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Abstract This paper tries to incorporate all Huang and Chung [4], Chung and Huang [2] and Teng [7] to
develop the retailer’s inventory model. That is, we want to investigate the retailer’s optimal replenishment
policy with noninstantaneous receipt under trade credit, cash discount and the retailer’s unit selling price
is not lower than the unit purchasing price. Mathematical models have been derived for obtaining the
optimal cycle time for item so that the annual total relevant cost is minimized. One easy-to-use theorem is
developed to efficiently determine the optimal cycle time for the retailer. Some previously published results
of other researchers are deduced as special cases. Furthermore, numerical examples are given to illustrate
the results and managerial insights are drawn.
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1. Introduction

In the real world, the supplier often makes use of the trade credit policy to promote his/her
commodities. Before the end of trade credit period, the retailer can sell the goods and
accumulate revenue and earn interest. A higher interest is charged if the payment is not
settled by the end of trade credit period. Therefore, it makes economic sense for the retailer
to delay the settlement of the replenishment account up to the last moment of the permissible
period allowed by the supplier. In the credit card market, we can easily find the above
situation. We can buy any items and do not pay the payment immediately. However, we
must pay higher interest if the payment is not settled by the end of the payment time
assigned by credit card issuers (or banks).

From the viewpoint of the supplier, the supplier hopes that the payment is paid from
retailer as soon as possible. It can avoid the possibility of resulting in bad debt. So, in
most business transactions, the supplier will offer the credit terms mixing cash discount and
trade credit to the retailer. The retailer can obtain the cash discount when the payment is
paid before cash discount period offered by the supplier. Otherwise, the retailer will pay full
payment within the trade credit period. For example, the supplier provides r discount off
the price if the payment is made within M1 period, otherwise the full payment is due within
M2 period, this usually denoted as “r/ M1, M2”. Many articles related to the inventory
policy under trade credit and cash discount can be found in Chang [1], Ouyang et al. [5, 6]
and Huang and Chung [4].

Recently, Teng [7] assumed that the selling price not equal to the purchasing price to
modify the Goyal’s [3] model. Chung and Huang [2] investigated the topic of permissible
delay in payments with noninstantaneous receipt. Therefore, this paper tries to incorpo-
rate all Huang and Chung [4], Chung and Huang [2] and Teng [7] to extend and develop
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the retailer’s inventory model. That is, we want to investigate the retailer’s optimal re-
plenishment policy with noninstantaneous receipt under trade credit, cash discount and
the retailer’s unit selling price is not lower than the unit purchasing price within the EPQ
framework. Mathematical models have been derived for obtaining the optimal cycle time
for item so that the annual total relevant cost is minimized. One easy-to-use theorem is
developed to efficiently determine the optimal cycle time for the retailer. Finally, numerical
examples are given to illustrate the results and managerial insights are drawn.

2. Model Formulation and Convexity

2.1. Notation
A = cost of placing one order
c = unit purchasing price per item
D = demand rate per year
h = unit stock holding cost per item per year excluding interest charges
Ie = interest which can be earned per $ per year
Ik = interest charges per $ investment in inventory per year
M1 = the period of cash discount in years
M2 = the period of trade credit in years, M1 < M2

P = replenishment rate per year, P > D

ρ = 1 − D

P
> 0

r = cash discount rate, 0 ≤ r < 1
s = unit selling price per item
T = the cycle time in years (decision variable)

TV C1(T ) = the annual total relevant cost when payment is paid at time M1 and
T > 0

=

⎧⎪⎨
⎪⎩

TV C11(T ) if M1 ≤ PM1/D ≤ T
TV C12(T ) if M1 ≤ T ≤ PM1/D
TV C13(T ) if 0 < T ≤ M1

TV C2(T ) = the annual total relevant cost when payment is paid at time M2 and
T > 0

=

⎧⎪⎨
⎪⎩

TV C21(T ) if M2 ≤ PM2/D ≤ T
TV C22(T ) if M2 ≤ T ≤ PM2/D
TV C23(T ) if 0 < T ≤ M2

TV C(T ) = the annual total relevant cost when T > 0

=

{
TV C1(T ) if the payment is paid at time M1

TV C2(T ) if the payment is paid at time M2

T ∗ = the optimal cycle time of TV C(T ).

2.2. Assumptions

(1) Demand rate, D, is known and constant.
(2) Replenishment rate, P , is known and constant.
(3) Shortages are not allowed.
(4) Time horizon is infinite.
(5) s ≥ c; Ik ≥ Ie.
(6) Supplier offers a cash discount after settlement of an order if payment is paid within M1,

otherwise the full payment is paid within M2. The account is settled when the payment
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is paid.
(7) During the time the account is not settled, generated sales revenue is deposited in an

interest-bearing account. At the end of the period, the retailer pays off all units sold
and keeps his/her profits, and starts paying for the higher interest charges on the items
in stock.

2.3. Mathematical model

The annual total relevant cost consists of the following elements: (1) annual ordering cost,
(2) annual stock holding cost (excluding interest charges), (3) annual purchasing cost (cash
discount earned if the payment is made at M1), (4) annual cost of interest charges for unsold
items when the account is settled, and (5) annual interest earned from sales revenue during
the permissible period.

(1) Annual ordering cost =
A

T
.

(2) Annual stock holding cost (excluding interest charges) =

hT (P −D)
DT

P
2T

=
DTh

2
(1 − D

P
) =

DThρ

2
.

Since the supplier offers a cash discount if payment is paid within M1, there are two payment
policies for the retailer. First, the payment is paid at time M1 to get the cash discount,
Case 1. Second, the payment is paid at time M2 not to get the cash discount, Case 2.
So purchasing cost, interest payable and interest earned, we shall discuss these two cases as
follows.

(3) Annual purchasing cost:
Case 1 : Payment is paid at time M1, the annual purchasing cost = c(1 − r)D.

Case 2 : Payment is paid at time M2, the annual purchasing cost = cD.

(4) Annual cost of interest charges for the items kept in stock:
Case 1 : Payment is paid at time M1

Case 1.1: M1 ≤ PM1

D
≤ T , as shown in Figure 1.

In this case, the retailer pays the payment at M1 to get cash discount and the
account is settled. Hence, the retailer must pay the cost of interest charges
for unsold items behind M1. Therefore, the annual interest payable

= cIk(1 − r)[
DT 2ρ

2
− (P − D)M2

1

2
]/T = cIk(1 − r)ρ(

DT 2

2
− PM2

1

2
)/T .

Case 1.2: M1 ≤ T ≤ PM1

D
, as shown in Figure 2.

Same discussion as above case 1.1, the annual interest payable

= cIk(1 − r)[
D(T − M1)

2

2
]/T .

Case 1.3: T ≤ M1.

In this case, all items have sold when the payment is paid at time M1. There-
fore, there is no interest charges are paid for the items.

Case 2 : Payment is paid at time M2

Case 2.1: M2 ≤ PM2

D
≤ T , as shown in Figure 1.
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In this case, the retailer cannot get the cash discount since the retailer pays
the payment at M2, then the account is settled. Hence, the retailer must pay
the cost of interest charges for unsold items behind M2. Therefore, the annual
interest payable

= cIk[
DT 2ρ

2
− (P −D)M2

2

2
]/T = cIkρ(

DT 2

2
− PM2

2

2
)/T .

Case 2.2: M2 ≤ T ≤ PM2

D
, as shown in Figure 2.

Same discussion as above case 2.1, the annual interest payable

= cIk[
D(T −M2)

2

2
]/T .

Case 2.3: T ≤ M2.

In this case, all items have sold when the payment is paid at time M2. There-
fore, there is no interest charges are paid for the items.

(5) Annual interest earned:
Case 1 : Payment is paid at time M1

During the time the account is not settled, generated sales revenue is deposited in an
interest-bearing account. Hence, the retailer can earn the interest from sales revenue
during ( 0, M1 ].

Case 1.1: M1 ≤ PM1

D
≤ T .

Annual interest earned = sIe(
DM2

1

2
)/T .

Case 1.2: M1 ≤ T ≤ PM1

D
.

Annual interest earned = sIe(
DM2

1

2
)/T .

Case 1.3: T ≤ M1, as shown in Figure 3.

Annual interest earned = sIe[
DT 2

2
+ DT (M1 − T )]/T .

Case 2 : Payment is paid at time M2

During the time the account is not settled, generated sales revenue is deposited in an
interest-bearing account. Hence, the retailer can earn the interest from sales revenue
during ( 0, M2 ].

Case 2.1: M2 ≤ PM2

D
≤ T .

Annual interest earned = sIe(
DM2

2

2
)/T .

Case 2.2: M2 ≤ T ≤ PM2

D
.

Annual interest earned = sIe(
DM2

2

2
)/T .

Case 2.3: T ≤ M2, as shown in Figure 3.

Annual interest earned = sIe[
DT 2

2
+ DT (M2 − T )]/T .
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M1 or M2 DT/P 

Time 

 Imax 
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Imax=(P-D)(DT/P) 

   =DTρ 

Inventory Level 

Figure 1: The total accumulation of interest payable when PM1/D ≤ T or PM2/D ≤ T

 

Time 

DT/P    M1 or M2
 

 T 

 

Imax 

DT 

Inventory Level 

Figure 2: The total accumulation of interest payable when M1 ≤ T ≤ PM1/D or M2 ≤
T ≤ PM2/D
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Time 

Figure 3: The total accumulation of interest earned when T ≤ M1 or T ≤ M2

The annual total relevant cost for the retailer can be expressed as:

TV C(T ) = ordering cost + stock-holding cost + purchasing cost + interest payable

− interest earned.

We show that the annual total relevant cost is given by
Case 1 : Payment is paid at time M1

TV C1(T ) =

⎧⎪⎨
⎪⎩

TV C11(T ) if M1 ≤ PM1/D ≤ T (1.1)
TV C12(T ) if M1 ≤ T ≤ PM1/D (1.2)
TV C13(T ) if 0 < T ≤ M1 (1.3)

where :

TV C11(T ) =
A

T
+

DThρ

2
+ c (1 − r) D + cIk (1 − r) ρ

[
DT 2

2
− PM2

1

2

]
/T

−sIe

(
DM2

1

2

)
/T, (2)

TV C12(T ) =
A

T
+

DThρ

2
+ c (1 − r) D + cIk (1 − r)

[
D (T − M1)

2

2

]
/T

−sIe

(
DM2

1

2

)
/T (3)

and

TV C13(T ) =
A

T
+

DThρ

2
+ c (1 − r)D − sIe

[
DT 2

2
+ DT (M1 − T )

]
/T. (4)

Then, we find TV C11(PM1/D) = TV C12(PM1/D) and TV C12(M1) = TV C13(M1). Hence
TV C1(T ) is continuous and well-defined. All TV C11(T ), TV C12(T ), TV C13(T ) and
TV C1(T ) are defined on T > 0 .
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Case 2 : Payment is paid at time M2

TV C2(T ) =

⎧⎪⎨
⎪⎩

TV C21(T ) if M2 ≤ PM2/D ≤ T (5.1)
TV C22(T ) if M2 ≤ T ≤ PM2/D (5.2)
TV C23(T ) if 0 < T ≤ M2 (5.3)

where :

TV C21(T ) =
A

T
+

DThρ

2
+ cD + cIkρ

(
DT 2

2
− PM2

2

2

)
/T − sIe

(
DM2

2

2

)
/T, (6)

TV C22(T ) =
A

T
+

DThρ

2
+ cD + cIk

[
D (T − M2)

2

2

]
/T − sIe

(
DM2

2

2

)
/T (7)

and

TV C23(T ) =
A

T
+

DThρ

2
+ cD − sIe

[
DT 2

2
+ DT (M2 − T )

]
/T. (8)

Then, we find TV C21(PM2/D) = TV C22(PM2/D) and TV C22(M2) = TV C23(M2). Hence
TV C2(T ) is continuous and well-defined. All TV C21(T ), TV C22(T ), TV C23(T ) and
TV C2(T ) are defined on T > 0.

2.4. Optimality conditions:

From equations (2)–(4) and (6)–(8) yield :

TV C ′
11(T ) = −

{
2A − M2

1 [cIk (1 − r)Pρ + sIeD]

2T 2

}
+

Dρ [h + cIk (1 − r)]

2
, (9)

TV C ′′
11(T ) =

2A − M2
1 [cIk (1 − r)Pρ + sIeD]

T 3

=
2A − cM2

1 PIk (1 − r) + DM2
1 [cIk (1 − r) − sIe]

T 3
, (10)

TV C ′
12(T ) = −

{
2A + DM2

1 [cIk (1 − r) − sIe]

2T 2

}
+

D [hρ + cIk (1 − r)]

2
, (11)

TV C ′′
12(T ) =

2A + DM2
1 [cIk (1 − r) − sIe]

T 3
, (12)

TV C ′
13(T ) = − A

T 2
+

D (hρ + sIe)

2
, (13)

TV C ′′
13(T ) =

2A

T 3
> 0, (14)

TV C ′
21(T ) = −

[
2A − M2

2 (cIkPρ + sIeD)

2T 2

]
+

Dρ (h + cIk)

2
, (15)

TV C ′′
21(T ) =

2A − M2
2 (cIkρP + sIeD)

T 3
=

2A − cM2
2 PIk + DM2

2 (cIk − sIe)

T 3
, (16)

TV C ′
22(T ) = −

[
2A + DM2

2 (cIk − sIe)

2T 2

]
+

D (hρ + cIk)

2
, (17)

TV C ′′
22(T ) =

2A + DM2
2 (cIk − sIe)

T 3
, (18)

TV C ′
23(T ) = − A

T 2
+

D (hρ + sIe)

2
(19)

c© Operations Research Society of Japan JORSJ (2007) 50-1



8 Y.F. Huang & K.H. Hsu

and

TV C ′′
23(T ) =

2A

T 3
> 0. (20)

Equations (14) and (20) imply that both TV C13(T ) and TV C23(T ) are convex on T > 0.
However, equation (10) implies that TV C11(T ) is convex on T > 0 if 2A−cM2

1PIk (1 − r)+
DM2

1 [cIk (1 − r) − sIe] >0; equation (12) implies that TV C12(T ) is convex on T > 0 if
2A + DM2

1 [cIk (1 − r) − sIe] > 0; equation (16) implies that TV C21(T ) is convex on T > 0
if 2A + DM2

2 (cIk − sIe)− cM2
2 PIk > 0 and equation (18) implies that TV C22(T ) is convex

on T > 0 if 2A + DM2
2 (cIk − sIe) > 0. Furthermore, we have

TV C ′
11(

PM1

D
) = TV C ′

12(
PM1

D
), TV C ′

12(M1) = TV C ′
13(M1),

TV C ′
21(

PM2

D
) = TV C ′

22(
PM2

D
)

and TV C ′
22(M2) = TV C ′

23(M2).

3. Decision Rule of the Optimal Cycle Time T ∗

The main purpose of this section is to develop a solution procedure to determine the optimal
cycle time T ∗.

Let TV C ′
ij (T ) = 0, for all i = 1 ∼ 2 and j = 1 ∼ 3. Then we can obtain

T ∗
11 =

√√√√2A − cM2
1 PIk (1 − r) + DM2

1 [cIk (1 − r) − sIe]

Dρ [h + cIk (1 − r)]

if 2A − cM2
1 PIk (1 − r) + DM2

1 [cIk (1 − r) − sIe] > 0, (21)

T ∗
12 =

√√√√2A + DM2
1 [cIk (1 − r) − sIe]

D [hρ + cIk (1 − r)]
if 2A + DM2

1 [cIk (1 − r) − sIe] > 0, (22)

T ∗
13 =

√
2A

D (hρ + sIe)
, (23)

T ∗
21 =

√√√√2A + DM2
2 (cIk − sIe) − cM2

2 PIk

Dρ (h + cIk)
if 2A+DM2

2 (cIk − sIe)−cM2
2 PIk > 0, (24)

T ∗
22 =

√√√√2A + DM2
2 (cIk − sIe)

D (hρ + cIk)
if 2A + DM2

2 (cIk − sIe) > 0 (25)

and

T ∗
23 =

√
2A

D (hρ + sIe)
. (26)

From equation (21) the optimal value of T for the case of T ≥ PM1/D is T ∗
11 ≥ PM1/D.

We can substitute equation (21) into T ∗
11 ≥ PM1/D to obtain the optimal value of T

if and only if −2A +
M2

1

D

[
cIk (1 − r)

(
P 2 − D2

)
+ sIeD

2 + hP (P −D)
]

≤ 0.
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Similar disscussion, we can obain following results:

M1 ≤ T ∗
12 ≤ PM1/D

if and only if −2A +
M2

1

D

[
cIk (1 − r)

(
P 2 − D2

)
+ sIeD

2 + hP (P − D)
]

≥ 0 and

if and only if −2A + DM2
1 (hρ + sIe) ≤ 0.

T ∗
13 ≤ M1 if and only if −2A + DM2

1 (hρ + sIe) ≥ 0.

T ∗
21 ≥ PM2/D if and only if −2A +

M2
2

D

[
cIk

(
P 2 − D2

)
+ sIeD

2 + hP (P − D)
]

≤ 0.

M2 ≤ T ∗
22 ≤ PM2/D

if and only if −2A +
M2

2

D

[
cIk

(
P 2 − D2

)
+ sIeD

2 + hP (P −D)
]

≥ 0 and

if and only if −2A + DM2
2 (hρ + sIe) ≤ 0.

T ∗
23 ≤ M2 if and only if −2A + DM2

2 (hρ + sIe) ≥ 0.

Let

Δ1 = −2A +
M2

1

D

[
cIk (1 − r)

(
P 2 − D2

)
+ sIeD

2 + hP (P −D)
]
, (27)

Δ2 = −2A + DM2
1 (hρ + sIe) , (28)

Δ3 = −2A +
M2

2

D

[
cIk

(
P 2 − D2

)
+ sIeD

2 + hP (P − D)
]

(29)

and

Δ4 = −2A + DM2
2 (hρ + sIe) . (30)

From equations (27)–(30), we can obtain Δ3 > Δ1 > Δ2 and Δ3 > Δ4 > Δ2 since M2 > M1.
Summarized above arguments, we can obtain following results.

Theorem 1 :

(A) If Δ2 ≥ 0, then TV C(T ∗) = min{TV C1(T
∗
13), TV C2(T

∗
23)}. Hence T ∗ is T ∗

13 or
T ∗

23 associated with the least cost.
(B) If Δ1 ≥ 0, Δ2 < 0 and Δ4 ≥ 0, then TV C(T ∗) = min{TV C1(T

∗
12), TV C2(T

∗
23)}.

Hence T ∗ is T ∗
12 or T ∗

23 associated with the least cost.
(C) If Δ1 ≥ 0, Δ2 < 0 and Δ4 < 0, then TV C(T ∗) = min{TV C1(T

∗
12), TV C2(T

∗
22)}.

Hence T ∗ is T ∗
12 or T ∗

22 associated with the least cost.
(D) If Δ1 < 0 and Δ4 ≥ 0, then TV C(T ∗) = min{TV C1(T

∗
11), TV C2(T

∗
23)}. Hence

T ∗ is T ∗
11 or T ∗

23 associated with the least cost.
(E) If Δ1 < 0, Δ3 > 0 and Δ4 < 0, then TV C(T ∗) = min{TV C1(T

∗
11), TV C2(T

∗
22)}.

Hence T ∗is T ∗
11 or T ∗

22 associated with the least cost.
(F) If Δ3 ≤ 0, then TV C(T ∗) = min{TV C1(T

∗
11), TV C2(T

∗
21)}. Hence T ∗ is T ∗

11 or
T ∗

21 associated with the least cost.

Theorem 1 immediately determines the optimal cycle time T ∗ after computing the num-
bers Δ1, Δ2, Δ3 and Δ4. Theorem 1 is really very simple.

c© Operations Research Society of Japan JORSJ (2007) 50-1
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4. Special Cases

In this section, we want to deduce some previously published models as special cases.

(I) Huang and Chung’s [4] model
When P → ∞ and s = c, it means that the items instantaneously receive and the

retailer’s unit selling price and the unit purchasing price are equal. Let

TV C11(T ) =
A

T
+

DTh

2
+ c(1 − r)D +

c(1 − r)IkD(T − M1)
2

2T
− cIeDM2

1

2T
,

TV C12(T ) =
A

T
+

DTh

2
+ c(1 − r)D − DcIe(M1 − T

2
),

TV C21(T ) =
A

T
+

DTh

2
+ cD +

cIkD(T −M2)
2

2T
− cIeDM2

2

2T

and

TV C22(T ) =
A

T
+

DTh

2
+ cD −DcIe(M2 − T

2
).

Equations (1.1–1.3) and (5.1–5.3) will be reduced as follows:

TV C1(T ) =

{
TV C11(T ) if M1 ≤ T (31.1)

TV C12(T ) if 0 < T ≤ M1 (31.2)

and

TV C2(T ) =

{
TV C21(T ) if M2 ≤ T (32.1)

TV C22(T ) if 0 < T ≤ M2. (32.2)

Equations (31.1–31.2) and (32.1–32.2) will be consistent with equations 1(a, b) and 4(a,
b) in Huang and Chung [4], respectively. Hence, Huang and Chung [4] will be a special case
of this paper.

(II) Chung and Huang’s [2] model
When r = M1 = 0, M2 = M and s = c, it means that the cash discount policy does not

offered and the retailer’s unit selling price and the unit purchasing price are equal. Let

TV C4(T ) =
A

T
+

DThρ

2
+ cIkρ(

DT 2

2
− PM2

2
)/T − cIe(

DM2

2
)/T,

TV C5(T ) =
A

T
+

DThρ

2
+ cIk[

D(T −M)2

2
]/T − cIe(

DM2

2
)/T

and

TV C6(T ) =
A

T
+

DThρ

2
− cIe[

DT 2

2
+ DT (M − T )]/T.

Equations (1.1–1.3) and (5.1–5.3) will be reduced as follows:

TV C(T ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

TV C4(T ) if T ≥ PM

D
(33.1)

TV C5(T ) if M ≤ T ≤ PM

D
(33.2)

TV C6(T ) if 0 < T ≤ M. (33.3)
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Equations (33.1–33.3) will be consistent with equations 6(a, b, c) in Chung and Huang
[2], respectively. Hence, Chung and Huang [2] will be a special case of this paper.

(III) Teng’s [7] model
When P → ∞, r = M1=0 andM2 = M , it means that the items instantaneously receive

and the cash discount policy does not offered. Let

TV C7(T ) =
A

T
+

DTh

2
+ cIk[

D(T − M)2

2
]/T − sIe(

DM2

2
)/T

and

TV C8(T ) =
A

T
+

DTh

2
− sIe[

DT 2

2
+ DT (M − T )]/T.

Equations (1.1–1.3) and (5.1–5.3) will be reduced as follows:

TV C(T ) =

{
TV C7(T ) if M ≤ T (34.1)
TV C8(T ) if 0 < T ≤ M (34.2)

Equations (34.1–34.2) will be consistent with equations (1) and (2) in Teng [7], respec-
tively. Hence, Teng [7] will be a special case of this paper.

5. Numerical Examples

To illustrate the results, let us apply the proposed method to solve the following numerical
examples. From Table 1 and Table 2, we can observe the optimal cycle time with various
parameters of s and M1, respectively. The following inferences can be made based on Table
1 and Table 2.

(1) The larger the value of s is, the smaller value of the optimal cycle time and the
lower value of the annual total relevant cost will be. Table 1 shows the computed
results.

(2) The larger the value of M1 is, the smaller value of the optimal cycle time and the
lower value of the annual total relevant cost will be. Table 2 shows the computed
results.

Table 1: Optimal cycle time with various value of s

Let A = $150/order, D = 500units/year, c=$50/unit, P=800units/year,
r=0.1, h=$20/unit/year, Ie = $0.15/$/year, Ik=$0.2/$/yaer, M1 = 0.1 year,
M2 = 0.15 year.
s($/unit) Δ1 Δ2 Δ3 Δ4 Theorem 1 T ∗ TV C (T ∗)

100 < 0 < 0 > 0 < 0 E T ∗
11 = 0.191 23538

150 < 0 < 0 > 0 > 0 D T ∗
11 = 0.172 23496

200 > 0 < 0 > 0 > 0 B T ∗
12 = 0.154 23318

250 > 0 < 0 > 0 > 0 B T ∗
12 = 0.138 23190
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Table 2: Optimal cycle time with various value of M1

Let A=$150/order, D=800units/year, c=$80/unit, P=900units/year, r=0.1,
s=$100/unit, h=$10/unit/year, Ie=$0.1/$/year, Ik=$0.15/$/yaer, M2=0.4
year.
M1 Δ1 Δ2 Δ3 Δ4 Theorem 1 T ∗ TV C (T ∗)
0.05 < 0 < 0 > 0 > 0 D T ∗

11 = 0.387 58316
0.1 < 0 < 0 > 0 > 0 D T ∗

11 = 0.336 58222
0.15 < 0 < 0 > 0 > 0 D T ∗

11 = 0.228 58020
0.2 > 0 > 0 > 0 > 0 A T ∗

13 = 0.184 57633

6. Conclusions

The supplier offers the trade credit policy to stimulate the demand of the retailer. However,
the supplier can also use the cash discount policy to attract retailer to pay the full payment
of the amount of purchasing cost to shorten the collection period. This paper investigates
the retailer’s replenishment policy with noninstantaneous receipt under trade credit and
cash discount and assumes that the retailer’s unit selling price and the purchasing price
per unit are not necessarily equal. The major contribution of this paper is provided a very
efficient solution procedure to help the decision-maker to quickly determine the optimal
replenishment policy. In addition, some previously published results of other researchers
are deduced as special cases. Finally, numerical examples are given to illustrate the results.
There are some managerial phenomena as follows:

(1) The retailer will order less quantity to take the benefits of the delay payments
more frequently when the larger the differences between the unit selling price per
item and the unit purchasing price per item.

(2) The retailer will order less quantity to take the benefits of the cash discount more
frequently when the smaller the differences between the period of cash discount
and the period of trade credit.
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