point x ∈ X such that x > 0.

(iii) There is no t-s-path.

Note that Assumption 1.2 (i) ensures the integrality of vertices of X as well as the optimal
value of (mmF ). Note also that 0 �∈ XM by Assumption 1.2 (ii), and min{dx | x ∈ X } = 0
by Assumption 1.2 (iii).

In the next section we first introduce a gap function. We then extend the domain of the
gap function to R

n and reformulate (mmF ). Section 3 is devoted to a review of the OA
method for D.C. optimization problems. Based on this method, we propose an algorithm
for (mmF ) in Section 4, in which we introduce an ε-optimal solution and investigate the
proper range of the parameter ε for the optimality condition. To make the algorithm more
efficient, we incorporate a local search technique. Finally, we show that the algorithm with
the local search technique terminates after finitely many iterations. Further works will be
described in the last section.

Throughout this paper we use the following notations: R
n denotes the set of n-dimensional

real column vectors. Let R
n
+ = {x ∈ R

n | x � 0 } and R
n
++ = {x ∈ R

n | x > 0 }. Let Rn

denote the set of n-dimensional real row vectors, Rn+ and Rn++ are defined in the similar
way. We use e to denote the row vector of ones, 1 to denote the column vector of ones, and
ei to denote the ith unit row or column vector of an appropriate dimension. Let I denote
the identity matrix of an appropriate size. We use a� and A� to denote the transposed
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Minimum Maximal Flow Problem 17

vector of a and the transposed matrix of A, respectively. For a set S, we denote the interior
of S by intS, the closure of S by cl S, and the relative boundary of S by ∂S. We use PV to
denote the set of vertices of a polyhedron P . For two vectors v and w, let [v, w] denote the
line segment with endpoints v and w, and let (v, w] = [v, w]\{v}. Also [v, w) and (v, w)
are defined in the similar way.

2. Reformulation of (mmF ) by the Extended Gap Function

It is known that the gap function g : R
n → R ∪ {−∞} given by

g(x) = max{ey | y ∈ X, y � x } − ex (2.1)

defines the set of maximal flows XM as

XM = {x ∈ X | g(x) � 0 }.
Note that g(x) = −∞ if there is no y ∈ X such that y � x. Hence we can rewrite (mmF )
as

(mmF )

∣∣∣∣∣ min
x

dx

s.t. x ∈ X, g(x) � 0.

The function g has some nice properties such as piecewise linearity and concavity; for more
information, see, e.g., Benson [4] and White [32].

The domain of g, denoted by dom g, is the set {x ∈ R
n | g(x) > −∞}. When we apply

the OA method to (mmF ), we need to evaluate g at points outside of X. Unless there is a
point y ∈ X satisfying y � v, g(v) takes −∞, and hence no information is available about
how far the point v is from the domain of g. We extend the domain of the gap function g
to R

n in this section. The extended gap function ḡ : R
n → R is defined as

ḡ(x) = max{ey − β̄t | y ∈ X, y + t � x, t � 0 } − ex, (2.2)

where the n-dimensional row vector β̄ will be specified later. Clearly ḡ is also a piecewise
linear concave function. The following theorem in Yamamoto-Zenke [34] shows that ḡ is an
extension of g.

Theorem 2.1
(i) The domain of ḡ is R

n for any β̄ � 0.

(ii) If β̄ � ne then ḡ = g on the domain of g.

Proof: See Appendix for the proof.

Based on Theorem 2.1, we hereafter fix β̄ = ne, and we replace the constraint g(x) � 0 in
(mmF ) with ḡ(x) � 0 to obtain an equivalent formulation of (mmF ):

(mmF )

∣∣∣∣∣ min
x

dx

s.t. x ∈ X, ḡ(x) � 0,

which is equivalent to

(mmF )

∣∣∣∣∣ min
x

dx

s.t. x ∈ X\int Ḡ,
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18 Y. Yamamoto & D. Zenke

where
Ḡ = {x ∈ R

n | ḡ(x) � 0 }. (2.3)

Note that Ḡ is a convex set since ḡ is a concave function. By the definition of ḡ, it is clear
that ḡ(x) � 0 for all x ∈ X, i.e., X � Ḡ. Since Assumption 1.2 (ii) implies 0 ∈ X\XM , we
see that ḡ(0) = g(0) > 0, i.e., 0 ∈ int Ḡ. In other words Ḡ has full dimension. Additionally
we have the following lemma.

Lemma 2.2 ḡ(x) > 0 for every point x in the relative interior of X.

Proof: Let x be a point in the relative interior of X, i.e., Ax = 0 and 0 < x < c. Letting
x′ = (1+ε)x for a sufficiently small ε > 0, we see that Ax′ = 0 and 0 � x′ � c, i.e., x′ ∈ X
and x′ � x. Therefore ḡ(x) = g(x) � e(x′ − x) = εex > 0.

3. Outer Approximation Method for D.C. Optimization Problems

A set S is said to be a D.C. set if there are two convex sets Q and R such that S = Q\R. An
optimization problem on a D.C. set is called a D.C. optimization problem, which is studied
in, e.g., Tuy [29, 30] and Horst-Tuy [16]. In this section we explain the OA method for a
canonical form D.C. optimization problem, abbreviated to (CDC), which is defined as

(CDC)

∣∣∣∣∣ min
x

px

s.t. x ∈ D, h(x) � 0,

where p ∈ Rn is a cost vector, D � R
n is a nonempty compact convex set and h : R

n →
R ∪ {+∞} is a convex function. We assume that

int {x ∈ R
n | h(x) � 0 } = {x ∈ R

n | h(x) < 0 }.
Defining a convex set H = {x ∈ R

n | h(x) � 0 }, we can write (CDC) as

(CDC)

∣∣∣∣∣ min
x

px

s.t. x ∈ D\intH,

and hence (CDC) is a D.C. optimization problem. For convenience we further assume that

0 ∈ D ∩ intH, and min{px | x ∈ D } = 0. (3.1)

Note that (CDC) reduces to (mmF ) when D = X, H = Ḡ and p = d.

3.1. Regularity and optimality condition

Problem (CDC) is said to be regular when

D\intH = cl (D\H). (3.2)

Figure 2 shows an example of (CDC) that is not regular, where x∗ ∈ D\int H, while
x∗ �∈ cl (D\H).
We hereafter assume that (CDC) is regular. The regularity assumption yields the opti-
mality condition Theorem 3.1, which was given by Horst-Tuy [16]. To make this paper
self-contained, we give a proof in Appendix. In the following we denote

D(η) = {x ∈ D | px � η } (3.3)

c© Operations Research Society of Japan JORSJ (2007) 50-1
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D
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{x | px = px̄ }
hyperplane

Figure 2: The case where (CDC) is not regular

for η ∈ R.

Theorem 3.1 Let x̄ be a feasible solution of (CDC). If (CDC) is regular and D(px̄) � H
then x̄ is an optimal solution.

Proof: See Appendix for the proof.

The above optimality condition is not necessarily valid unless (CDC) is regular. For in-
stance, an optimal solution in Figure 2 is not x̄ but x∗ while the inclusion D(px̄) � H is
met.

3.2. OA method for (CDC)

Let x∗ be an optimal solution of (CDC) and x̄k ∈ D\intH be the incumbent at iteration
k. In the OA method, we construct polytopes P 0, P 1, · · · , P k, · · · such that P 0 � P 1 �
· · · � P k � · · · � D(px∗). If px̄k = 0, we have done by (3.1). In the case where px̄k > 0,
we check the optimality condition D(px̄k) � H by evaluating h(v) at each vertex v of P k.
Namely, if h(v) � 0 for each vertex v of P k, meaning P k � H, then x̄k solves (CDC).
Otherwise we construct P k+1 by adding some linear inequality to P k.

Here we describe the OA method for (CDC).

/** OA method for (CDC) **/

〈0〉 (initialization) Find an initial feasible solution x̄0 of (CDC) and construct an initial
polytope P 0 such that P 0 � D(px̄0). Compute the vertex set P 0

V of P 0. Set k := 0.

〈k〉 (iteration k) Find a vertex vk ∈ arg max{h(v) | v ∈ P k
V }.

〈k1〉 (termination) If either px̄k = 0 or h(vk) � 0, meaning P k � H, then stop. (The
current incumbent x̄k is an optimal solution of (CDC)). Otherwise, obtain the
point xk ∈ [0, vk) ∩ ∂H.

〈k2〉 (cutting the polytope) If xk �∈ D, set x̄k+1 := x̄k and P k+1 := P k ∩ {x ∈ R
n |

l(x) � 0 } for some affine function l : R
n → R such that l(vk) > 0 and l(x) � 0

for all x ∈ D(px̄k). If xk ∈ D, set x̄k+1 := xk and P k+1 := P k ∩ {x ∈ R
n | px �

px̄k+1 }.
〈k3〉 Compute the vertex set P k+1

V of P k+1. Set k := k + 1 and go to 〈k〉.

c© Operations Research Society of Japan JORSJ (2007) 50-1



20 Y. Yamamoto & D. Zenke

Remark 3.2 Note that adding a linear inequality to P k yields P k+1 and the vertex set P k
V of

P k is at hand. Subroutines for computing the vertex set P k+1
V from the knowledge of P k

V are
provided in, e.g., Chen-Hansen-Jaumard [8], Subsection 7.4 of Padberg [19] and Chapter 18
of Chvátal [9]. Due to the possible degeneracy of P k, a sophisticated implementation should
be needed, e.g., Fukuda-Prodon [12].

4. Outer Approximation Method for (mmF )

By Assumption 1.2 (ii)-(iii), we have

0 ∈ X ∩ int Ḡ, and min{dx | x ∈ X } = 0, (4.1)

which correspond to (3.1). Hence we can apply the OA method to (mmF ) if the regularity
condition is met.

4.1. Regularity and optimality condition

Unfortunately, the problem (mmF ) is not regular. Hence we introduce a positive tolerance
ε and consider, instead of (mmF ),

(mmFε)

∣∣∣∣∣ min
x

dx

s.t. x ∈ X\int Ḡε,

where

Ḡε = {x ∈ R
n | ḡ(x) � ε }. (4.2)

We call an optimal solution of (mmFε) an ε-optimal solution of (mmF ).

First we show that any positive ε ensures the regularity of (mmFε).

Theorem 4.1 The problem (mmFε) is regular for any ε > 0.

Proof: We show that

X\int Ḡε = cl(X\Ḡε) (4.3)

holds for any ε > 0.
(�) Since X\int Ḡε is closed and X\int Ḡε � X\Ḡε, we have

X\int Ḡε = cl(X\int Ḡε) � cl(X\Ḡε).

(�) Let x be an arbitrary point of X\int Ḡε and let Nδ(x) denote its δ-neighborhood,
i.e., Nδ(x) = {x′ ∈ R

n | ‖x′ − x‖ < δ }. We show that there is always a point, say
x′ in Nδ(x) ∩ (X\Ḡε). If ḡ(x) > ε then there exists γ > 0 such that ḡ(x′) > ε for any
point x′ ∈ Nγ(x) by the continuity of ḡ. This implies Nγ(x) � Ḡε, and hence x ∈ int Ḡε.
Therefore the assumption x ∈ X\int Ḡε implies that x ∈ X and ḡ(x) � ε. By Theorem 2.1,
we have ḡ(x) = g(x). When ḡ(x) < ε, take x as x′. Clearly x′ = x �∈ Ḡε and x′ = x ∈
Nδ(x), and we have done. When g(x) = ḡ(x) = ε, there is an optimal solution y∗ of
max{ey | y ∈ X, y � x } such that e(y∗ − x) = ε, and hence y∗ �= x. Take λ such that
0 < λ < min{ 1, δ/‖y∗−x‖ } and let x′ = λy∗ +(1−λ)x. Since ‖x′−x‖ = λ‖y∗−x‖ < δ,

c© Operations Research Society of Japan JORSJ (2007) 50-1
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we see x′ ∈ Nδ(x). Also we see that x′ ∈ X by the convexity of X, and hence g(x′) = ḡ(x′)
by applying Theorem 2.1 again. Since x′ � x and x′ �= x, we have

ḡ(x′) = g(x′)

= max{ey | y ∈ X, y � x′ } − ex′

< max{ey | y ∈ X, y � x } − ex

= e(y∗ − x) = ε.

Therefore we see that x′ �∈ Ḡε. This completes the proof.

We illustrate a difference between (mmF ) and (mmFε) in Figure 3, in which we use a two-
dimensional general polyhedron X = {x ∈ R

2 | Bx � b, x � 0 } with B ∈ R
m×2 and

b ∈ R
m because the set of feasible flows X = {x ∈ R

n | Ax = 0, 0 � x � c } is unsuitable
for illustration. In this figure, we see that X\int Ḡε = cl(X\Ḡε) while X\int Ḡ �= cl(X\Ḡ).

X

Ḡε

X

Ḡ

XM XM

Figure 3: A difference between (mmF ) and (mmFε)

Next we discuss an upper bound of ε, which will be crucial for the convergence of the
algorithm.

Lemma 4.2 If ε ∈ (0, 1) then 0 ∈ int Ḡε, and (0, v) ∩ ∂Ḡε �= ∅ for any point v such that
ḡ(v) � 0.

Proof: We have ḡ(0) > 0 since 0 ∈ int Ḡ. Note that ḡ(0), which coincides with g(0),
takes an integer value by the integrality property of X, and hence ḡ(0) � 1. Then we have
ḡ(0) > ε, i.e., 0 ∈ int Ḡε for any ε ∈ (0, 1). The continuity of ḡ ensures the last assertion.

In the following lemma, we use δs to denote the number of arcs leaving node s, i.e.,

δs = |{h | dh = +1 }|. (4.4)

Lemma 4.3 Let x∗ and x∗
ε be an optimal solution and an ε-optimal solution of (mmF ),

respectively. Then 0 � dx∗ − dx∗
ε � εδs.

Proof: Since x∗ ∈ X and ḡ(x∗) � 0, x∗ is a feasible solution of (mmFε), and hence
dx∗

ε � dx∗. Let y∗
ε be an optimal solution of max{ey | y ∈ X, y � x∗

ε }. Clearly
y∗

ε ∈ XM , i.e., y∗
ε is a feasible solution of (mmF ), and hence dx∗ � dy∗

ε. We see that
(y∗

ε)h − (x∗
ε)h � ε for each h = 1, . . . , n, since y∗

ε −x∗
ε � 0 and e(y∗

ε −x∗
ε) � ε. This implies

d(y∗
ε − x∗

ε) � ε|{h | dh = +1 }| = εδs, implying dx∗
ε � dx∗ � dy∗

ε � dx∗
ε + εδs.

c© Operations Research Society of Japan JORSJ (2007) 50-1
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Theorem 4.4 Let x∗
ε be an ε-optimal solution for some ε ∈ (0, 1/δs). Then dx∗

ε� coin-
cides with the optimal value of (mmF ).

Proof: From Lemma 4.3 we see that 0 � dx∗−dx∗
ε < 1. This inequality and the integrality

of dx∗ give the assertion.

In the sequel we choose ε from the open interval (0, 1/δs).
Note that ḡ(x∗

ε) � ε holds for an ε-optimal solution x∗
ε of (mmF ). Therefore ḡ(x) � 0

for any accumulation point x of {x∗
ε}ε→0+. This observation leads to the following corollary.

Corollary 4.5 Let {x∗
ε}ε→0+ be a sequence of ε-optimal solutions of (mmF ) for ε converg-

ing to 0 from above. Then any accumulation point of {x∗
ε}ε→0+ is an optimal solution of

(mmF ).

For η ∈ R let
X(η) = {x ∈ X | dx � η }. (4.5)

As seen in Theorem 3.1, the optimality condition of (mmFε) is X(dx̄ε) � Ḡε for some
x̄ε ∈ X\int Ḡε. We can further relax this condition.

Theorem 4.6 Let x̄ε ∈ X\int Ḡε for some ε ∈ (0, 1/δs). If X(dx̄ε − 1�) � Ḡε′ for some
ε′ > 0 then dx̄ε� coincides with the optimal value of (mmF ).

Proof: Let x∗ and x∗
ε be an optimal solution and an ε-optimal solution of (mmF ), respec-

tively. Since x̄ε is a feasible solution of (mmFε), we have dx∗
ε � dx̄ε. It is also clear that

dx∗
ε � dx∗. If dx∗ < dx̄ε then we have x∗ ∈ X(dx̄ε − 1�) � Ḡε′ since dx∗ is integer, and

hence ḡ(x∗) � ε′ > 0, which contradicts that ḡ(x∗) = 0. Then we have dx̄ε � dx∗. Hence
by Lemma 4.3 we obtain dx∗

ε � dx̄ε � dx∗ � dx∗
ε + εδs < dx∗

ε + 1. This completes the
proof.

We construct a polytope P satisfying X(dx̄ε−1�) � P for some x̄ε ∈ X\int Ḡε. Let v∗ be
a vertex minimizing ḡ(v) over PV and ε′ = ḡ(v∗). For any x ∈ P we have ḡ(x) � ḡ(v∗), i.e.,
0 � ḡ(x) − ḡ(v∗) = ḡ(x) − ε′, and hence P � Ḡε′ . This implies that X(dx̄ε − 1�) � Ḡε′ .
Therefore if ε′ > 0 then the optimal value of (mmF ) is obtained by Theorem 4.6.

4.2. Local search

For v ∈ XM ∩ XV , we define the set of efficient vertices linked to v by an edge as

NM (v) = {v′ ∈ XM ∩ XV | [v, v′] is an edge of X } (4.6)

= {v′ ∈ XV | [v, v′] is an edge of X and g(v′) � 0 }.

Whenever we find a feasible solution w ∈ XM , we apply the following Local Search procedure
starting with w (LS(w) for short) for further improvement.

The procedure is described as follows.

/** LS(w) procedure **/

〈0〉 (initialization) If w �∈ XV then find the face F of X containing w in its relative interior
and solve min{dx | x ∈ F } to obtain a vertex v0 ∈ XM ∩XV ; otherwise set v0 := w.
Set k := 0.

c© Operations Research Society of Japan JORSJ (2007) 50-1
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〈k〉 (iteration k) Find a vertex v∗ ∈ arg min{dv | v ∈ NM (vk) }. If dv∗ � dvk then stop,
vk is a local optimal vertex of (mmF ). Otherwise set vk+1 := v∗, k := k + 1 and go to
〈k〉.

Remark 4.7 If w ∈ XM , the face F of X containing w in its relative interior is contained
in XM since XM is a connected union of several faces of X.

4.3. Algorithm and its finite convergence

We describe the OA method for (mmF ) as follows.

/** OA method for (mmF ) **/

〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XM∩XV of (mmF ). If NM (w0) = ∅
then stop. (w0 is a unique feasible solution of (mmF )). Otherwise, apply the LS(w0)
procedure to obtain a local optimal vertex x̄0 ∈ XM ∩ XV . Solve ζ := max{ex | x ∈
X, dx � dx̄0 − 1 } and construct an initial polytope P 0 � X(dx̄0 − 1) by setting
P 0 := {x ∈ R

n | ex � ζ, dx � dx̄0 − 1, x � 0 }. Compute the vertex set P 0
V of P 0.

Set k := 0.

〈k〉 (iteration k) Find a vertex vk ∈ arg min{ ḡ(v) | v ∈ P k
V }.

〈k1〉 (termination) If either dx̄k = 0 or ḡ(vk) > 0 then stop. (The optimal value of
(mmF ) is dx̄k�). Otherwise, obtain the point xk

ε ∈ (0, vk) ∩ ∂Ḡε. (Note that
Lemma 4.2 ensures that (0, vk) ∩ ∂Ḡε �= ∅).

〈k2〉 (update) If xk
ε ∈ X, obtain the point xk ∈ (0, vk] ∩ ∂Ḡ.

〈k2.1〉 If xk ∈ X, meaning xk ∈ XM , then obtain a local optimal vertex zk ∈
XM ∩XV by applying the LS(xk) procedure, and further obtain the point
zk

ε ∈ (0, zk) ∩ ∂Ḡε. Set x̄k+1 := zk
ε when dzk

ε < dxk
ε , and x̄k+1 := xk

ε

otherwise. Set P k+1 := P k ∩ {x ∈ R
n | dx � dx̄k+1 − 1� }.

〈k2.2〉 If xk �∈ X, meaning xk �∈ XM , then set x̄k+1 := xk
ε and

P k+1 := P k ∩ {x ∈ R
n | dx � dx̄k+1 − 1�, l(x) � 0 } with an appropri-

ately chosen affine function l : R
n → R. (see Remark 4.8)

〈k3〉 If xk
ε �∈ X then set x̄k+1 := x̄k and P k+1 := P k ∩ {x ∈ R

n | l(x) � 0 } with an
appropriately chosen affine function l : R

n → R. (see Remark 4.8)

〈k4〉 Compute the vertex set P k+1
V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 4.8 The inequality l(x) � 0 in Step k2.2 and Step k3 is given by one of the
inequalities ±Ax � 0 and x � c not satisfied by the point vk, i.e.,

(i) l(x) = ejx − cj for some j ∈ {1, . . . , n} such that vk
j > cj, or

(ii) l(x) = sgn(aivk)aix for some i ∈ {1, . . . , m} such that aivk �= 0, where ai is the ith
row of A, and

sgn(α) =

{
+1 when α > 0

−1 when α < 0.

Lemma 4.9 Let zk be a local optimal vertex obtained by applying the LS(xk) procedure
starting with xk in Step k2.1 at iteration k, and suppose dzk > 0. Then dzk′

< dzk for
iteration k′ such that k′ > k.
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Proof: By the construction of P k′
we have P k′ � {x | dx � dx̄k′ − 1� }. Since xk′ ∈

(0, vk′
] � P k′

and zk′
is obtained by LS(xk′

), we have

dzk′ � dxk′ � dx̄k′ − 1�.
Since we assume that dzk > 0, we have 0 < dzk

ε < dzk by the choice of zk
ε . Therefore in

Step k2.1

dx̄k′ − 1� < dx̄k′ � dx̄k′−1 � · · · � dx̄k+1 � dx̄k = min{dxk
ε , dzk

ε} < dzk.

Combining the two inequalities yields the desired result.

Theorem 4.10 The OA method for (mmF ) computes the optimal value of (mmF ) after
finitely many iterations.

Proof: (correctness) If NM(w0) = ∅ at the initialization step, we can conclude from the
connectedness of XM that w0 is a unique feasible solution of (mmF ) and hence solves the
problem. When the algorithm terminates in Step k1, the optimal value of (mmF ) is equal
either to zero by Assumption 1.2 (iii), or to dx̄k� by Theorem 4.6. So the optimal value
is obtained whenever the algorithm terminates.

We suppose that the algorithm has not yet terminated at iteration k, i.e., dx̄k > 0 and
ḡ(vk) � 0, and show that each step of the algorithm can be executed. Lemma 4.2 ensures
that there are points xk

ε ∈ (0, vk) ∩ ∂Ḡε and zk
ε ∈ (0, zk) ∩ ∂Ḡε, in Step k1 and Step k2.1,

respectively. Since 0 ∈ int Ḡ and vk �∈ int Ḡ, there also exists a point xk ∈ (0, vk] ∩ ∂Ḡ.
When xk

ε �∈ X, clearly vk �∈ X, and hence the function l : R
n → R of Remark 4.8 can be

found in Step k3. To show that the function l : R
n → R can be found in Step k2.2 we

have only to show that vk �∈ X. Suppose the contrary, i.e., vk ∈ X. By the assumption
that ḡ(vk) � 0 and the fact that ḡ(x) � 0 for all x ∈ X, we have ḡ(vk) = 0, i.e., vk ∈ ∂Ḡ,
and hence vk ∈ X\int Ḡ = XM . This implies xk = vk ∈ XM by the choice of xk, which
contradicts that we are currently at iteration k2.2. Therefore we have seen that vk �∈ X in
Step k2.2.
(finiteness) Suppose that the polytope P ν at iteration ν meets the condition

P ν � X and P ν ∩ XM = ∅, (4.7)

after updated either in Step k2 or in Step k3, and consider the next iteration. Since vν is
chosen from P ν , we have vν ∈ X\XM and consequently ḡ(vν) > 0. Then the algorithm
stops at Step k1. Therefore we have only to prove that (4.7) holds within a finite number
of iterations. Note first that both Step k2.2 and Step k3 are done only a finite number
of times. By the definition of affine function l, the polytope, say P k′

, when 2m + n cuts
l(x) � 0 have been added to the initial polytope P 0, is contained in X. Therefore vk′

as well
as xk′

ε lies in X, and hence we obtain that xk′
= vk′ ∈ XM . Therefore we come to neither

Step k2.2 nor Step k3 after iteration k′. Namely, Step k2.1 followed by Step k4 repeats
itself after iteration k′. For iteration k with k � k′ + 1, we have xk ∈ XM . We then locate
zk ∈ XM ∩XV by applying the LS(xk) procedure and obtain a point zk

ε ∈ (0, zk)∩ ∂Ḡε. If
dzk = 0 for some k � k′ + 1 then we set x̄k+1 := zk

ε since dzk
ε = dzk = 0 � dxk

ε . Then the
incumbent value dx̄k+1 becomes zero, and hence the algorithm stops in Step k1 at the next
iteration. If dzk > 0 for all k with k � k′ +1, we see that dzk+1 < dzk for all k � k′ +1 by
Lemma 4.9. Since |XM ∩ XV | is finite, we eventually obtain a point zν−1 ∈ XM ∩XV such
that dzν−1 � dz for all z ∈ XM ∩XV . Also we have dzν−1

ε < dzν−1 by the choice of zν−1
ε .
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The polytope P ν is then defined as P ν := P ν−1 ∩ {x | dx � dx̄ν − 1� }, where x̄ν satisfies
that dx̄ν = min{dxν−1

ε , dzν−1
ε } < dzν−1. This means that P ν ∩ (XM ∩ XV ) = ∅. Since

XM is a connected union of several faces of X, we see that dzν−1 � dx for all x ∈ XM .
Therefore we conclude that P ν ∩ XM = ∅.

We illustrate the OA method for (mmF ) in Figure 4. We obtain a local optimal vertex
x̄0 ∈ XM ∩XV and set up an initial polytope P 0 (See (a)). It is easy to enumerate all vertices
of P 0 because this polytope is simply given by P 0 := {x ∈ R

n | ex � ζ, dx � dx̄0−1, x �
0 }. We obtain a point v0 minimizing ḡ(v) over P 0

V , and a point x0
ε ∈ (0, v0)∩∂Ḡε (See (b)).

We see that x0
ε �∈ X, and hence set x̄1 := x̄0 and cut off v0 from P 0 (See (c)). Using P 0

V ,
we compute P 1

V . In the next iteration, we obtain points v1, x1
ε and x1. Since x1 ∈ XM ,

we apply the LS(x1) procedure to obtain a point z1, and obtain a point z1
ε ∈ (0, z1) ∩ ∂Ḡε

(See (d)). We find a point z1
ε ∈ X\int Ḡε such that dz1

ε < dx1
ε. We then set x̄2 := z1

ε and
construct P 2 by adding the cut dx � dx̄2 − 1� to P 1 (See (e)). Because ḡ(v) > 0 for all
vertices v of P 2 (See (f)), we terminate at the next iteration with the optimal value dx̄2�.

4.4. Approximation algorithm for non-integral capacity

In this paper as well as in other studies on (mmF ), we assume that each capacity is integer
(See Assumption 1.2 (i)). In this subsection we remove this assumption and explain a
modification of our algorithm to find an approximate solution. When a network does not
meet Assumption 1.2 (i), the feasible region X does not enjoy the integrality property, which
played a crucial role in obtaining the optimal value. Then we need to modify the OA method
for (mmF ) so that the algorithm provides a solution x̄ ∈ X such that dx̄ � dx∗ � dx̄ + ε
for an optimal solution x∗ of (mmF ) and for a fixed tolerance ε > 0. Fortunately this
modification is easily done as follows.

We set ε as ε := ε/δs to assure that dx∗
ε � dx∗ � dx∗

ε + ε of Lemma 4.3. Using an
initial incumbent solution x̄0 ∈ XM , we construct the initial polytope P 0 as P 0 := {x ∈
R

n | ex � ζ, dx � dx̄0 − ε, x � 0 }, where ζ := max{ex | x ∈ X, dx � dx̄0 − ε }, so
that we have P 0 � X(dx̄0 − ε). Also when we cut the current polytope P k by using new
incumbent solution x̄k+1, we set P k+1 := P k ∩ {x ∈ R

n | dx � dx̄k+1 − ε }. It is readily
seen that the modified algorithm also terminates after finitely many iterations.

5. Further Works

The OA method provides the optimal value but may fail to provide an optimal solution of
(mmF ). Finding an optimal solution is still a hard task even when its value is at hand.
The following lemma affords a clue to the way of finding an optimal solution.

Lemma 5.1 Let ε ∈ (0, 1), x∗
ε be an ε-optimal solution of (mmF ) and

Δε = { ξ ∈ R
n | Aξ = 0, ξ � 0, eξ � ε }. (5.1)

If x∗
ε + ξ̄ is an integer vector for some ξ̄ ∈ Δε then x∗

ε + ξ̄ is an optimal solution of (mmF ).

Proof: (feasibility) Let x∗ = x∗
ε + ξ̄ and y∗ be an optimal solution of max{ey | y ∈

X, y � x∗ }. Note that

ex∗ is integer, (5.2)

ex∗
ε � ex∗ � ey∗, (5.3)
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(f) termination

Figure 4: An example of the OA method for (mmF )
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and also

ey∗ is integer, (5.4)

since X ∩ {y | y � x∗ } inherits the integrality property of X.
Suppose we have the inequality

ey∗ < ex∗
ε + 1. (5.5)

Then by (5.3) and (5.5) together with the integrality of ex∗ and ey∗ we see that ex∗ = ey∗.
Hence ḡ(x∗) = ey∗ − ex∗ = 0, meaning that x∗ ∈ XM .

The inequality (5.5) is seen as follows. Let y∗
ε be an optimal solution of max{ey | y ∈

X, y � x∗
ε }, and let ξ∗ = y∗

ε − x∗
ε. We see that Aξ∗ = Ay∗

ε − Ax∗
ε = 0, ξ∗ � 0 and

eξ∗ = e(y∗
ε − x∗

ε) = g(x∗
ε) � ε, and hence ξ∗ ∈ Δε. Then ey∗

ε = e(x∗
ε + ξ∗) � ex∗

ε + ε <
ex∗

ε +1. The point y∗ is a feasible solution of max{ey | y ∈ X, y � x∗
ε }, since y∗ ∈ X and

y∗ � x∗ = x∗
ε + ξ̄ � x∗

ε. Then we see that e(y∗
ε −y∗) � 0, and hence ey∗ � ey∗

ε < ex∗
ε +1.

(optimality) We show that x∗ solves (mmF ). Clearly, dξ̄ � eξ̄ since d � e and ξ̄ � 0.
For any v ∈ XM ∩ XV , we see that g(v) � ε, and v is an integer vector by the integrality
property of X. Since x∗

ε = x∗ − ξ̄ is an optimal solution of (mmFε), we have dx∗
ε � dx for

all x ∈ X such that g(x) < ε, and hence dx∗
ε � dv for all v ∈ XM ∩XV . Then we see that

dx∗ = dx∗
ε + dξ̄ � dv + eξ̄ < dv + 1. Since both x∗ and v are integer vectors, we have

dx∗ � dv for all v ∈ XM ∩ XV .

Since the dimension of X is n−m, it would be desirable to reduce the number of variables
that we have to handle in the algorithm. Yamamoto-Zenke explains an idea in [34], with
the proviso that it does not work generally. Computational experiment should be carried
out to improve the efficiency of the algorithm in this paper.

Appendix

Proof of Theorem 2.1

Proof: (i) The extended gap function ḡ(x) of (2.2) is given by the optimal value of

(PG(x))

∣∣∣∣∣∣∣
max
y,t

ey − ex − β̄t

s.t. Ay = 0, 0 � y � c,
y + t � x, t � 0,

whose dual problem is

(DG(x))

∣∣∣∣∣
min

π,α,β
αc − βx − ex

s.t. (π, α, β) ∈ Ω̄,

where

Ω̄ = { (π, α, β) ∈ Rm+2n | πA + α− β � e, α � 0, 0 � β � β̄ }.
For any x ∈ R

n, (DG(x)) is feasible, e.g., take π = β = 0 and α � e, and has the finite
optimal value. By the duality theorem of linear programming, for any x ∈ R

n, (PG(x))
also has the finite optimal value, and hence ḡ(x) is finite for any x ∈ R

n.
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(ii) Let x be a point in the domain of g. By the similar observation in (i), the gap function
g(x) of (2.1) is given by the optimal value of

(DG(x))

∣∣∣∣∣
min

π,α,β
αc − βx − ex

s.t. (π, α, β) ∈ Ω,

where

Ω = { (π, α, β) ∈ Rm+2n | πA + α − β � e, α, β � 0 }.
If β̄ is so large that every vertex (πv, αv, βv) of Ω satisfies βv � β̄ then Ω̄ contains every
vertex of Ω, and hence we have ḡ(x) = g(x) by the theory of linear programming. Replacing
π by π1 − π2 with π1, π2 � 0 and introducing a slack variable vector γ � 0, we rewrite Ω
as

Ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

(π1)�

(π2)�

α�

β�

γ�

⎤
⎥⎥⎥⎥⎦

[
A� −A� I −I −I

]
⎡
⎢⎢⎢⎢⎣

(π1)�

(π2)�

α�

β�

γ�

⎤
⎥⎥⎥⎥⎦ = 1,

⎡
⎢⎢⎢⎢⎣

(π1)�

(π2)�

α�

β�

γ�

⎤
⎥⎥⎥⎥⎦ � 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Let v be a vertex of Ω. Then it is a basic solution of the system defining Ω, i.e., v =
(wB, wN) = (B−11, 0) for some nonsingular n × n submatrix B of

[
A� −A� I −I −I

]
.

Since the incidence matrix A is totally unimodular, so is
[
A� −A� I −I −I

]
. Therefore

the matrix B−1 is composed of −1, 0 and +1, and hence B−11 � n1. This completes the
proof.

Proof of Theorem 3.1

Proof: Suppose that x̄ ∈ D\intH is not an optimal solution of (CDC), i.e., there exists
y ∈ D\intH such that py < px̄. Clearly, y ∈ D(px̄) and h(y) � 0. If h(y) > 0 then y is
not contained in H, and hence y ∈ D(px̄)\H. By the regularity assumption, if h(y) = 0,
i.e., y ∈ ∂H then we can take y′ ∈ Nδ(y) ∩ D such that py′ < px̄ and h(y′) > 0 for a
sufficiently small δ > 0, where Nδ(y) = {y′ ∈ R

n | ‖y′ − y‖ < δ }, and hence we see that
y′ ∈ D(px̄)\H.
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