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Abstract In the analytic hierarchy process (AHP), the consistency of pairwise comparison is measured by
the consistency index (CI) value of pairwise comparison matrices. The CI value is defined by the size and
the principal eigenvalue of comparison matrix, and the larger the CI value is, the less consistent pairwise
comparison is. In this paper, we propose the estimation method of consistency intervals, in which the
pairwise comparison value can move without exceeding given CI threshold. The proposed method is based
on the eigenvalue method but does not calculate the principal eigenvalue and eigenvector at all, and hence,
the method enables quick estimation. The method also enables us to detect which pairwise comparison
leads to inconsistency of pairwise comparison and what extent the consistency can be improved, if the CI
value of an original comparison matrix is large. Several numerical examples show that the proposed method
is practically efficient.
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1. Introduction

The AHP (Analytic Hierarchy Process), proposed by Saaty [5], is one of decision making
models which consists of three parts, namely, making hierarchy structure of the problem,
evaluating local weights by pairwise comparison and calculating the global weights by addi-
tional sum. An AHP has been widely used because it can deal with unquantifiable objects
and its implementation is very easy. In this paper, we concentrate pairwise comparison, the
second stage of the AHP. It has been considered that an AHP is the method evaluating
alternatives in a ratio scale [2], hence, the pairwise comparison value aij means the ratio of
the weights wi and wj of alternatives i and j. When the exact weights of all alternatives are
already known, each comparison value aij equals to wi/wj exactly. In this case, a pairwise
comparison matrix A can be written as

A =

⎛
⎜⎜⎜⎜⎝

1 a12 · · · a1n

a21 1 a2n
...

. . .
...

an1 an2 · · · 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 w1/w2 · · · w1/wn

w2/w1 1 w2/wn
...

. . .
...

wn/w1 wn/w2 · · · 1

⎞
⎟⎟⎟⎟⎠ .

We call this situation completely consistent, which corresponds to the case that the rank
of A is one. But in practical settings, such a case seldom occurs. Moreover, if the most
popular linear scale, such as 1/9, 1/7, 1/5, 1/3, 1, 3, 5, 7, 9, is used for a comparison value, it
is hardly expected that the resulting comparison matrix has rank one.

Therefore, Saaty [5] has introduced so-called consistency index value (CI value) to mea-
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sure the consistency of pairwise comparison. The CI value is defined as

CI =
λmax − n

n − 1
, (1.1)

where n is the size of a comparison matrix A and λmax is the principal eigenvalue of A. It is
well known that λmax ≥ n holds for a pairwise comparison matrix and that λmax = n if and
only if the corresponding comparison matrix is completely consistent. Hence, in general the
more CI value is, the less consistent a pairwise comparison matrix is, and Saaty [5] indicates
that a comparison matrix can be thought to be consistent if its CI value is less than 0.1 (or
in some case, 0.15).

When an AHP is applied to practical problems, pairwise comparisons are often reviewed
and performed iteratively. Also, because of some mistake and inaccurate data, there may be
an unusual and false observations [4] which deteriorate consistency of pairwise comparison.
In such cases, it is practically useful to estimate consistency intervals, in which a pairwise
comparison value can move without exceeding a given CI threshold, or to indicate a pairwise
comparison which causes inconsistency the most.

In this paper, based on the eigenvalue method, we propose the estimation method of
consistency intervals. The proposed method does not calculate an eigenvalue and an eigen-
vector at all, but calculates an upper bound of a given CI threshold. Moreover, by using
an optimization method, the method detects a pairwise comparison error and suggests how
much the consistency can be improved, when the pairwise comparison is unacceptably incon-
sistent. For these issue, based on the geometric mean method, Aguaròn et al. [1] proposed
a calculation method of geometric consistency intervals and Lipovetsky and Conklin [4] pro-
posed the method detecting a pairwise comparison error. But so far as the authors know,
there has not been the method based on the eigenvalue method which is the most popular
way of evaluating local weights from pairwise comparison matrix in AHP.

This paper is organized as follows. In section 2, we present the Frobenius’ theorem
which is a key of our method. We give the main results in section 3. We apply the proposed
method to some numerical examples and show its practical effectiveness in section 4. Finally
in section 5 ,we conclude the paper.

2. Frobenius’ Theorem

Throughout the paper, we denote R+ as a set of positive real number, R+ = {x ∈ R|x > 0},
and Rn

+ as a set of n dimensional positive real vectors, Rn
+ = {x = (x1, . . . , xn)

T ∈ Rn|xi >
0, i = 1, . . . , n}. We assume the size of a comparison matrix A is greater than or equal to
3.

For any n × n matrix A = (aij), we call positive if all elements aij is positive, and
we denote Ai as i-th row vector of A. Then the well-known Perron-Frobenius’ theorem
[6, Theorem 1] says that there exists the unique positive eigenvalue λmax, called principal
eigenvalue and its corresponding eigenvector w∗, called principal eigenvector, whose elements
are all positive. Because a pairwise comparison matrix in AHP is of course positive, this fact
guarantees that the uniqueness of the local weights estimated by the eigenvalue method.

We also have the following Frobenius’ min-max theorem [6, Theorem 3].

Theorem 2.1 Let A be an n×n positive matrix and let its principal eigenvalue be denoted
by λmax. Then, for any positive vector w ∈ Rn

+, we have

min
{

A1w

w1
, · · · , Anw

wn

}
≤ λmax ≤ max

{
A1w

w1
, · · · , Anw

wn

}
. (2.1)
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Moreover, the both inequality holds with equality if and only if the vector w is the principal
eigenvector w∗, that is,

min

{
A1w

∗

w∗
1

, · · · , Anw
∗

w∗
n

}
= λmax = max

{
A1w

∗

w∗
1

, · · · , Anw
∗

w∗
n

}
. (2.2)

From this theorem, it can be seen that, for a given positive vector w ∈ Rn
+, the right

hand side of the equation (2.1) gives an upper bound of the principal eigenvalue. Hence,
from the equation (1.1), the CI value is guaranteed to be less than given CI, if there is a
positive vector w ∈ Rn

+ such that

max
{

A1w

w1
, · · · , Anw

wn

}
≤ n + CI × (n − 1). (2.3)

3. Main Results

In this section, we propose the method estimating consistency intervals and the method
improving consistency.

Suppose that an (i, j)-element aij of a pairwise comparison matrix A is multiplied by δ >
0 with satisfying reciprocal property, that is, a (j, i)-element aji is multiplied by 1/δ. Suppose
also that all element except aij and aji is fixed. Then, we can estimate the consistency
interval of aij if we obtain the lower and upper bound of δ satisfying the inequality (2.3).
From the equation (2.2) in Theorem 2.1, to estimate more accurately, it is desirable that the
positive vector w in (2.3) is chosen as close as the eigenvector of a perturbed comparison
matrix.

One candidate is the eigenvector w∗ of the original comparison matrix. In this case, to
estimate the consistency interval for aij, it is sufficient from the equation (2.3) to solve δ̂
and δ̃ of the equations

ai1w
∗
1 + · · · + δ̂aijw

∗
j + · · · + ainw

∗
n

w∗
i

= n + CI × (n − 1)

and
aj1w

∗
1 + · · · + δ̃ajiw

∗
i + · · · + ajnw

∗
n

w∗
j

= n + CI × (n − 1),

respectively, then either [aji/δ̃, δ̂aij] or [δ̂aij, aij/δ̃] yields consistency interval of aij for given
consistency threshold CI. However, this is not a good way as shown in the following example.

Example 3.1 Let consider the comparison matrix of size n = 3,

⎛
⎜⎝

1 2 2
1/2 1 2
1/2 1/2 1

⎞
⎟⎠ .

The CI value of this matrix is CI = 0.02681. When the above mentioned method is applied
to this matrix with CI = 0.1, consistency intervals are estimated as

a12 : [1.68858, 2.23236] CI : [0.01529, 0.03604]
a13 : [1.79182, 2.36885] CI : [0.03604, 0.01529]
a23 : [1.68858, 2.23236] CI : [0.01529, 0.03604],
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where CI denotes the CI values of the comparison matrix with which the comparison values
are replaced by the corresponding interval boundaries. This is poor result because the CI
values at the lower and upper bounds of the interval are far from the threshold and because
the only matrix satisfying the given consistency threshold is the original one if we limit the
comparison value to an integer or its reciprocal.

Therefore, we adopt the row geometric mean of a comparison matrix as a positive vector
w in (2.3), because the row geometric mean is a good approximation of a principal eigen-
vector and is often used as local weights. Moreover, it is a principal eigenvector in the case
a matrix size less than 4.

In the following, we denote v as the row geometric mean of the original comparison
matrix A = (aij), that is, the i-th element of v is

vi =

⎛
⎝ n∏

j=1

aij

⎞
⎠

1
n

.

We also denote v (δij) as the row geometric mean of a perturbed comparison matrix, in
which aij is replaced by δaij. It follows from elementary calculation and the reciprocal
property that

vi (δij) = δ
1
n vi, vj (δij) = δ−

1
n vj, vk (δij) = vk (k �= i, j).

Furthermore, let fk (δij) be denoted as the k-th element of the left hand side of (2.3) in
which aij is replaced by δaij, then direct calculations show that

fi(δij) =
aijvj

vi
δ1− 2

n +

∑
l �=i,j ailvl

vi
δ−

1
n + 1

fj(δij) =
ajivi

vj
δ−1+ 2

n +

∑
l �=i,j ajlvl

vj
δ

1
n + 1

fk(δij) =
akivi

vk
δ

1
n +

akjvj

vk
δ−

1
n +

∑
l �=i,j aklvl

vk
(k �= i, j).

Hence, if the interval of δij satisfying

f(δij) = max
1≤k≤n

fk(δij) ≤ n + CI × (n − 1) (3.1)

is found, then we can estimate the consistent interval of aij for given consistent threshold
CI.

In the case of size n = 3, we have from direct calculations that

f1(δ12) = f2(δ12) = f3(δ12) = 1 + δ1/3
(

a12a23

a13

)1/3

+ δ−1/3
(

a13

a12a23

)1/3

,

and hence,

f(δ12) = max
1≤k≤3

fk(δ12) = 1 + δ1/3
(

a12a23

a13

)1/3

+ δ−1/3
(

a13

a12a23

)1/3

.

Thus, from (3.1), the consistent interval of a12 for CI is given by

a12 :
[
δ−12a12, δ

+
12a12

]
,
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where δ±12 are two solutions of the equation

1 + δ1/3
(

a12a23

a13

)1/3

+ δ−1/3
(

a13

a12a23

)1/3

= 3 + 2CI,

that is,

δ±12 =
a13

a12a23

(
1 + CI ±

√(
1 + CI

)2 − 1

)3

. (3.2)

Similarly, f(δ13) and f(δ23) are given by

f(δ13) = 1 + δ1/3
(

a13

a12a23

)1/3

+ δ−1/3
(

a12a23

a13

)1/3

and

f(δ23) = f(δ12) = 1 + δ1/3
(

a12a23

a13

)1/3

+ δ−1/3
(

a13

a12a23

)1/3

,

respectively. Hence, consistent intervals of a13 and a23 for CI are given by

a13 :
[
δ−13a13, δ

+
13a13

]
and a23 :

[
δ−12a23, δ

+
12a23

]
,

respectively, where δ±13 are given by

δ±13 =
a12a23

a13

(
1 + CI ±

√(
1 + CI

)2 − 1

)3

(3.3)

and δ±12 are given by (3.2).
By using the equations (3.2) and (3.3), we can calculate δ±12 and δ±13 for the comparison

matrix of Example 3.1 with CI = 0.1, such that

δ+
12 = δ+

23 = 1.89186, δ−12 = δ−23 = 0.13215 δ+
13 = 7.56742, δ−13 = 0.52858,

and consistency intervals for CI = 0.1 are calculated as

a12 : [0.26430, 3.78371]
a13 : [1.05716, 15.13484]
a23 : [0.26430, 3.78371].

Remark 3.1 Let λmax(δij) be denoted as a principal eigenvalue of comparison matrix with
aij replaced by δaij. Then, in the case of n = 3, the above argument and Theorem 2.1
lead to λmax(δ12) = λmax(δ23) = f(δ12) and λmax(δ23) = f(δ23) . Hence, at the lower and
upper bound of the obtained consistent interval, a CI value of resulting comparison matrix is
equal to CI. It is easy to show that f(δ12) and f(δ13) have unique minimum δ∗12 = a13

a12a23
and

δ∗13 = a12a23
a13

, respectively, which correspond to completely consistent matrices. This is well-
known fact that a comparison matrix with size n = 3 can be made completely consistent by
replacing one of comparison value a12, a13 or a23 by a13/a23, a12a23 or a13/a12, respectively.

When the size of a comparison matrix is greater than 3, there is no longer a closed form
as the case n = 3, and hence, we should resort to numerical solution methods. The function
f(δij) defined by (3.1) has nice property, unimodal function, though f(δij) is not convex.
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Theorem 3.1 The function f(δij) : R+ → R defined by (3.1) is unimodal and has the
unique minima in R+.
Proof. Let gk : R+ → R, (k = 1, . . . , n) be a function defined as

gk(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aijvj

vi
xn−2 +

∑
l�=i,j

ailvl

vi
x−1 + 1 if k = i

ajivi

vj
x−n+2 +

∑
l�=i,j

ajlvl

vj
x + 1 if k = j

akivi

vk
x +

akjvj

vk
x−1 +

∑
l�=i,j

aklvl

vk
otherwise,

and let g : R+ → R be a function defined as

g(x) = max
1≤k≤n

gk(x). (3.4)

Then f(δij) is expressed as f(δij) = g(δ1/n), and it is suffices to show that the function g is
unimodal and has the unique minima.

We first note that each function gk becomes infinity as x → +∞ or x ↓ 0, and hence,
the function g also has the same property. Moreover, each gk is a continuous strict convex
function on R+. It is easy to show that the pointwise maximum of finitely many number
of continuous and strict convex functions is also continuous strictly convex. Therefore, the
function g defined by (3.4) is a continuous strictly convex function on R+, and must have
unique minima at R+. �

From this theorem, the consistent interval satisfying the inequality (3.1) for given thresh-
old CI is evaluated by the following consistent interval estimation procedure.

Procedure CIE

Step 1 Choose an α > 0 sufficiently large such that f(α) > n+ CI× (n− 1) and f(1/α) >
n + CI × (n − 1).

Step 2 Apply the minimizing method for one-dimensional unimodal function (e.g. a golden
section method [3]) to find a δ∗ij minimizing f(δij) over [1/α, α].

Step 3 If f(δ∗ij) > n + CI× (n− 1) then Stop. The interval satisfying (3.1) does not exist.
Otherwise, find solutions δ−ij in [1/α, δ∗ij] and δ+

ij in [δ∗ij, α] of the equation

f(δij) = n + CI × (n − 1).

The interval [δ−ijaij, δ
+
ijaij] is required one.

Note that Step 3 of this procedure is easily performed by a bisection method for example.
As stated in Remark 3.1, λmax(δij) is denoted as a principal eigenvalue of comparison

matrix with aij replaced by δaij. Then it is clear from (1.1) that minimizing λmax(δij) leads
to improving consistency. From the construction of the function f , the function f(δij) is only
an upper bound of λmax(δij), that is, λmax(δij) ≤ f(δij) in the case n ≥ 4. But it is expected
to improve consistency when the upper bound f(δij) is minimized. In particular, if there
is a pair (i, j) such that the minimum f(δ∗ij) is less than the original principal eigenvalue
λmax = λmax(1), then the consistency index is also guaranteed to be improved.

Based on the above observation, we propose the method detecting the comparison error
when the CI value of the original comparison matrix is relatively large.

Procedure ED

Step 1 Search a δ∗ij ∈ R∗
+ minimizing the function f(δij) for (i, j = i, . . . , n).
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Step 2 Choose the pair (i∗, j∗) as a candidate of a comparison error such that f(δ∗i∗j∗) is
the smallest among f(δ∗ij). The comparison value ai∗j∗ is replaced by δ∗i∗j∗ai∗j∗ to improve
consistency.

For the simplicity purpose, the Procedure ED chooses only the pair (i∗, j∗) at which the
value f(δ∗i∗j∗) is the smallest. But another pair (i′, j′), at which the value f(δ∗i′j′) is second
smallest, may also be a comparison error and a candidate for improving consistency. In fact,
our numerical results in the next section indicate that the second smallest pair can improve
consistency, but the degree is far from that by the smallest one. Finally, we note that δ∗ij
and f(δ∗ij) appeared in Step 1 of the procedure ED are already obtained in the Step 2 of
Procedure CIE and are not necessary evaluated again.

4. Numerical Experiences

In this section, we present some computational results of the proposed methods in the
previous section.

We first show the results of the matrix with size n = 3.
Example 4.1 The following comparison matrix with size n = 3 is an example of Aguarón
et al. [1]: ⎛

⎜⎝ 1 2 5
1/2 1 3
1/5 1/3 1

⎞
⎟⎠ .

The CI value of this matrix is CI = 0.00185. We evaluated the consistency intervals with
threshold CI = 0.1. From the equations (3.2) and (3.3), we obtained

δ+
12 = δ+

23 = 3.15309, δ−12 = δ−23 = 0.22024 δ+
13 = 4.54045, δ−13 = 0.317145,

and hence, consistency intervals were

a12 : [0.44049, 6.30618]
a13 : [1.58575, 22.70225]
a23 : [0.66073, 9.45927].

In this example, the upper bound of the interval for a13 is larger than 9, the upper bound
of pairwise comparison value usually used in AHP. However such a value can be computa-
tionally accepted according to the definition of CI (1.1). We note that, at the boundary of
each obtained interval, the CI value of the corresponding comparison matrix is equal to 0.1,
because the row geometric mean coincides with the principal eigenvector in the case n = 3.

Example 4.2 The next example is the comparison matrix with n = 4 such that

⎛
⎜⎜⎜⎝

1 2 2 2
1/2 1 2 2
1/2 1/2 1 2
1/2 1/2 1/2 1

⎞
⎟⎟⎟⎠

whose CI value is CI = 0.04044. We applied the Procedure CIE with CI = 0.1, and we
obtained δ±ij as

δ+
12 = δ+

23 = δ+
34 = 1.57914, δ−12 = δ−23 = δ−34 = 0.15831

δ+
13 = δ+

24 = 2.17732, δ−13 = δ−24 = 0.45928,
δ+
14 = 6.31657, δ−14 = 0.63326.
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Hence, the consistent intervals and the corresponding CI values of their boundaries were

a12, a23, a34 : [0.31663, 3.15828] CI : [0.07681, 0.07681]
a13, a24 : [0.91856, 4.35464] CI : [0.06748, 0.06748]
a14 : [1.26651, 12.63314] CI : [0.07681, 0.07681].

(4.1)

Since the size of the matrix is greater then 3, the function f(δij) is only an upper bound
of λmax(δij) and each interval obtained is expected to be inside of the corresponding exact
interval. This is also observed from the results because the CI values at the boundaries of
the obtained intervals are less than CI = 0.1. For the comparison purpose, we calculated
the consistent interval less than CI = 0.1 by substitution method where we calculated the
principal eigenvalue and eigenvector of the matrix whose comparison value aij was replaced
by some positive integer or its reciprocal. Then we have the consistent intervals as follows

a12, a23, a34 : [1/3, 3], a13, a24 : [1, 6], a14 : [2, 15].

By comparing this with the results (4.1) of the proposed method, it can be seen that the
proposed estimation method yields good estimation.

Example 4.3 The next example is the comparison matrix of size n = 4 including circular
priority such as ⎛

⎜⎜⎜⎝
1 1/2 1 2
2 1 1/2 1
1 2 1 1/2

1/2 1 2 1

⎞
⎟⎟⎟⎠ .

It can be seen from the matrix that an alternative 4 is more important than 3, 3 is more
important than 2, 2 is more than 1 and 1 is more than 4, and hence, the preference is
circular. Hence, the CI value of this matrix is large, CI = 0.16667, indicating that the
pairwise comparison is inconsistent. We applied Procedure ED and obtained the minimum
f(δ∗ij) and the corresponding δ∗ij such that

f(δ∗12) = f(δ∗23) = f(δ∗34) = 4.41421, δ∗12 = δ∗23 = δ∗34 = 4
f(δ∗14) = 4.41421, δ∗14 = 0.25
f(δ∗13) = f(δ∗24) = 4.5, δ∗13 = δ∗24 = 1.

This results suggests that one of a12, a23, a34 and a14 may be considered as comparison
error. For example, when a12 is replaced by 2 = a12 × δ∗12, the resulting matrix is

⎛
⎜⎜⎜⎝

1 2 1 2
1/2 1 1/2 1
1 2 1 1/2

1/2 1 2 1

⎞
⎟⎟⎟⎠ .

This matrix includes no circular priority and its CI value is CI = 0.08333 where consistency
is improved significantly. We remark that, in this example, second smallest pairs of our
results are (1, 3) and (2, 4) and these minimum are attained at δ∗13 = δ∗24 = 1. This does
not necessarily indicates that the consistency cannot be improved when either a13 or a24 is
perturbed. However, when a13, for example, is replaced by 2 or 1/2, the CI value of the
resulting matrix is 0.19104, greater than the original one.

For the comparison purpose, we applied another error detection and consistency improv-
ing method using the principal eigenvector such as the following.

c© Operations Research Society of Japan JORSJ (2006) 49-4
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Step 1 Calculate the principal eigenvector w∗ of the comparison matrix A and then calcu-
late aijw

∗
j/w

∗
i for (i, j = i, . . . , n).

Step 2 Find the pair (i0, j0) such that ai0j0w
∗
j0

/w∗
i0

is the largest (or smallest) among
aijw

∗
j/w

∗
i . The comparison value ai0j0 is regarded as a comparison error and ai0j0 and

aj0i0 are replaced by w∗
i0
/w∗

j0
and w∗

j0
/w∗

i0
, respectively.

In the following, we call this procedure ED2.
When the procedure ED2 is applied to this example, the principal eigenvector is w∗ =

(0.25, 0.25, 0.25, 0.25) and a12, a14, a23 and a34 are also considered as comparison errors. But
when an a12 is replaced by w∗

1/w
∗
2 = 1 for example, the CI value of the resulting matrix is

0.10337, which is larger than that of our method ED.

Example 4.4 This example is a comparison matrix of size n = 8 from Lipovetsky and
Conklin [4] such that ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 5 3 7 6 6 1/3 1/4
1/5 1 1/3 5 3 3 1/5 1/7
1/3 3 1 6 3 4 6 1/5
1/7 1/5 1/6 1 1/3 1/4 1/7 1/8
1/6 1/3 1/3 3 1 1/2 1/5 1/6
1/6 1/3 1/4 4 2 1 1/5 1/6
3 5 1/6 7 5 5 1 1/2
4 7 5 8 6 6 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The CI value of this matrix is 0.23841. Lipovetsky and Conklin [4] have detected that
a37 = 6 is comparison error and have obtained by substitution method an appropriate value
of a37 is 1/2 and the corresponding CI value is 0.11623. We applied Procedure ED and we
found that the smallest value among f(δ∗ij) was also f(δ∗37) = 9.00245 with δ∗37 = 0.06554
The corresponding comparison value was a∗

37 = 0.39321 and the CI value of that value
matrix was 0.11623. These results are almost same as the results of [4].

The second smallest of this example by Procedure ED was the pair (1, 3), and its mini-
mum was f(δ∗13) = 10.38167 attained at δ∗13 = 0.16953. The CI value of the matrix in which
a13 was replaced by 0.50859 = 3 × 0.16953 was CI = 0.20394. Thus, the second smallest
pair is hardly considered as comparison error in this example.

We also applied the procedure ED2 to this example, and the value a37 was also regarded
as a comparison error. But the revised value indicated by ED2 is w∗

3/w
∗
7 = 1.12753 and the

CI value of resulting matrix is 0.12691, which is inferior to our method.

Example 4.5 In the last computational experiences, we tested the proposed methods CIE
and ED to all possible comparison matrices of size n = 4 with the linear scale, 1/9, 1/7, 1/5,
1/3, 1, 3, 5, 7, 9. The number of all such matrices is 531441, of which only 18681 matrices
are consistent, that is, their CI values are less than 0.1, and the rest 512760 matrices are
inconsistent.

We applied the procedure CIE to consistent cases. The CIE succeeded to calculate
consistency intervals with CI = 0.1 properly for 10461 matrices of 18681 consistent matrices.
The CI values of original matrices of successful cases are 0.04390 in average and the CI values
of the boundaries of obtained consistency intervals are 0.070477 in average.

On the other hand, for inconsistent 512760 matrices, whose CI values are greater than
0.1 and their average CI value is 0.97103, we applied the procedures ED and ED2. The
both two methods could decrease successfully CI values for all 512760 matrices. However,
the average CI value of matrices improved by ED is 0.13392, which is much less than that
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of ED2, 0.37059. Furthermore, in the method ED, there are 241524 cases of which the CI
values of improved matrices are less than 0.1, while in the method ED2, there are only 66444
cases. Finally, we remark that the CI values of matrices improved by ED were less than
those of ED2 in all 512760 cases.

We conclude this section by remarking that the computational time of our methods for
these examples was negligibly small as expected.

5. Conclusion

In this paper, we have proposed the consistency interval estimation method. The proposed
method is based on the eigenvalue method, but it calculates the upper bound of the principal
eigenvalue instead of eigenvalues and eigenvectors, and hence quick estimation is possible.
As a by-product of the method, we have also proposed a comparison error detection method
when the CI value of an original comparison matrix is relatively large. Some numerical
examples have shown that the proposed methods are practically efficient and useful.

In the proposed method, we have used a row geometric mean as an approximation to
the principal eigenvector for computing upper bounds. This approximation is in general
worse as the size of comparison matrix or the CI value is large, that is, the performance of
the proposed methods, especially the procedure CIE, depend on the size and the CI value
of the original comparison matrix. Therefore, to clarify the relationship between the size
of a comparison matrix and CI in CIE yielding the target CI value is one of practically
important subject. Finding an accurate vector whose computational burden is not so much
is also a subject of future research.
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