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Abstract This paper deals with an inspection game of the customs and a smuggler. The customs can take
two options of assigning a patrol or not. The smuggler has two strategies of shipping its cargo of contraband
or not. Two players have several opportunities to take an action during a limited number of days but only
the smuggler cannot discard any opportunity intentionally. When the smuggling coincides with the patrol,
there are three possibilities that the customs captures the smuggler, the smuggler makes a success of the
smuggling or none of them happens. If the smuggler is captured or there remains no day for playing the
game, the game ends. There have been some studies so far on the inspection game. Some consider the cases
that the smuggler has only one smuggling or the perfect-capture case that the customs can certainly arrest
the smuggler on patrol, and others think of a recursive game without the probabilities of fulfilling players’
purposes. However there has been little study in which they discussed the stochastic inspection. In this
paper, we formulate the problem into a multi-stage two-person zero-sum stochastic game and investigate
some characteristics of its equilibrium solution, some of which are given in closed forms in special cases.
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1. Introduction

In this paper, we deal with an inspection game. We can find out an original of the inspection
game in Dresher [2] and Maschler [6]. Maschler generalized the Dresher’s modeling and tried
to apply the game to an inspection problem of the treaty of arms reduction. He considered
the game where a player called a violator wished to violate the treaty in secret and the
other player called an inspector wanted to commit him to effective inspection. In his model,
the violator must pay one of penalties if the violation is exposed by an inspection but he
can escape the exposure by side payment of penalty q. Dresher discussed special cases of
q = 1/2 and q = 1, and Maschler did a general case of 0 ≤ q ≤ 1. Thomas and Nisgav [8]
extended the Maschler’s model to the game of the customs and a smuggler, in which the
customs kept a watch on illegal actions of the smuggler by using one or two patrol boats
and the number of boats affected reward obtained on the capture of the smuggler. They
formulated the problem into a multi-stage recursive game and adopted a relatively simple
numerical method to repeat solving a one-stage matrix game step by step.

Baston and Bostock [1] first gave a closed form of equilibrium. Furthermore they mod-
ified the perfect-capture assumption that the inspectors or the customs certainly capture
the violator or the smuggler when both players meet, which had been adopted so far, to the
non-perfect capture model. They succeeded to solve the game by introducing the capture
probability depending on the number of patrol boats. But the opportunity for the smuggler
to ship its cargo of contraband is still assumed to be once at most, as the preceding papers
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did. Garnaev [4] extended their work to a model of three patrol boats.

Compared with these studies, Sakaguchi [7] introduced an assumption that the smuggler
possibly takes an action several times in the perfect-capture model. He considered two
versions of the model. In the first version, the smuggler is forced to do an illegal action as
many times as preplanned. In the second one, he may skip some of preplanned number of
actions. He showed that the first model was easier to solve and derived again the formula
Baston and Bostock found for the value of the game, from other point of view. His model
is a kind of the repeated game with several opportunities of smuggling and then the value
of the whole game is given by multiplying the value of the once-opportunity game by the
number of the opportunities. Furthermore his discussion is based on the assumption that
an optimal solution is always given by not a saddle point but an equilibrium point of mixed
strategies, which is an obscure point about his study. Ferguson and Melolidakis [3] extended
the Sakaguchi model. They assumed that the smuggler could get rid of the capture by means
of paying some cost q(≤ 1). If he is captured on his smuggling, he must pay unit cost 1 but
if not captured, he loses nothing. Then an interesting point is which is the best: he should
take illegal action or he should pay cost q to escape the capture by which he certainly loses
cost 1.

In the history of studies on the inspection game, our model of this paper is located in the
same position as the Sakaguchi’s in terms of the number of opportunities of the smugglings.
Unlike the Sakaguchi’s, however, we deal with a non-perfect capture model, where the
encounter of players stochastically results in one of three cases: the capture of the smuggler,
the success of smuggling or none of them. In this sense, we take account of the fulfillment
probabilities of players’ aims in the game. From a similar point of view, we [5] already
developed an inspection model, in which the smuggler is free to execute the smuggling or
not at all times. However, in this paper, the smuggler is assumed to be compelled to smuggle
as many times as preplanned by his financial or administrative constraints or other reasons.
Because of another assumption in this model that the capture of the smuggler terminates the
game, he could not exhaust all opportunity of smuggling before the end of the game. The
assumption seems natural but never has been taken in other studies so far. In the previous
models of non-perfect capture, the meeting of players was assumed to result in the capture or
the successful smuggling. In the previous models with several opportunities of smugglings,
the game proceeded to the next stage even though the smuggler was captured. Our game
is a stochastic game in the meaning that the encounter of two players stochastically leads
the game to different states at the next stage or a termination in a case.

In the next section, we describe assumptions of our model and formulate the problem
into a two-person zero-sum stochastic game considering the transition of states. In Section
3, we investigate some characteristics of the game and optimal solutions to prove that the
game has an equilibrium point of mixed strategies. Especially in some simple cases such
as once-smuggling or once-patrol, we obtain closed form of formulas for the solution. In
Section 4, we verify some properties of the solution stated in its previous sections by some
numerical examples. They include the sensitivity analysis for the number of stages, patrols
and smugglings.

2. Description of Assumptions and Formulation

We consider the following multi-stage two-person zero-sum game played by the customs and
a smuggler, say Player A and Player B, respectively.
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A1. A time horizon consists of N days and each player can take an action of patrol or
smuggling once a day. A stage of the game is represented by the number of residual
days.

A2. On the whole time horizon, Player A can patrol K times at most and Player B is
compelled to smuggle L times. If the number of times of the actions is in excess of
residual days, K > N or L > N , the excess opportunities for actions are discarded
in vain.

A3. On each opportunity of taking an action, Player A chooses one between two options
{patrol, no-patrol} and Player B between options {smuggling, no-smuggling}.

A4. If Player A patrols and Player B smuggles on the same day, Player A captures B
with probability p1 but Player B succeeds in smuggling with probability p2 or none
of them possibly happens with residual probability 1− p1 − p2, where p1 + p2 ≤ 1.
For no patrol, Player B succeeds to smuggle for a certainty.

A5. The capture of Player B brings reward α > 0 to Player A but the success of the
smuggling rewards 1 to Player B. It is assumed to be

αp1 − p2 > 0. (1)

In this game, the reward of Player A is the same amount of loss for Player B, and
vice versa. We define a payoff of the game by the reward of Player A.

A6. Unless Player B is captured, the game transfers to the next stage. The game ends
on the capture of Player B or the exhaustion of N days of the time horizon.

In Assumption A5, the number α is set relatively to reward 1 of Player B on a successful
smuggling. The condition (1) gives Player A the incentive to dispatch his patrol boats to
the smuggling area. The condition also indicates p1 > 0.

Let us suppose that the game is now at Stage n, where k opportunities of patrols are
given to Player A and l smugglings depend on Player B for execution. We denote the game
by Γ(n, k, l). In the case of n > l, we can decompose it into sequent games, depending on
players’ strategies, as follows.

S NS

Γ(n, k, l) ≡ P
NP

(
αp1 − p2 + (1− p1)Γ(n− 1, k − 1, l − 1) Γ(n− 1, k − 1, l)

−1 + Γ(n− 1, k, l − 1) Γ(n− 1, k, l)

)
.

Two rows and two columns indicate two strategies {patrol (P), no-patrol (NP)} of Player
A and {smuggling (S), no-smuggling (NS)} of Player B, respectively. Each element of the
above matrix is self-explanatory but we dare to explain the derivation of the element in the
first-row and the first-column when the patrol and the smuggling are put into action. Player
A can obtain the expected reward αp1−p2 at the stage n and the game could transfer to the
next stage with probability 1−p1. The element of the 2nd-row and the 1st-column indicates
that Player B gets reward 1 and the game moves to the next, unconditionally. However we
must note that, in the case of n = l, Player B is forced to smuggle from Assumption A2
and does not have the strategy of no-smuggling (NS). Therefore we have the following 2× 1
matrix for the transition in the case of n = l.

S

Γ(n, k, n) ≡ P
NP

(
αp1 − p2 + (1− p1)Γ(n− 1, k − 1, n− 1)

−1 + Γ(n− 1, k, n− 1)

)
.

(2)
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Now we can calculate the value of Γ(n, k, l), denoted by v(n, k, l), by a recursive formulation
in the case of n > l.

v(n, k, l) = val

(
αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1) v(n− 1, k − 1, l)

−1 + v(n− 1, k, l − 1) v(n− 1, k, l)

)
, (3)

where symbol val means the value of its sequent matrix game. In the case of l = n, we have
the following formulation from the expression (2).

v(n, k, n) = val

(
αp1 − p2 + (1− p1)v(n− 1, k − 1, n− 1)

−1 + v(n− 1, k, n− 1)

)

= max{αp1 − p2 + (1− p1)v(n− 1, k − 1, n− 1), − 1 + v(n− 1, k, n− 1)}, (4)

where n ≥ 1 is assumed. Furthermore, we have initial conditions for n = 0, k = 0 and l = 0
such as

v(0, k, l) = 0, v(n, k, 0) = 0, v(n, 0, l) = −l. (5)

Indices k and l change within the region of k ≤ n and l ≤ n but, in special cases of l > n
or k > n, we may use the following setting

v(n, k, l) =

{
v(n, n, l), for k > n ,
v(n, k, n), for l > n ,

(6)

from Assumption A2. Now we have obtained a computational estimation for the value of
the game. It starts from the initial conditions (5) and repeats the estimations (3) or (4) to
reach specified parameters n, k, l at the end. Now we state the numerical method proposed
above to solve our inspection game as a theorem.
Theorem 1 We can numerically solve our stochastic inspection game Γ(n, k, l) by two re-
cursive equations (3) and (4) with initial conditions (5).

3. Properties of Game and Solution

For the game Γ(n, k, l), we denote a mixed strategy of Players A by x = (x1, x2) at Stage n.
It means that Player A takes strategy P or NP with probabilities x1 or x2, respectively, at
the first stage n. Similarly, a mixed strategy y = (y1, y2) of Player B means that probabilities
of taking strategies S or NS are y1 or y2, respectively, at Stage n. It follows that x1 +x2 = 1
and y1 + y2 = 1 for these strategies.

The discussion about a simple case of l = n leads us to the following corollary.
Corollary 1 In the case of l = n, an optimal strategy of Player A is x∗1 = 1 except for
k = 0 and Player B must take only the strategy of the smuggling (S), of course. The value
of the game v(n, k, n) is given by the following function f(n, k).

f(n, k) ≡ αp1 − p2

p1

{
1− (1− p1)

k
}
− (n− k)(1− p1)

k . (7)

Proof: In the case of n = 1, v(1, 0, 1) = −1 for k = 0 and v(1, 1, 1) = max{αp1−p2, −1} =
αp1 − p2 for k = 1 from Eq. (4). We can see the validity of the equation (7) in these initial
cases. Now we suppose that equations v(n− 1, k, n− 1) = f(n− 1, k), k = 0, · · · , n− 1 hold
for Stage n− 1. Using Eq. (7), the first term of expression (4) can be transformed into

αp1 − p2 + (1− p1)f(n− 1, k − 1)

= αp1 − p2 + (1− p1)

[
αp1 − p2

p1

{
1− (1− p1)

k−1
}
− (n− k)(1− p1)

k−1

]

=
αp1 − p2

p1

{
1− (1− p1)

k
}
− (n− k)(1− p1)

k = f(n, k).
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For the second term, it follows that

−1 + f(n− 1, k) = −1 +
αp1 − p2

p1

{
1− (1− p1)

k
}
− (n− 1− k)(1− p1)

k

= −1 +
αp1 − p2

p1

{
1− (1− p1)

k
}
− (n− k)(1− p1)

k + (1− p1)
k

= −1 + f(n, k) + (1− p1)
k < f(n, k)

in the case of k < n and

−1 + v(n− 1, n− 1, n− 1) = −1 +
αp1 − p2

p1

{
1− (1− p1)

n−1
}

≤ −1 +
αp1 − p2

p1

{1− (1− p1)
n} = −1 + f(n, n) < f(n, n)

in the case of k = n. Therefore, v(n, k, n) = f(n, k) from Eq. (4).

Corollary 1 points out an effective strategy of patrolling in the situation that the smug-
gler would take an action every day. It says that an optimal strategy of Player A is k
successive patrols without any rest from the current stage. Any delay of the patrol brings
the unconditional reward 1 to the smuggler. By the strategy, the game goes forward without
the capture of Player B and reach the τth stage from the current with probability (1−p1)

τ−1

and Player A expects reward αp1 − p2 at the stage. Once Player A fails to capture Player
B all through the sequence of k patrols, which happens with probability (1 − p1)

k, Player
B unconditionally gains reward n− k after then. Considering these estimations, we can see
that the expected payoff of the game is given by the function f(n, k) as follows.

v(n, k, n) =
k∑

τ=1

(αp1 − p2)(1− p1)
τ−1 − (n− k)(1− p1)

k = f(n, k) .

For a simple situation of k = n, where the customs can patrol every day, we have some
properties of the game Γ(n, n, l).
Corollary 2 For game Γ(n, n, l), an optimal strategy of Player A is x∗1 = 1 at Stage n
and one of Player B is arbitrary. The following function g(l) gives the value of the game
v(n, n, l), which is independent of n.

g(l) ≡ αp1 − p2

p1

{
1− (1− p1)

l
}

. (8)

Proof: We can see the corollary holds for k = n = 1 because of v(1, 1, 0) = 0 = g(0) and
v(1, 1, 1) = αp1−p2 = g(1) from Eq. (7). Now let us assume the validity of v(n−1, n−1, l) =
g(l) for l ≤ n− 1. Player A can afford to patrol every day and x∗1 = 1 is optimal, which is
verified as follows. Applying k = n to Eq. (3), we have

v(n, n, l) = val

(
a c
b d

)
, (9)

where

a = αp1 − p2 + (1− p1)v(n− 1, n− 1, l − 1), b = −1 + v(n− 1, n− 1, l − 1), (10)

c = v(n− 1, n− 1, l), d = v(n− 1, n− 1, l) . (11)
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Noting that a = αp1 − p2 + (1 − p1)g(l − 1) = g(l) ≥ g(l − 1) > −1 + g(l − 1) = b and
c = d = g(l) = a in the above matrix, we can see that an optimal strategy is x∗1 = 1 and the
value of the game is g(l). In an additional case of l = n, we can see the function (8) gives
the value of the game from Corollary 1 noting f(n, n) = g(n).

Under the situation that the customs can patrol every day, it happens with probability
(1 − p1)

τ−1 that the smuggler can execute the τth smuggling without any capture by the
customs, even though Player B schedules l smugglings in any way. Because reward αp1−p2 is
expected for the customs at the τth smuggling, the value of the game is given by v(n, n, l) =∑l

r=1(αp1 − p2)(1− p1)
r−1 = g(l). In the case of n = k = l, we can apply both Corollary 1

and 2 to calculate the value of the game noting that f(n, n) = g(n).
Now we are going to discuss the relation between elements involved in the matrix (3) in

the case of n > l. As the result, we have the following corollary.
Corollary 3 There are some properties about the value of the game as follows:

(i) Nondecreasingness for k: v(n− 1, k − 1, l) ≤ v(n− 1, k, l).
(ii) Relation among elements of the expression (3):

αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1) ≥ v(n− 1, k − 1, l), (12)

−1 + v(n− 1, k, l − 1) ≤ v(n− 1, k, l), (13)

αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1) > −1 + v(n− 1, k, l − 1) . (14)

(iii) Nonincreasingness for n: v(n− 1, k, l) ≥ v(n, k, l).

Proof: (i) Because the whole strategies of Player A for game Γ(n−1, k, l) involve a strategy
of intentionally discarding an opportunity of patrol, we can see the property (i).
(ii) In the case of n = 1, these conditions are valid. For indices from (1, 1, 1) through current
ones (n, k, l), inequalities (12), (13) and (14) are assumed to be satisfied. Because it usually
holds the relation of “a minimax value ≥ the value of the game ≥ a maxmin value”, we
have the following inequalities from Property (i).

min{αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1), v(n− 1, k, l)}
≥ v(n, k, l) ≥ max{v(n− 1, k − 1, l), − 1 + v(n− 1, k, l − 1)}. (15)

We obtain an inequality v(n, k − 1, l) ≥ −1 + v(n − 1, k − 1, l − 1) by replacing index k
with k − 1 in the right inequality of the above expression (15) and another αp1 − p2 + (1−
p1)v(n − 1, k − 1, l − 1) ≥ v(n, k, l) from the left inequality. Using these inequalities, the
following transformation is possible.

v(n, k, l)− (1− p1)v(n, k − 1, l)

≤ αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1)− (1− p1){−1 + v(n− 1, k − 1, l − 1)}
= αp1 − p2 + 1− p1 < αp1 − p2 + 1 .

As a result, we have inequality −1+v(n, k, l) < αp1−p2 +(1−p1)v(n, k−1, l) to make sure
that inequality (14) is satisfied for n+1 and l+1. The replacement of l with l−1 in the left
inequality of expression (15) brings v(n−1, k, l−1) ≥ v(n, k, l−1). From this inequality and
the right inequality of (15), we have v(n, k, l) ≥ −1 + v(n− 1, k, l− 1) ≥ −1 + v(n, k, l− 1)
to see the validity of inequality (13) for a new index n + 1. Furthermore, we replace l with
l − 1 in the right inequality of (15) to obtain v(n, k, l − 1) ≥ v(n − 1, k − 1, l − 1). Using
this inequality and the left inequality of (15), we have the following transformation.

αp1 − p2 + (1− p1)v(n, k, l − 1) ≥ αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1) ≥ v(n, k, l) .
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It means that inequality (12) is valid for n + 1.
(iii) The property is easily obtained from the left inequality of expression (15).

Property (i) looks very reasonable from inherent properties or assumptions of the game.
Property (iii) is also understandable. The increase of the number of stages brings less
efficiency in terms of the coverage ratio of the number of patrols k over the total number of
stages n and more advantage on the number of the smuggler’s options about when he takes
an action.

Corollary 3 makes us solve the matrix game (3) more easily. We rewrite the relation
stated in the corollary.

v(n, k, l) = val




a ≥ c
∨ ∧|
b ≤ d


 , (16)

where a, b, c and d are given by Eq. (10) and (11).
In the expression (16), some equality signs bring the domination among players’ strate-

gies or a saddle point for the game. (i) In the case of c = d, the strategy P dominates
NP and the value of the game becomes v(n, k, l) = c = d. x∗1 = 1 and y∗1 = 0 is one of
optimal solutions. (ii) In the case of b = d, v(n, k, l) = d = b is the value of the game and
(x∗1 = 0, y∗1 = 0) is one of optimal solutions. (iii) In the case of a = c, the value of the game
and a solution are v(n, k, l) = a = c and (x∗1 = 1, y∗1 = 1), respectively. Anyway, we can say
that the solution of the game is given by a mixed strategy even in these special cases. In
general, we can solve the matrix game by equilibrating the expected payoff using variables
of mixed strategies and then obtain some recursive formulas for the solution of the game,
as follows.
Theorem 2 At any stage n, optimal strategies of players are given as mixed strategies. The
optimal mixed strategy of the customs x∗1, x

∗
2, that of the smuggler y∗1, y

∗
2 and the value of the

game v(n, k, l) are calculated as follows, using the value of the game v(n− 1, ·) at the next
stage n− 1.

x∗1 =
d− b

a− b− c + d
, x∗2 =

a− c

a− b− c + d
, y∗1 =

d− c

a− b− c + d
, y∗2 =

a− b

a− b− c + d
, (17)

v(n, k, l) =
ad− bc

a− b− c + d

=
{αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1)}v(n− 1, k, l) + {1− v(n− 1, k, l − 1)}v(n− 1, k − 1, l)
αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1) + 1− v(n− 1, k, l − 1)− v(n− 1, k − 1, l) + v(n− 1, k, l)

, (18)

where

a = αp1 − p2 + (1− p1)v(n− 1, k − 1, l − 1), b = −1 + v(n− 1, k, l − 1),
c = v(n− 1, k − 1, l), d = v(n− 1, k, l) .

From the theorem, we have a closed form for the value of the game in the case of l = 1.
Corollary 4 In the case of l = 1, the value of the game is given by

v(n, k, 1) =
k

n
(αp1 − p2 + 1)− 1 . (19)

Optimal mixed strategy is

x∗1 = k/n, y∗1 = 1/n , for k < n (20)

and
x∗1 = 1, y∗1 = 0 , for k = n . (21)
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Proof: Let us abbreviate v(n, k, 1) as v(n, k) since the number l is fixed to be one. The
setting of n = 1 bears the result of v(1, 1) = αp1 − p2, v(1, 0) = −1 and we can prove the
rightness of Eq. (19) for n = 1. Assume that the equation correctly gives v(n − 1, k) for
k = 0, · · · , n− 1 . The recursive formula (18) becomes

v(n, k) =
(αp1 − p2)v(n− 1, k) + v(n− 1, k − 1)

αp1 − p2 + 1− v(n− 1, k − 1) + v(n− 1, k)
(22)

by applying l = 1. Furthermore, we can organize the above expression into

1

v(n, k) + 1
=

1

v(n− 1, k) + 1

(
1− v(n− 1, k − 1) + 1

αp1 − p2 + 1

)
+

1

αp1 − p2 + 1
.

Substituting Eq. (19) for v(n− 1, k) and v(n− 1, k − 1), the right-hand side becomes

n− 1

k
· 1

αp1 − p2 + 1

(
1− k − 1

n− 1

)
+

1

αp1 − p2 + 1
=

n

k
· 1

αp1 − p2 + 1
.

Now Eq. (19) is valid too for index (n, k). For k = n, we can verify the validity of the
equation from v(n, n) = g(1) = αp1 − p2 given by expression (8). Optimal strategies (20)
and (21) are derived by applying l = 1 and Eq. (19) to formulas (17). But it should be
noted that d = v(n− 1, k − 1, l) = c for k = n.

The optimality of the mixed strategy (20) is intuitively evident. Player B, who has one
opportunity to smuggle, must select an execution date among n stages in a uniform manner
not to make Player A anticipate the date accurately. Similarly, Player A has to choose k
days of assigning patrols uniformly among n stages. The total number of the assignments
is nCk and among the number, there are n−1Ck−1 combinations that the current stage n is
selected as the first patrol day. We can see that y∗1 = 1/n and x∗1 = n−1Ck−1/nCk = k/n are
optimal mixed strategies at the current stage.

Since any patrol costs nothing in the inspection game, Player A is going to exhaust
all opportunities of patrols assigned in advance. Player B faces to the same situation by
other reason. He must do smuggle l times as assigned to him in advance. However some
opportunity could be left unused because the game possibly terminates by the capture of
Player B before the last stage 1. From now, we are going to discuss how many opportunities
are used in practice. In this calculation, it is assumed that the customs exhausts his chances
to patrol even though the smuggler has no chance to smuggle.

Let NP (n, k, l) or NS(n, k, l) be the expected number of patrols or smugglings executed
actually in the game Γ(n, k, l), respectively. We also denote optimal mixed strategies of
players at the stage n by x∗1, y∗1. The state (n, k, l) can transfer to five states at the next
stage n−1, that is, (n−1, k, l), (n−1, k−1, l), (n−1, k, l−1), (n−1, k−1, l−1) and a state
of the end of the game. The transition probability of each state is (1−x∗1)(1−y∗1), x∗1(1−y∗1),
(1 − x∗1)y

∗
1, x∗1y

∗
1(1 − p1) and x∗1y

∗
1p1. When we denote the number of executed patrols and

smugglings by random variables X and Y at the stage n, they must be (X,Y ) = (0, 0),
(1, 0), (0, 1), (1, 1) and (1, 1) in the above respective transition. Now we can derive the
following recursive formulas to calculate NP (n, k, l) and NS(n, k, l), where x∗1 and y∗1 are
optimal mixed strategies in the state (n, k, l).

NP (n, k, l) = (1− x∗1)(1− y∗1)NP (n− 1, k, l) + x∗1(1− y∗1) {1 + NP (n− 1, k − 1, l)}
+(1− x∗1)y

∗
1NP (n− 1, k, l − 1) + x∗1y

∗
1{1 + (1− p1)NP (n− 1, k − 1, l − 1)}, (23)
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Initial condition : NP (0, k, l) = 0, NP (n, k, 0) = k, NP (n, 0, l) = 0. (24)

NS(n, k, l) = (1− x∗1)(1− y∗1)NS(n− 1, k, l) + x∗1(1− y∗1)NS(n− 1, k − 1, l)

+(1− x∗1)y
∗
1{1 + NS(n− 1, k, l − 1)}+ x∗1y

∗
1{1 + (1− p1)NS(n− 1, k − 1, l − 1)}, (25)

Initial condition : NS(0, k, l) = 0, NS(n, k, 0) = 0, NS(n, 0, l) = l. (26)

4. Numerical Examples

Setting parameters as α = 2Cp1 = 0.5 and p2 = 0.3, and varying the number of stages n from
1 through 7, we calculate the solution of the game Γ(n, k, l) for all combinations of k and
l. The values of the game are listed in Table 1. Table 2 shows optimal mixed strategies of
players (x∗1, y

∗
1) at the first stage n. In Table 1, we can see that the values are not dependent

on n in the case of n = k, as stated in Corollary 2, and they are nondecreasing for k and
nonincreasing for n, as shown in Corollary 3. Furthermore, we can notice some tendencies
for k or l. In the case that k is small or the customs is hardly able to patrol so many times,
the value of the game decreases as l becomes larger. It is very natural. On the other hand,
in the case of larger k, the increase of l gives more reward to Player A or more loss to Player
B because the coincidence of the patrol and the smuggling happens more frequently and it
brings positive expected reward αp1− p2 > 0 to Player A. For example, in the case of n = 6
and k = 1 in Table 1, the increase of l causes the decreasing of the value of the game for
small l’s but the decreasing turns round to the increasing between l = 5 and l = 6. Let us
call the point, at which the decreasing/increasing tendency changes, “turning point”. The
turning point occurs among smaller l’s as k increases. The point exists between l = 2 and
3 in the case of k = 3, which is ought to be compared with the above case of k = 1. This
point affects the boundary with zero value of the game, from which we can judge which
player is a winner or a loser. For a fixed k, there exists the boundary among larger l’s than
the turning point. Table 1 shows that the boundary exists between l = 5 and 6 in the case
of n = 6, k = 2 and between l = 3 and 4 in the case of n = 6, k = 3.

In Table 2, we can verify what Corollary 1 and 2 say for some simple cases of l = n
and k = n. We can also check numbers in the column of l = 1 to see the uniform strategy
x∗1 = k/n, y∗1 = 1/n, as stated in Corollary 4. But please note that the numbers involve
the round-up errors. Provided that the strategy of Player A is uniform, the uniformity
of Player B’s strategy y1 = l/n would indicates that his capture in the early stage would
happen equally likely as in the late stage. However the early capture is disadvantageous to
Player B because it means that a large number of opportunities to smuggle are discarded
without being used. That is why optimal strategy y∗1 is actually smaller than the uniform
probability l/n and Player B tends to execute the smuggling comparatively later. For larger
k, Player A would patrol with larger probability x1 and it promotes the Player B’s tendency
of putting off smuggling. The reasoning seems to be true from the following observation in
Table 2. For a specific (n, k), the number y∗1 in the column of l = 1 equals to 1/n as already
known. The number in the column of a general l is always smaller than l times 1/n and its
diminishing rate becomes more intensive as k increases. On the other hand, Player A wants
to capture Player B earlier and x∗1 becomes larger than uniform probability k/n for any l.
As l grows, Player A increases x∗1 anticipating that his patrol is more likely to run into the
smuggling. The number x∗1 starts from the uniform probability k/n in the column of l = 1
and becomes larger as l grows.

Table 3 shows the expected numbers of patrols and smugglings executed actually in game
Γ(n, k, l) in the form of a pair (NP (n, k, l), NS(n, k, l)), which are calculated by recursive
formulas (23)-(26). The game possibly ends before the last stage only when both of the
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Table 1: Value of the game

n k l
1 2 3 4 5 6 7

1 0 -1
1 0.7
0 -1 -2
1 -0.15 0.20
2 0.70 1.05

3 0 -1 -2 -3
1 -0.43 -0.64 -0.30
2 0.13 0.40 0.80
3 0.70 1.05 1.23

4 0 -1 -2 -3 -4
1 -0.58 -1.00 -1.19 -0.80
2 -0.15 -0.15 0.06 0.55
3 0.28 0.54 0.83 1.10
4 0.70 1.05 1.23 1.31

5 0 -1 -2 -3 -4 -5
1 -0.66 -1.21 -1.61 -1.77 -1.30
2 -0.32 -0.50 -0.52 -0.29 0.30
3 0.02 0.11 0.30 0.62 0.98
4 0.36 0.63 0.87 1.10 1.25
5 0.70 1.05 1.23 1.31 1.36

6 0 -1 -2 -3 -4 -5 -6
1 -0.72 -1.34 -1.86 -2.23 -2.35 -1.80
2 -0.43 -0.74 -0.92 -0.92 -0.64 0.05
3 -0.15 -0.20 -0.15 0.03 0.41 0.85
4 0.13 0.28 0.45 0.69 0.98 1.19
5 0.42 0.70 0.91 1.11 1.25 1.33
6 0.70 1.05 1.23 1.31 1.36 1.38

7 0 -1 -2 -3 -4 -5 -6 -7
1 -0.76 -1.44 -2.03 -2.52 -2.86 -2.93 -2.30
2 -0.51 -0.92 -1.20 -1.36 -1.32 -0.99 -0.20
3 -0.27 -0.44 -0.50 -0.45 -0.23 0.20 0.73
4 -0.03 0.00 0.08 0.25 0.52 0.86 1.13
5 0.21 0.39 0.56 0.76 1.00 1.19 1.29
6 0.46 0.74 0.94 1.12 1.25 1.33 1.36
7 0.70 1.05 1.23 1.31 1.36 1.38 1.39

patrol and the smuggling are executed at the same stage. Therefore, if the number of stages
n increases while remaining k and l fixed, the probability of the coincidence goes down so
that both expected values NP (n, k, l) and NS(n, k, l) would be getting larger, as we see in
the table. For fixed n and k, larger l lifts up the coincidence probability and causes the
decrease of NP (n, k, l) for the patrol. For the smuggler, l is nothing but the planned number
of the smugglings and then larger l affects NS(n, k, l) by the interaction of the coincidence
probability and the planned number. That is why NS(n, k, l) decreases for larger l. In the
case of (n, k) = (6, 3), as l increases, NS(n, k, l) becomes larger until l = 4 but becomes
smaller for l = 5, 6. For fixed n and l, larger k pushes up NP (n, k, l) and pushes down
NS(n, k, l).
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Table 2: Optimal strategy

n k l
1 2 3 4 5 6 7

1 0 (0, 1)
1 (1, 1)

2 0 (0, 1) (0, 1)
1 (.50, .50) (1, 1)
2 (1, 0) (1, 1)

3 0 (0, 1) (0, 1) (0, 1)
1 (.33, .33) (.38, .62) (1, 1)
2 (.67, .33) (.76, .48) (1, 1)
3 (1, 0) (1, 0) (1, 1)

4 0 (0, 1) (0, 1) (0, 1) (0, 1)
1 (.25, .25) (.27, .45) (.33, .67) (1, 1)
2 (.50, .25) (.53, .44) (.67, .53) (1, 1)
3 (.75, .25) (.79, .38) (.92, .33) (1, 1)
4 (1, 0) (1, 0) (1, 0) (1, 1)

5 0 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
1 (.20, .20) (.21, .36) (.23, .52) (.30, .70) (1, 1)
2 (.40, .20) (.41, .35) (.46, .48) (.62, .56) (1, 1)
3 (.60, .20) (.62, .34) (.70, .42) (.88, .38) (1, 1)
4 (.80, .20) (.82, .31) (.90, .30) (.98, .19) (1, 1)
5 (1, 0) (1, 0) (1, 0) (1, 0) (1, 1)

6 0 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
1 (.17, .17) (.17, .30) (.18, .42) (.21, .55) (.28, .72) (1, 1)
2 (.33, .17) (.34, .29) (.36, .40) (.42, .51) (.59, .59) (1, 1)
3 (.50, .17) (.51, .29) (.55, .38) (.64, .44) (.84, .42) (1, 1)
4 (.67, .17) (.68, .28) (.73, .34) (.84, .33) (.97, .23) (1, 1)
5 (.83, .17) (.85, .26) (.89, .27) (.97, .19) (1, .10) (1, 1)
6 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 1)

7 0 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
1 (.14, .14) (.15, .26) (.15, .36) (.16, .46) (.19, .58) (.27, .73) (1, 1)
2 (.29, .14) (.29, .25) (.30, .35) (.33, .44) (.40, .53) (.56, .61) (1, 1)
3 (.43, .14) (.44, .25) (.46, .33) (.51, .41) (.61, .46) (.81, .45) (1, 1)
4 (.57, .14) (.58, .24) (.61, .31) (.68, .36) (.81, .36) (.96, .27) (1, 1)
5 (.71, .14) (.72, .24) (.76, .29) (.84, .29) (.95, .22) (1, .13) (1, 1)
6 (.86, .14) (.86, .23) (.90, .24) (.96, .18) (1, .10) (1, .05) (1, 1)
7 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 1)

5. Conclusions

We deal with an inspection game of the customs vs. a smuggler, where two players have
some opportunities to patrol or smuggle. But the smuggler is compelled to accomplish
his task as many times as given. We take account of the probability of the capture of the
smuggler or of successful smugglings and then our model involves the fulfillment probabilities
of players’ aims. It leads us to a multi-stage stochastic game, where a game at a stage can
transfer to some states at the next stage or to the end of the game. After we formulate
the stochastic game, we clarify that the solution is given as an optimal mixed strategy at
any stage. In some special cases, such as once-patrol, we derive closed-formed formulas for
optimal strategies or the value of the game. Because the patrol costs nothing, the customs is
going to patrol as many times as possible. So is the smuggler because his task to smuggle is
under compulsion. Because of additional property that the game is zero-sum, we can judge
which player becomes a winner or a loser based on whether the value of the game becomes
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Table 3: Expected number of executed patrols and smugglings

n k l
1 2 3 4 5 6 7

1 0 (0, 1)
1 (1, 1)

2 0 (0, 1) (0, 2)
1 (1, 1) (1, 1.50)
2 (2, 1) (1.50, 1.50)

3 0 (0, 1) (0, 2) (0, 3)
1 (1, 1) (1, 1.76) (1, 2)
2 (1.89, 1) (1.76, 1.56) (1.50, 1.75)
3 (3, 1) (2.50, 1.50) (1.75, 1.75)

4 0 (0, 1) (0, 2) (0, 3) (0, 4)
1 (1, 1) (1, 1.85) (1, 2.45) (1, 2.50)
2 (1.90, 1) (1.80, 1.70) (1.70, 2.02) (1.50, 2)
3 (2.75, 1) (2.50, 1.57) (2.27, 1.78) (1.75, 1.88)
4 (4, 1) (3.50, 1.50) (2.75, 1.75) (1.88, 1.88)

5 0 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)
1 (1, 1) (1, 1.88) (1, 2.62) (1, 3.10) (1, 3)
2 (1.91, 1) (1.83, 1.77) (1.75, 2.28) (1.68, 2.43) (1.50, 2.25)
3 (2.75, 1) (2.54, 1.66) (2.37, 2) (2.22, 2.03) (1.75, 2)
4 (3.60, 1) (3.24, 1.57) (2.97, 1.80) (2.62, 1.88) (1.88, 1.94)
5 (5, 1) (4.50, 1.50) (3.75, 1.75) (2.88, 1.88) (1.94, 1.94)

6 0 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)
1 (1, 1) (1, 1.91) (1, 2.70) (1, 3.34) (1, 3.72) (1, 3.50)
2 (1.92, 1) (1.85, 1.82) (1.79, 2.43) (1.73, 2.79) (1.66, 2.82) (1.50, 2.50)
3 (2.77, 1) (2.59, 1.73) (2.43, 2.18) (2.31, 2.36) (2.18, 2.27) (1.75, 2.13)
4 (3.58, 1) (3.26, 1.64) (3.01, 1.97) (2.85, 2.05) (2.58, 2.01) (1.88, 2)
5 (4.44, 1) (3.98, 1.56) (3.65, 1.81) (3.40, 1.89) (2.82, 1.94) (1.94, 1.97)
6 (6, 1) (5.50, 1.50) (4.75, 1.75) (3.88, 1.88) (2.94, 1.94) (1.97, 1.97)

7 0 (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)
1 (1, 1) (1, 1.92) (1, 2.75) (1, 3.47) (1, 4.04) (1, 4.34) (1, 4)
2 (1.93, 1) (1.87, 1.85) (1.82, 2.53) (1.76, 3.02) (1.71, 3.27) (1.65, 3.20) (1.50, 2.75)
3 (2.80, 1) (2.63, 1.77) (2.49, 2.31) (2.37, 2.62) (2.27, 2.68) (2.15, 2.49) (1.75, 2.25)
4 (3.61, 1) (3.31, 1.69) (3.08, 2.12) (2.91, 2.30) (2.78, 2.26) (2.55, 2.13) (1.88, 2.06)
5 (4.40, 1) (3.96, 1.62) (3.65, 1.95) (3.46, 2.05) (3.31, 2.02) (2.80, 2) (1.94, 2)
6 (5.29, 1) (4.72, 1.56) (4.32, 1.82) (4.11, 1.90) (3.70, 1.94) (2.91, 1.97) (1.97, 1.98)
7 (7, 1) (6.50, 1.50) (5.75, 1.75) (4.88, 1.88) (3.94, 1.94) (2.97, 1.97) (1.98, 1.98)

positive or not. In practice, we show that a parametric space of the number of stages,
patrols or smugglings is almost partitioned into halves with the positive value of the game
and the negative by numerical examples. In the paper, we also do the sensitivity analysis
to numerically verify some properties of the game stated in some theorems and corollaries.

The above description about the characteristics of the game becomes a pointer to our
future research. If the patrol spends some cost, the customs would take an action of the
patrol in a moderate fashion. If the smuggling is not compulsory but the smuggler is
penalized by the cancellation of the smuggling, he would be motivated to smuggle as many
times as possible. If two players do not have the common criterion of the payoff between
them, the game would become a bimatrix game and not the zero-sum game anymore. These
are topics for our future research.

c© Operations Research Society of Japan JORSJ (2006) 49-4



318 R. Hohzaki

References

[1] V. Baston and F. Bostock: A generalized inspection game. Naval Research Logistics,
38 (1991), 171-182.

[2] M. Dresher: A sampling inspection problem in arms control agreements: A game-
theoretic analysis. Memorandum RM-2972-ARPA, The RAND Corporation, Santa
Monica, California, 1962.

[3] T. Ferguson and C. Melolidakis: On the inspection game. Naval Research Logistics, 45
(1998), 327-334.

[4] A. Garnaev: A remark on the customs and smuggler game. Naval Research Logistics,
41 (1994), 287-293.

[5] R. Hohzaki, D. Kudoh and T. Komiya: An inspection game: Taking account of fulfill-
ment probabilities of players’ aims. Naval Research Logistics, 53 (2006), to appear.

[6] M. Maschler: A price leadership method for solving the inspection’s non-constant-sum
game. Naval Research Logistics Quarterly, 13 (1966), 11-33.

[7] M. Sakaguchi: A sequential game of multi-opportunity infiltration. Mathematica Janon-
ica, 39 (1994), 157-166.

[8] M. Thomas and Y. Nisgav: An infiltration game with time dependent payoff. Naval
Research Logistics Quarterly, 23 (1976), 297-302.

Ryusuke Hohzaki
Department of Computer Science
National Defense Academy
1-10-20 Hashirimizu, Yokosuka,
239-8686, Japan
E-mail: hozaki@cc.nda.ac.jp

c© Operations Research Society of Japan JORSJ (2006) 49-4


