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Abstract Recently Ornstein-Uhlenbeck (O-U) processes have been drawing much attention in financial
engineering for modeling stochastic behavior of spot interest rates. While transition probabilities of the
O-U processes are readily accessible, it is numerically cumbersome to quantify their dynamic behavior
much needed in certain applications, e.g., computing the prices of barrier options and the like in financial
engineering. The purpose of this paper is to develop numerical procedures for evaluating distributions of first
passage times and the historical maximums of the O-U processes via the Ehrenfest process approximation.
Using the fact that a sequence of Ehrenfest processes with appropriate scaling and shifting converges in law
to an O-U process, it is shown that first passage times and the historical maximum of the Ehrenfest processes
converge in law to those of the O-U process. Through analysis of the spectral structure of the Ehrenfest
process, efficient numerical algorithms are developed, thereby providing effective approximation tools for
capturing the dynamic behavior of the O-U process. The proposed numerical algorithms are systematic
in that the needed computations can be done repeatedly for different values of the underlying parameters
with little alterations. Some numerical results are also exhibited, demonstrating speed and accuracy of the
algorithms.

Keywords: Markov process, Ornstein-Uhlenbeck (O-U) process, Ehrenfest process, dy-
namic behavior, convergence in law, first passage times, historical maximum, numerical
approximation.

1. Introduction

We consider a Markov diffusion process on the real continuum −∞ < x <∞ characterized
by the forward diffusion equation

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t) +

∂

∂x
[x f(x, t)] , (1.1)

where f(x, t) is the probability density function defined by f(x, t) = d
dx

P [XOU(t) ≤ x]. This
process is called an Ornstein-Uhlenbeck (O-U) process denoted by {XOU(t) : t ≥ 0}. A basic
function describing this stochastic process is the conditional transition density g(x0, x, τ) =
d
dx

P [XOU(t+ τ) ≤ x|XOU(t) = x0] given by

g(x0, x, τ) =
1√

2π
√

1 − e−2τ
exp

{
−(x− x0 e−τ )

2

2 (1 − e−2τ )

}
, −∞ < x <∞. (1.2)

Its stationary or ergodic density is obtained as

f∞(x)
def.
= lim

t→∞ f(x, t) =
1√
2π

e−
x2

2 , −∞ < x <∞. (1.3)
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O-U processes generated by {XOU(t) : t ≥ 0} through appropriate shifting and scaling
find many applications to statistics, including the studies of “goodness of fit” of a set of
observations to a distribution function, see e.g. Anderson and Darling [1] and the studies
of stopping time for sample sequences, see e.g. Armitage, McPherson and Rowe [2]. During
the past three decades, the usefulness of the O-U processes has been reinforced in the area of
financial engineering where spot interest rates are often represented by such O-U processes,
see e.g. Vasicek [27]. As we saw in (1.2), because of the underlying simplicity associated
with the Gaussian transition structure, the transition probabilities of the O-U processes
are readily accessible. However, quantifying their dynamic behaviors is numerically cum-
bersome. Furthermore, when the O-U processes are modified with various boundaries, the
corresponding dynamic behaviors become analytically intractable.

For the case of absorbing boundaries, Keilson and Ross [14] find the Laplace transform of
the first passage time density to any absorbing state. The inversion process is then numer-
ically established by locating the singular points of the Laplace transform on the complex
plane and using the residue theorem. Park and Schuurmann [18] establish an integral equa-
tion to be satisfied by the first passage time density with a moving boundary. This integral
equation is solved by discretizing the time axis with equal distance. In a subsequent paper
by Park and Schuurmann [19], a non-equal distance discretization procedure is proposed
for dealing with a large time interval or a moving boundary near the origin at time zero.
Dinardo, Nobile, Pirozzi and Ricciardi [3] show that the first passage time density satisfies
a Volterra integral equation of second-kind and develop numerical procedures to solve it.

While the above procedures may enable one to evaluate the moments and distributions
of the first passage times of the O-U processes, they may not be necessarily appropriate to
automate the required computations when such measures have to be evaluated repeatedly
under different parameter values. In the approach of Keilson and Ross [14], for example,
it is necessary to locate the singular points on the complex plane for each parameter value
repeatedly, which is laborious and cumbersome. In certain applications, however, repeated
computations of this sort become crucial. In financial engineering, for example, let us
consider the Hull-White model [5] which is a one factor term structure model characterized
by a stochastic differential equation of the form

dR(t) = (φ(t) − α(t)R(t))dt+ σ(t)dW (t), (1.4)

where R(t) is a random short rate, W (t) is the standard Wiener process, φ(t) is a market
fitting function, α(t) > 0 is a reversion function and σ(t) > 0 is a volatility function. When
φ(t), α(t) and σ(t) are constant, the Hull-White model is reduced to the Vasicek model [27]
specified by

dX̂OU(t) = (φ− αX̂OU(t))dt+ σdW (t). (1.5)

Let XOU(t) be the limiting O-U process of XV (t), to be introduced later in (1.15), as V → ∞
and define X̃OU(t) =

σ√
2α
XOU(αt). After a little algebra, one finds that

X̂OU(t) = X̃OU(t) + θ(t), (1.6)

where X̃OU(0) = 0 and

θ(t)
def
=
φ

α
(1 − e−αt) + X̂OU(0)e−αt. (1.7)

We now consider an up-and-out call option maturing at time τ with strike price KS,
written on a discount bond of maturity at time T where the upper limit is given by rb. Let
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258 U. Sumita, J. Gotoh & H. Jin

D(τ |T ) be the price of the discount bond at time τ . Then the price of the up-and-out call
option at time τ , denoted by πKO(τ |T ), can be expressed in terms of the first passage time
Tx̂0rb

= inf{t : X̂OU(t) = rb|X̂OU(0) = x̂0} as

πKO(τ |T ) = E[{D(τ |T ) −KS}+1{Tx̂0rb
>τ}], (1.8)

where {a}+ = max{a, 0} and

1{A} =

{
1, A is true,
0, A is false.

(1.9)

Evaluating πKO(τ |T ) requires the joint distribution of P[X̂OU(t) ≤ x, Tx̂0rb
> τ |X̂OU(0) =

x̂0]. In addition, the joint distribution has to be computed repeatedly with speed and ac-
curacy for different values of the underlying parameters. To the authors’ best knowledge,
there exist no systematic algorithms to overcome this difficulty in the literature. The com-
putational algorithms proposed in this paper provide a powerful numerical vehicle for filling
this gap. Achieving this goal in financial engineering, however, requires independent and
additional efforts and will be reported in a sequel to this paper.

The O-U processes have been employed extensively in the area of diffusion approxima-
tion. In this approach, a practical system of interest is often modeled as a birth-death
process. Then, under certain conditions, a sequence of such birth-death processes is shown
to converge in law to a Gaussian diffusion process for each time t ≥ 0. Various perfor-
mance indicators of the Markov model is then approximated by those of the Gaussian
diffusion process. In this context, the convergence theorem involving the O-U process dates
back to Stone [20, 21], where a necessary and sufficient condition is established for a se-
quence of birth-death processes {NBD:K(t) : t ≥ 0} to converge in law to an O-U process
{XOU(t) : t ≥ 0} with appropriate shifting and scaling as K → ∞. Convergence in law
involving stochastic processes represents certain subtlety. Stone [20, 21] introduces the con-
cept of “weak convergence in the Markov sense of a sequence of birth-death processes,”
which essentially requires the convergence in law of f(NBD:K(·)) to f(XOU(·)) for all func-
tionals f defined on the space of path-functions of {NBD:K(t) : t ≥ 0} and {XOU(t) : t ≥ 0}
in the topology of uniform convergence in compact time intervals almost everywhere with
respect to the measure corresponding to {XOU(t) : t ≥ 0}.

Since then, many authors have elaborated on the convergence theorem of Stone [20, 21]
by constructing specific birth-death processes for specific applications. Iglehart [6], for
example, applies the theorem to establish diffusion approximation of a class of queueing
models. Using the theorem of Stone [20, 21], McNeil and Schach [17] identify central limit
analogues involving O-U processes. With reference to Iglehart [6], Kulkarni and Rolski [15]
prove diffusion approximation of a class of prevalent models in communication networks
generated by O-U processes. For these applications, the central idea is to approximate
the performance indices of the underlying birth-death process by those of the limiting O-U
process. The thrust of this paper can be found in that this typical approach in diffusion
approximation is reversed. More specifically, a simple sequence of birth-death processes,
which converges in law in the weak Markov sense to an O-U process, is chosen so as to
approximate the dynamic behavior of the O-U process, possibly with various boundaries,
by that of the simple birth-death process. This approach enables one to mechanize the
computational procedures for evaluating the dynamic behavior of the O-U processes under
different parameter values repeatedly.
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A class of simple discrete time processes for approximating O-U processes is a set of
Ehrenfest urn models, see e.g. Karlin and Taylor [11]. For capturing the dynamic behavior
of an O-U process, however, this approach is rather cumbersome since both the state space
and the time axis are discretized. In this paper, we propose to utilize the continuous
time Ehrenfest process for approximating the O-U process where only the state space is
discretized. The underlying spectral structure enables one to develop efficient numerical
procedures for computing the distributions of the first passage times and the historical
maximum of the O-U process, which are of considerable importance in certain applications,
as we saw.

A finite Markov chain in continuous time of practical importance arises from the sum
of K independent identical chains {Jj(t) : t ≥ 0}, j = 1, ..., K, each on state space {0, 1}
governed by transition rates ν01 = ν10 = 1

2
. The Markov chain of interest⎧⎨⎩NK(t) : NK(t) =

K∑
j=1

Jj(t), t ≥ 0

⎫⎬⎭ (1.10)

on state space {0, 1, ..., K} is called an Ehrenfest process and has transition rates

νn,n+1 =
1

2
(K − n), 0 ≤ n ≤ K − 1, and νn,n−1 =

1

2
n, 1 ≤ n ≤ K. (1.11)

Consequently the local growth rate of the variance is given by

νn,n+1 + νn,n−1 =
K

2
, (1.12)

which is independent of n, and the local velocity is given by

νn,n+1 − νn,n−1 =
K

2
− n. (1.13)

For the associated stationary chain {NK:S(t) : t ≥ 0}, one has

cov [NK:S(t), NK:S(t+ τ) ] =
K

4
e−τ , (1.14)

and asymptotic normality.
O-U processes are characterized by its Markov property, normal distribution, and ex-

ponential covariance function. Because of the properties of the Ehrenfest process specified
in (1.11) through (1.14) together with its asymptotic normality, one then expects that a
sequence of processes {XV (t) : t ≥ 0}, V = 1, 2, 3, ..., defined by

XV (t) =

√
2

V
N2V (t) −

√
2V (1.15)

converges in law to an O-U process {XOU(t) : t ≥ 0} as V → ∞. Indeed, it can be shown
that {N2V (t) : t ≥ 0} with shifting and scaling as specified in (1.15) satisfies the sufficient
condition of Stone [20, 21] so that the convergence of {XV (t) : t ≥ 0} in the weak Markov
sense to the O-U process {XOU(t) : t ≥ 0} as V → ∞ is assured. In this paper, because
of the simplicity of {XV (t) : t ≥ 0}, we provide an independent proof for the convergence
of XV (t) to an O-U process XOU(t) for each t ≥ 0. In addition, we analyze the spectral
structure of {N2V (t) : t ≥ 0} for quantifying its dynamic behavior numerically, which
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in turn provides a numerical foundation for capturing the dynamic behavior of the O-U
processes. The proposed approach enables one to mechanize the computational procedures
with speed and accuracy, which is essential for certain applications where such computations
are required repeatedly under different parameter values as we saw.

The structure of this paper is as follows. In Section 2, a succinct summary is given
concerning the spectral representation and the first passage time structure of birth-death
processes based on Karlin and McGregor [7–10] and Keilson [13]. Based on these results,
in Section 3, the Ehrenfest process is studied in detail, deriving new results to establish
a numerical foundation for evaluating the distributions of the first passage times and the
historical maximum. In Section 4, an independent proof is given for the convergence in law of
XV (t) toXOU(t) as V → ∞ for all t ≥ 0 and some related results are also obtained. Section 5
is devoted to development of numerical algorithms for evaluating transition probabilities,
first passage times, and the historical maximum of the O-U process via the Ehrenfest process
approximation. Numerical results are also exhibited, demonstrating speed and accuracy.
Some additional results concerning the first passage time structure of the Ehrenfest process
are given in Appendix, which are of interest in their own right.

2. Review of Spectral Representation and First Passage Time Structure of
Birth-Death Processes

In this section, we briefly review key results concerning the spectral representation and the
first passage time structure of birth-death processes. Based on these results, the Ehrenfest
process {NK(t) : t ≥ 0} given in (1.10) with K = 2V will be analyzed in detail later. In
a series of papers [7–10], Karlin and McGregor analyze the spectral representation of the
transition probability matrix P(t) = [pmn(t)] for birth-death processes and use the results to
evaluate various probabilistic quantities. More specifically, for a general birth-death process
{NBD(t) : t ≥ 0} on NBD = {0, 1, 2, · · ·} governed by upward transition rates λn, n ≥ 0,
and downward transition rates μn, n ≥ 1, let Q

BD
be the infinitesimal generator associated

with P(t) satisfying the Kolmogorov forward equation

d

dt
P(t) = P(t)Q

BD
, (2.1)

where

Q
BD

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ0 λ0 0 . . . 0 0 0 . . .
μ1 −(λ1 + μ1) λ1 . . . 0 0 0 . . .
...

...
...

. . .
...

...
...

. . .

0 0 0 . . . μn−1 −(λn−1 + μn−1) λn−1 . . .
0 0 0 . . . 0 μn −(λn + μn) . . .
...

...
...

. . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One then sees that Q
BD

has a vector eigenfunction y(x) = [yn(x)]n∈NBD
with eigenvalue −x,

i.e.
Q

BD
y(x) = −x y(x). (2.2)

From (2.1), this then leads to{ −λ0 y0(x) + λ0 y1(x) = −x y0(x),
μn yn−1(x) − (λn + μn) yn(x) + λn yn+1(x) = −x yn(x), n ≥ 1,

(2.3)
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starting with y0(x) = 1. It then follows that yn(x) is a polynomial of degree n with leading

coefficients

(
n−1∏
j=0

λj

)−1

.

Let f(x, t) be a vector function defined by

f(x, t) = P(t) y(x). (2.4)

From (2.1) and (2.2), one then finds that

∂

∂t
f(x, t) =

∂

∂t
P(t) y(x) = P(t)Q

BD
y(x) = −xP(t) y(x)

so that from (2.4)
∂

∂t
f(x, t) = −x f(x, t). (2.5)

Since f(x, 0+) = y(x), the vector partial differential equation (2.5) has the unique solution

f(x, t) = e−xty(x). (2.6)

Combining with (2.4), Equation (2.6) then implies that∑
n∈NBD

pmn(t) yn(x) = e−xtym(x), m ∈ NBD. (2.7)

There exists a measure ψ(x) on [0,∞) such that {yn(x)}n∈NBD
becomes a set of orthogonal

polynomials with respect to ψ(x), see Karlin and McGregor [7]. Accordingly one has∫ ∞

0
ym(x) yn(x) dψ(x) =

δmn

πn

, m, n ∈ NBD, (2.8)

where δmn = 1 if m = n, δmn = 0 if m 	= n, and πn =
n−1∏
j=0

λj/
n∏

j=1

μj, n ≥ 1, with π0 = 1.

The integral in (2.8) is a Lebesgue-Stieltjes integral. Indeed, it should be noted from (2.2)
that the support of ψ is the set of the eigenvalues of Q

BD
multiplied by −1, and therefore

discrete. From (2.4) and (2.8), {pmn(t)}m∈NBD
may be recognized as the generalized Fourier

coefficients of the m-th component fm(x, t) of f(x, t) associated with {yn(x)}n∈NBD
and ψ(x)

for each m ∈ NBD. Accordingly, one finds from (2.7) that

pmn(t) = πn

∫ ∞

0
e−xtym(x) yn(x) dψ(x), m, n ∈ NBD. (2.9)

The first passage time structure of {NBD(t) : t ≥ 0} is discussed extensively in Keilson
[13], from which some relevant results are extracted here. Let Tmn be the first passage time
of {NBD(t) : t ≥ 0} from state m to state n. Formally, we define

Tmn = inf { t : NBD(t) = n |NBD(0) = m } . (2.10)

Let smn(τ) = d
dτ

P [Tmn ≤ τ ] and define the Laplace transform σmn(s) = E
[
e−s Tmn

]
. For

notational convenience, we denote Tm,m+1 by T+
m , and s+

m(τ) and σ+
m(s) are defined similarly.

From the consistency relations, one has

σ+
n (s) =

νn

s+ νn

[
λn

νn

+
μn

νn

σ+
n−1(s)σ

+
n (s)

]
, n ≥ 1,
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262 U. Sumita, J. Gotoh & H. Jin

where νn = λn + μn. This then yields

σ+
n (s) = λn

[
s+ νn − μn σ

+
n−1(s)

]−1
, n ≥ 1; σ+

0 (s) =
λ0

s+ λ0

. (2.11)

It is clear that
σ0n(s) = σ0 n−1(s)σ

+
n−1(s), n ≥ 1. (2.12)

From (2.11), it can be readily seen by induction that

σ0n(s) =
1

gn(s)
, n ≥ 1; g0(s) = 1, (2.13)

where gn(s) is a polynomial of order n. It then follows from (2.11) that

gn+1(s) =
1

λn

[(s+ νn) gn(s) − μn gn−1(s)] , n ≥ 0, (2.14)

where g−1(s) = 0 and g0(s) = 1. From (2.3), one sees that

yn+1(x) =
1

λn

[(−x+ νn) yn(x) − μn yn−1(x)] , n ≥ 0, (2.15)

where y−1(x) = 0 and y0(x) = 1. By comparing (2.14) with (2.15), it can be seen that the
orthogonal polynomials yn(x), defined for x where −x is an eigenvalue of Q

BD
, are related

to gn(s) by
yn(x) = gn(−x), n ≥ 0. (2.16)

Accordingly, {gn(s)}n∈NBD
are orthogonal polynomials so that the zeros of gn(s) are distinct,

the zeros of any two successive polynomials interleave, and the zeros are all negative, see
e.g. Szegö [26]. It should be noted from (2.12) and (2.13) that

σ+
n (s) =

gn(s)

gn+1(s)
, n ≥ 0. (2.17)

Consequently, σ+
n (s) can be written as

σ+
n (s) =

n∑
j=0

rn+1,j
αn+1,j

s+ αn+1,j

, (2.18)

where −αn+1,j are the zeros of gn+1(s), rn+1,j = lim
s→−αn+1,j

s+αn+1,j

αn+1,j

gn(s)
gn+1(s)

≥ 0 and
n∑

j=0
rn+1,j =

σ+
n (0+) = 1. This implies that s+

n (t) is a mixture of exponential densities and is completely
monotone. The downward first passage times T−

n,n−1 = T−
n and Tn0 can be treated similarly.

We next turn our attention to the historical maximum of {NBD(t) : t ≥ 0} in the time
interval [0, θ] given that NBD(0) = n0. More specifically, let M(n0, θ) be defined as

M(n0, θ) = max
0≤t≤θ

{NBD(t) |NBD(0) = n0 } . (2.19)

Then the following dual relation holds between Tn0 n+1 (n0 ≤ n) and M(n0, θ).

Fn0θ(n)
def.
= P [M(n0, θ) ≤ n ] = P [Tn0 n+1 > θ ]

def.
= Sn0 n+1(θ). (2.20)
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Hence one has

Fn0θ(n) =

{
0 n < n0

Sn0 n+1(θ) n ≥ n0.
(2.21)

For the corresponding stationary process {NBD:S(t) : t ≥ 0 } , the distribution function Fθ(n)
of the historical maximum is then given by

Fθ(n) =
∑
m≤n

em Sm n+1(θ), (2.22)

where e� = [ em ] is the ergodic distribution of {NBD(t) : t ≥ 0 } .

3. Spectral Representation and First Passage Time Structure of Ehrenfest Pro-
cesses

We consider 2V independent and identical Markov chains {Jj(t) : t ≥ 0}, j = 1, ..., 2V, in
continuous time on {0, 1} governed by the transition rate matrix

ν =

(
0 1

2
1
2

0

)
. (3.1)

The corresponding infinitesimal generator Q is then given by

Q = −ν
D

+ ν; ν
D

=

(
1
2

0
0 1

2

)
. (3.2)

Let q(t) = [qij(t)] , 0 ≤ i, j ≤ 1, be the transition probability matrix of { Jj(t) : t ≥ 0 } so

that d
dt
q(t) = Qq(t). Since q(0) = I which denotes the identity matrix, taking the Laplace

transform of this matrix differential equation yields s q̂(s)−I = Q q̂(s) or q̂(s) =
[
sI −Q

]−1

where q̂(s) =
∫ ∞

0
e−stq(t) dt. From (3.2), one then finds that

q(t) =

(
q00(t) q01(t)
q10(t) q11(t)

)
=

(
f(t) g(t)
g(t) f(t)

)
, (3.3)

where

f(t) =
1

2

(
1 + e−t

)
; g(t) =

1

2

(
1 − e−t

)
. (3.4)

For analytical convenience, we introduce two generating functions :

α0(t, u)
def.
= q00(t) + q01(t)u = f(t) + g(t)u (3.5)

and
α1(t, u)

def.
= q10(t) + q11(t)u = g(t) + f(t)u. (3.6)

Let {N2V (t) : t ≥ 0 } be defined by

N2V (t)
def.
=

2V∑
j=1

Jj(t). (3.7)

Then {N2V (t) : t ≥ 0 } is a birth-death process on N = {0, 1, ..., 2V } governed by the up-
ward transition rates λn and the downward transition rates μn, where

λn =
1

2
(2V − n) ; μn =

n

2
, n ∈ N . (3.8)
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We note that
νn

def.
= λn + μn = V, n ∈ N , (3.9)

which is independent of state n. This birth-death process is called an Ehrenfest process, see
e.g. Feller [4]. Let P

2V
(t) = [p2V :mn(t)] m,n ∈ N be the transition probability matrix of

{N2V (t) : t ≥ 0 }. As in (3.5) and (3.6), we introduce the following generating functions :

βm(t, u) =
2V∑
k=0

p2V :mk(t)u
k, m ∈ N . (3.10)

From the independence of {Jj(t) : t ≥ 0}, one then has

βm(t, u) = α0(t, u)
2V −m α1(t, u)

m = {f(t) + g(t)u}2V −m{g(t) + f(t)u}m. (3.11)

For the case of the Ehrenfest process, the associated orthogonal functions defined for
integers x, x = 0, 1, ..., 2V are obtained via induction from (2.3) as

yn(x) =
1(
2V
n

) n∑
j=0

(
2V − x

n− j

)(
x

j

)
(−1)j, n ∈ N , (3.12)

where
(

m
n

)
= 0 if n > m. It is rather subtle to see that the infinitesimal generator matrix

Q
2V

given in (3.13) below has the eigenvalues −x = 0,−1, ...,−2V . The reader is referred

to Karlin and McGregor [7–10] for further details.

Q
2V

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−V V 0 . . . 0 0 0
1/2 −V V − 1/2 . . . 0 0 0

0 1 −V . . . 0 0 0
...

...
. . . . . . . . .

...
...

...
...

...
. . . . . . . . .

...

0 0 0
. . . −V 1 0

0 0 0 . . . V − 1/2 −V 1/2
0 0 0 . . . 0 V −V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.13)

Corresponding to (3.12), the measure for orthogonality is specified by

dψ(x) =

(
2V

x

)
2−2V , x = 0, 1, ..., 2V, (3.14)

so that

p2V :mn(t) =

(
2V
n

)
22V

2V∑
j=0

(
2V

j

)
ym(j) yn(j) e−jt. (3.15)

In this case, the polynomials {yn(x)}n∈N are called the Krawtchouk polynomials. It is clear
from the independence of {Jj(t) : t ≥ 0} that the ergodic distribution e� of {N2V (t) : t ≥ 0}
is given by

e = [en]�n∈N ; en =

(
2V

n

)
2−2V , n ∈ N . (3.16)

We note from (3.15) and (3.16) that

lim
t→∞ p2V :mn(t) =

(
2V
n

)
22V

(
2V

0

)
ym(0) yn(0) = en, m, n ∈ N (3.17)
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as expected.

For the first passage time structure of the Ehrenfest process {N2V (t) : t ≥ 0}, one sees
from (2.14) that

gn+1(s) =
2

2V − n

[
(s+ V ) gn(s) − n

2
gn−1(s)

]
, (3.18)

with g−1(s) = 0 and g0(s) = 1. From (3.12) and (2.16), the orthogonal polynomials gn(s)
defined for the eigenvalues s = 0,−1, · · · ,−2V of Q

2V
are given explicitly by

gn(s) =
1(
2V
n

) n∑
j=0

(
2V + s

n− j

)(−s
j

)
(−1)j, 0 ≤ n ≤ 2V. (3.19)

In order to evaluate the first passage times smn(τ) (m < n) with corresponding Laplace
transforms σmn(s) = σ+

m(s) · · ·σ+
n−1(s) = gm(s)/gn(s) from (2.17), the zeros of gn(s) are

needed. These zeros in turn enables one to quantify the historical maximum through (2.21).
In principle, the zero search of gn(s) can be accomplished via a straightforward bisection
approach since the zeros of gn(s) and gn+1(s) interleave because of the underlying orthog-
onality. In case of the Ehrenfest process, the amount of effort required for the zero search
can be considerably reduced by the following properties.

Theorem 3.1 Let hn(s) = gn(s− V ), n ≥ 0. Then hn(s) = (−1)n hn(−s), n ≥ 0, i.e.,

hn(s) is

{
odd when n is odd,
even when n is even.

Proof. Equation (3.18) can be rewritten in terms of hn(s) as

hn+1(s) =
2

2V − n

[
s hn(s) − n

2
hn−1(s)

]
, n ≥ 0, (3.20)

with h−1(s) = 0 and h0(s) = 1. The result then follows by induction on n. �

The next corollary is immediate from Theorem 3.1.

Corollary 3.1
(a) If gn(−x) = 0, then gn(x− 2V ) = 0.
(b) If n is odd, then gn(−V ) = 0.

Theorem 3.1 implies that the zeros of hn(s) are symmetric about 0 and, correspondingly
from Corollary 3.1, the zeros of gn(s) are symmetric about −V . Hence we need to find
only 
(n − 1)/2� zeros, where 
x� is the minimum integer which is greater than or equal
to x. Furthermore, since hn(s) is either odd or even, there are only 1 + 
(n − 1)/2� terms
in each hn(s), while gn(s) has (n + 1) terms as can be seen from (3.19). Consequently, the
computational time of the zero search can be reduced approximately by a factor of 4. This
property of the Ehrenfest process is due to the fact that the local growth rate is constant as
specified in (1.12). Indeed, the results similar to Theorem 3.1 and Corollary 3.1 are available
for general birth-death processes whenever νn = λn + μn = ν for all n.

Because of the peculiarity of the Ehrenfest process, its first passage time structure pos-
sesses certain interesting properties. Although these new results are of interest in their own
right, they are not directly related to the main theme of this paper and are summarized in
Appendix.
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4. Convergence of the Ehrenfest Process to the O-U Process

As we pointed out in Section 1, the Ehrenfest process {N2V (t) : t ≥ 0} with shifting and
scaling as specified in (1.15) satisfies the sufficient condition of Stone [20, 21] so that the
convergence of {XV (t) : t ≥ 0} in the weak Markov sense to the O-U process {XOU(t) :
t ≥ 0} as V → ∞ is assured. The proof of Stone’s theorem [20, 21] is sophisticated because
of its generality. Since the special case discussed in this paper is simple, we provide an
independent proof that XV (t) given in (1.15) converges in law to XOU(t) as V → ∞.

As we saw in (1.2), the state probability density of the O-U process {XOU(t) : t ≥ 0 }
with initial condition XOU(0) = x0 is normally distributed with mean x0 e−t and variance
1− e−2 t for any t > 0. The corresponding Laplace transform with respect to x is then given
by

γ(x0, s, t) = exp
{
−x0 e−ts+

1

2
(1 − e−2 t) s2

}
. (4.1)

Let {XV (t) : t ≥ 0 } be a stochastic process defined by (1.15). We note that {XV (t) : t ≥ 0 }
has a discrete support on { r(0), ..., r(2V ) } where

r(n) =

√
2

V
n−

√
2V , n = 0, 1, ... (4.2)

Clearly r(n+ 1) − r(n) =
√

2
V
→ 0 as V → ∞. For notational convenience, we define

ηV (x) =

⎡⎢⎢⎢
√
V

2
x

⎤⎥⎥⎥ . (4.3)

Theorem 4.1 Let {XOU(t) : t ≥ 0 } be the O-U process with XOU(0) = x0, −∞ < x0 <∞.

Let {XV (t) : t ≥ 0 } be as in (1.15) with XV (0) =
√

2
V
ηV (x0) where V is chosen large enough

so that −√
2V ≤ XV (0) ≤ √

2V . Then XV (t) converges in law to XOU(t) for all t, t ≥ 0,
as V → ∞.
Proof. Let ϕV (x0, w, t) = E

[
e−wXV (t)

∣∣∣XV (0) =
√

2
V
ηV (x0)

]
. One sees from (3.10) and

(1.15) that

ϕV (x0, w, t) = ew
√

2V βN2V (0)

(
t, e−w

√
2
V

)
(4.4)

where N2V (0) = V + ηV (x0). We wish to show that ϕV (x0, w, t) → γ(x0, w, t) as V → ∞.
Equation (4.4) can be rewritten by (3.11) as

ϕV (x0, w, t) = ew
√

2V
[{
f(t) + g(t) e−w

√
2
V

}{
g(t) + f(t) e−w

√
2
V

}]V

×
⎡⎣g(t) + f(t)e−w

√
2
V

f(t) + g(t)e−w
√

2
V

⎤⎦ηV (x0)

. (4.5)

Since f(t) + g(t) = 1, the first two factors on the right hand side of (4.5) can be written as

ew
√

2V βV (t, e−w
√

2
V ) =

⎡⎣1 + 2f(t) g(t)

⎧⎨⎩cosh

⎛⎝w
√

2

V

⎞⎠− 1

⎫⎬⎭
⎤⎦V

. (4.6)

For sufficiently small |Re(w)|, one has

f(t) g(t)

∣∣∣∣∣∣ cosh

⎛⎝w
√

2

V

⎞⎠− 1

∣∣∣∣∣∣ < 1

2
(4.7)
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so that from (4.6),

log
[
ew

√
2V βV (t, e−w

√
2
V )

]
= V log

[
1 + 2 f(t) g(t)

{
cosh

(
w
√

2
V

)
− 1

}]
= V

∞∑
k=1

1

k
(−1)k−1 {2 f(t) g(t)}k

⎧⎨⎩cosh

⎛⎝w
√

2

V

⎞⎠− 1

⎫⎬⎭
k

.

It then follows that

log
[
ew

√
2V βV (t, e−w

√
2
V )

]
=

1

2
(1 − e−2t)w2 +O(V −1). (4.8)

The second factor on the right hand side of (4.5) can be rewritten as⎡⎢⎢⎣1 −
{f(t) − g(t)}

(
1 − e−w

√
2
V

)
f(t) + g(t) e−w

√
2
V

⎤⎥⎥⎦
ηV (x0)

=

⎡⎣1 − e−tw
√

2
V

+O (V −1)

1 +O
(
V − 1

2

)
⎤⎦ηV (x0)

=

⎡⎢⎣1 − x0 e−tw + x0O
(
V − 1

2

)
x0

√
V
2

{
1 +O(V − 1

2 )
}
⎤⎥⎦

x0

√
V
2

(
ηV (x0)

x0

√
V
2

)
.

From (4.3), ηV (x0)

x0

√
V
2

→ 1 as V → ∞ while (1 + β
α
)α → eβ as α→ ∞. It then follows that

⎡⎣g(t) + f(t) e−w
√

2
V

f(t) + g(t) e−w
√

2
V

⎤⎦ηV (x0)

→ exp{−x0 e−tw} as V → ∞. (4.9)

From (4.5), (4.8) and (4.9), one concludes that

ϕV (x0, w, t) → exp
{
−x0 e−tw +

1

2
(1 − e−2t)w2

}
as V → ∞, completing the proof. �

The next corollary is immediate from Theorem 4.1.
Corollary 4.1 For any x0, x ∈ (−∞,∞), let m = V + ηV (x0) and n = V + ηV (x). Then√

V

2
p2V :mn(t) → g(x0, x, t) as V → ∞

for all t, t ≥ 0.

Corollary 4.1 may be seen alternatively in the following manner. Let
(
Hej

(x)
)∞

j=0
be the

set of Hermite polynomials defined by the Rodrigues formula

Hej
(x) = e

x2

2 (−1)j

(
d

dx

)j (
e−

x2

2

)
, j ≥ 0, (4.10)

where ∫ ∞

−∞
e−

x2

2 Hei
(x)Hej

(x) dx = δij
√

2π j!. (4.11)
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The classical decomposition theorem, see e.g. Magnus, Oberhettinger and Soni [16], states
that

1√
1 − z2

e
− (x−yz)2

2(1−z2) = e−
x2

2

∞∑
j=0

Hej
(x)Hej

(y)
zj

j!
. (4.12)

Applying (4.12) to (1.2), one finds that

g(x0, x, τ) =
e−

x2

2√
2π

∞∑
n=0

Hen(x0)Hen(x)
e−nτ

n!
. (4.13)

From (3.15), (2.16) and Lemma A.1, one obtains that√
V

2
p2V :mn(t) =

√
V

2

(
2V
n

)
22V

2V∑
j=0

(
2V

j

)
yj(m) yj(n) e−jt. (4.14)

It is known, see e.g. Szegö [26], that

lim
V →∞

√√√√(
2V

j

)
yj(m) =

1√
j!
Hej

(x0); lim
V →∞

√√√√(
2V

j

)
yj(n) =

1√
j!
Hej

(x).

The first factor
√

V
2

(2V
n )

22V in (4.14) converges to e−
x2

2 /
√

2π as V → ∞ from Starling formula
and Corollary 4.1 follows.

It is natural to expect that a first passage time of {XV (t) : t ≥ 0 } also converges in law
to the corresponding first passage time of {XOU(t) : t ≥ 0 } as V → ∞, which we prove
next.
Theorem 4.2 Let m and n be as in Corollary 4.1. Let Tr(m)r(n) = inf { τ : XV (τ) = r(n)
|XV (0) = r(m) } and Tx0 x = inf { τ : XOU(τ) = x |XOU(0) = x0 }. Then Tr(m)r(n) converges
in law to Tx0 x as V → ∞.

Proof. Let l(x0, x, τ) = d
dτ

P[Tx0 x ≤ τ ] with λ(x0, x, s) =
∫ ∞

0
e−sτ l(x0, x, τ) dτ =

E
[
e−s Tx0 x

]
. From the consistency relations, one sees that

g(x0, x, τ) =
∫ τ

0
l(x0, x, τ − y) g(x, x, y) dy. (4.15)

Taking the Laplace transform on both sides of (4.15) with respect to τ and solving for
λ(x0, x, s), it follows that

λ(x0, x, s) =
γ(x0, x, s)

γ(x, x, s)
. (4.16)

For the counter part of (4.15) for the Ehrenfest process {N2V (t) : t ≥ 0 }, one has

p2V :mn(t) =
∫ t

0
smn(t− y) p2V :nn(y) dy (4.17)

where smn(τ) = d
dτ

P [Tmn ≤ τ ] with Tmn = inf
t≥0

{N2V (t) = n|N2V (0) = m }. Let πmn(s) =∫ ∞

0
e−sτp2V :mn(τ) dτ and σmn(s) =

∫ ∞

0
e−sτsmn(τ) dτ = E

[
e−sTmn

]
. Corresponding to

(4.16), Equation (4.17) then yields that

σmn(s) =
πmn(s)

πnn(s)
=

√
V
2
πmn(s)√

V
2
πnn(s)

. (4.18)
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Hence from (4.16), (4.18) and Corollary 4.1, one has σmn(s) → λ(x0, x, s) as V → ∞, i.e.
Tmn converges in law to Tx0,x as V → ∞. It is clear that Tmn = Tr(m)r(n) almost surely,
completing the proof. �

Similarly, we can prove that the historical maximum defined in (2.19) also converges in law
to that of the O-U process.
Theorem 4.3 Let m be as in Corollary 4.1. Let M(r(m), θ) = max

0≤t≤θ
{XV (t)|XV (0) = r(m) }

and M(x0, θ) = max
0≤t≤θ

{XOU(t)|XOU(0) = x0 }. Then M(r(m), θ) converges in law to M(x0, θ)

as V → ∞.
Proof. For the O-U process, for x > x0, one sees that Fx0,θ(x) = P[M(x0, θ) ≤ x] =
P[Tx0,x > θ] = Sx0,x(θ). Hence

Fx0,θ(x) =

{
0 if x < x0

Sx0,x(θ) if x ≥ x0,
(4.19)

where Sx0,x0(θ)
def.
= lim

Δ→0
Sx0,x0+Δ(θ) = P [XOU(τ) ≤ x0, 0 ≤ τ ≤ θ |XOU(0) = x0 ]. The the-

orem then follows from Theorem 4.2 and (2.21). �

5. Development of Algorithms and Numerical Results

In this section, we develop numerical algorithms for computing transition probabilities, first
passage times, and the historical maximum of {XV (t) : t ≥ 0} based on the theoretical re-
sults discussed in the previous sections. Numerical results are also exhibited, demonstrating
the accuracy and efficiency of these algorithms.

Before going into the discussion of numerical algorithms, it is appropriate to summarize
state conversions among {N2V (t) : t ≥ 0}, {XV (t) : t ≥ 0} and {XOU(t) : t ≥ 0}, see Table
1 below. We note that when the state of {N2V (t) : t ≥ 0} moves from 0 to 2V , the state of
{XV (t) : t ≥ 0} moves from −√

2V to
√

2V .

Table 1: State conversions
Process State conversion State space

x ∈ IR → m ∈ N m ∈ N → x ∈ IR
N2V (t) m = ηV (x) + V m N = {0, 1, ..., 2V }

XV (t) =
√

2
V
N2V (t) −√

2V
√

2
V
ηV (x) r(m) =

√
2
V
m−√

2V {−√
2V , ...,

√
2V }

XOU(t) x x = r(m) IR = (−∞,∞)

Remark : ηV (x) =
⌈√

V
2
x
⌉
.

5.1. Transition probabilities and tail probabilities

Given x0, x, t and V , the transition probability p2V :mn(t) can be computed by employing the
state conversion in Table 1 and the discrete convolution algorithm based on (3.11). Formally
one has from (3.11),

p2V :mn(t) =
n∧(2V −m)∑
r=0∨(n−m)

am,r(t) bm,n−r(t) (5.1)

where a ∨ b = max(a, b), a ∧ b = min(a, b), and

am,r(t) =

(
2V −m

r

)
f(t)2V −m−rg(t)r; bm,r(t) =

(
m

r

)
f(t)rg(t)m−r. (5.2)
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From (1.15) and (5.1), the transition probability density function of {XV (t) : t ≥ 0} is then
given by

gV (m,n, t) =

√
V

2
p2V :mn(t) (5.3)

where

m = ηV (x0) + V ; n = ηV (x) + V with ηV (x) =

⎡⎢⎢⎢
√
V

2
x

⎤⎥⎥⎥ . (5.4)

Accordingly, gV (m,n, t) approximates g(x0, x, t) of (1.2) through the state conversion deter-
mined by (5.4).

In Figure 1, values of g(x0, x, t)− gV (m,n, t) are plotted for x0 = 0, −5 ≤ x ≤ 5, t = 1,
and V = 10, 20, 30, 40, 45, 47, 48, 49, 50, demonstrating the stochastic convergence of XV (t)
to XOU(t). We see that differences among gV (m,n, t) for 45 ≤ V ≤ 50 are almost negligible.
Figure 2 exhibits graphically g(x0, x, t) represented by solid curves and gV (m,n, t) marked
by +, ◦, ∗ for t = 1, 3, 5 respectively with x0 = 0, − 5 ≤ x ≤ 5, and V = 50. For tail

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4
x 10

−3

x 

V=10 

V=20 

V=30 

Figure 1: Difference g(x0, x, t) − gV (m,n, t) of transition probabilities (x0 = 0, t = 1)

probabilities of g(x0, x, t) with respect to x, we define

G(x0, x, τ) =
∫ ∞

x
g(x0, y, τ) dy. (5.5)

Values of G(x0, x, τ) can be computed fairly accurately with speed using the Laguerre trans-
form. The reader is referred to Sumita [22], where 12 digit accuracy was achieved for such
computations. More readily accessible references are Sumita and Kijima [24, 25]. In order
to approximate G(x0, x, τ), a Simpson’s method is employed, i.e.

GV (m,n, τ) =
1

2

2V −1∑
k=n

{p2V :mk(τ) + p2V :m,k+1(τ)} + p2V :m,2V (τ) (5.6)

where the last term represents the approximation for G(x0,
√

2V , τ). Numerical results for
G(x0, x, τ) and GV (m,n, τ) are depicted in Figures 3 and 4, corresponding to Figures 1 and
2. Algorithmic relationships discussed above are summarized in Table 2.
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Figure 2: Transition probabilities : the O-U process vs the Ehrenfest process (x0 = 0, V = 50)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−8
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V=10 

V=20 
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Figure 3: Difference G(x0, x, τ) −GV (m,n, τ) of tail probabilities (x0 = 0, t = 1)

5.2. Zeros of orthogonal polynomials for the Ehrenfest process

In order to evaluate the first passage time densities smn(τ) = d
dτ

P[Tmn ≤ τ ], m < n, with
corresponding Laplace transforms σmn(s) = σ+

m(s) · · ·σ+
n−1(s) = gm(s)/gn(s) from (2.17),

the zeros of gn(s) are needed. These zeros in turn enable one to evaluate the correspond-
ing survival functions and the distribution of the historical maximum. For the Ehrenfest
process, the zeros of gn(s) are related to those of hn(s) as specified in Theorem 3.1 and the
computational burden can be reduced by a factor of 4. More specifically, one can write

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h2m(s) =

m∑
j=0

w2m,2j s
2j, m ≥ 0,

h2m+1(s) =
m∑

j=0

w2m+1,2j+1 s
2j+1, m ≥ 0,

(5.7)
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0.1

0.2

0.3

0.4

0.5
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Figure 4: Tail probabilities : the Ehrenfest process vs the O-U process (x0 = 0, V = 50)

Table 2: Probability conversions
Process Transition probability Tail probability

N2V (t) p2V :mn(t) via (5.1)
2V∑
k=n

p2V :mk(t)

XV (t) =
√

2
V
N2V (t) −√

2V gV (m,n, t) =
√

V
2
p2V :mn(t) GV (m,n, τ) in (5.6)

XOU(t) g(x0, x, t) G(x0, x, t) =
∫ ∞

x
g(x0, y, t)dy

Remark : · m = ηV (x0) + V, n = ηV (x) + V,
· p2V :mn(t) = P [N2V (t) = n |N2V (0) = m ] ,
· g(x0, x, t) = d

dx
P [XOU(t) ≤ x |XOU(0) = x0 ]

= 1√
2π(1−e−2t)

exp

{
−(x−x0 e−t)

2

2(1−e−2t)

}
.

since h2m(s) is an even function and h2m+1(s) is an odd function from Theorem 3.1. It then
follows from (3.20), for m ≥ 0, that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

w2m,0 = − 2

2(V −m) + 1

(
m− 1

2

)
w2m−2,0,

w2m,2j =
2

2(V −m) + 1

{
w2m−1,2j−1 −

(
m− 1

2

)
w2m−2,2j

}
, j = 1, ...,m− 1,

w2m,2m =
2

2(V −m) + 1
w2m−1,2m−1,

(5.8)

and ⎧⎪⎪⎨⎪⎪⎩
w2m+1,2j+1 =

w2m,2j −mw2m−1,2j+1

V −m
, j = 0, ...,m− 1,

w2m+1,2m+1 =
w2m,2m

V −m
,

(5.9)

where h0(s) = w0,0 = 1.
We note that h2m+1(0) = 0 for m ≥ 0. Furthermore, hn(s) = 0 if and only if hn(−s) = 0

for all n ≥ 0. Hence for both h2m(s) and h2m+1(s), it suffices to search m zeros in (0,∞).
For hn(s) with 1 ≤ n ≤ 4, the zeros can be obtained explicitly by solving the underlying
equations. For higher values of n, a straightforward bisection method can be employed by
exploiting the fact that zeros of hn+1(s) interleave those of hn(s). Let ξnj (0 ≤ j ≤ n− 1)
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be zeros of hn(s). For notational convenience, let −αnj (0 ≤ j ≤ n− 1) be zeros of gn(s).
From Theorem 3.1, one then has

αnj = V − ξnj, 0 ≤ j ≤ n− 1. (5.10)

5.3. First passage times and the historical maximum

Let TV :mn (m < n) be the first passage time of the Ehrenfest process {N2V (t) : t ≥ 0} with
probability density function sV :mn(τ) and its Laplace transform σV :mn(s). Since σV :mn(s) =
σ+

V :m(s) · · ·σ+
V :n−1(s), one has from (2.17) that

σV :mn(s) =
gm(s)

gn(s)
= cmn

m−1∏
j=0

(s+ αmj)

n−1∏
j=0

(s+ αnj)
; cmn =

n−1∏
j=0

αnj

m−1∏
j=0

αmj

. (5.11)

As shown in Theorem 3.10 of Sumita and Masuda [23], sV :mn(τ) is unimodal expressed as
convolutions of completely monotone density functions. Since σV :mn(s) is regular apart from
singular points −αn,j, 0 ≤ j ≤ n− 1, Equation (5.11) can be rewritten as

σV :mn(s) =
n−1∑
j=0

AV :mn:j
αnj

s+ αnj

; AV :mn:k =

m−1∏
j=0

(1 − αnk

αmj
)

n−1∏
j=0,j �=k

(1 − αnk

αnj
)
. (5.12)

In real domain, Equation (5.12) leads to the probability function sV :mn(τ) and its survival

function SV :mn(τ) =
∫ ∞

τ
sV :mn(y) dy given as

sV :mn(τ) =
n−1∑
j=0

Amn:j · αnje
−αnjτ ; SV :mn(τ) =

n−1∑
j=0

Amn:je
−αnjτ . (5.13)

Since TV :mn for {N2V (τ) : τ ≥ 0} is, sample-path-wise, equal to Tr(m)r(n) for {XV (τ) : τ ≥ 0},
sV :mn(τ) and SV :mn(τ) provide approximations for sx0 x(τ) and Sx0,x(τ) of {XOU(τ) : τ ≥ 0}
from Theorem 4.2 withm and n as specified in Table 1. For x0 = 0 and x = 0.5, 1.0, 1.5, 2.0,
Figure 5 depicts sV :mn(τ) with state conversion specified in Table 1, approximating sx0x(τ)
with expected unimodality. Corresponding survival functions are plotted in Figure 6.

In order to test the accuracy of the Ehrenfest approximation, some numerical results
are compared with those of Keilson and Ross [14] as shown in Table 3. Here we define

t∗(x0, x, y%)
def.
= S

−1
V :mn(y%), where m = ηV (x0) + V and n = ηV (x) + V . The numerical

results are for V = 100, x0 = 0, x = 0.5, 1, 1.5, 2 and y = 25, 50, 75. The values for
these cases are not found in the table of Keilson and Ross [14] and the linear interpolation
is employed. It should also be noted that the approach of Keilson and Ross [14] cannot
compute the survival functions of the first passage times beyond t > 5 accurately, while
the Ehrenfest approximation proposed in this paper can deal with such tail probabilities
without any difficulty.

LetM(x0, θ) be the historical maximum of {XOU(τ) : τ ≥ 0} in the time interval [0, θ]. As
in (4.19), its distribution function Fx0,θ(x) has a dual relationship with the survival function
Sx0,x(θ). Hence Fx0,θ(x) can be approximated by FV :mθ(n) = SV :m,n+1(θ) for x0 < x,
which implies m < n. When x = x0, Sx0,x(θ) = lim

Δ→0
Sx0,x0+Δ(θ) can be approximated by

S
+
V :m(θ) = FV :mθ(m). With m = ηV (x0)+V , and n = ηV (x)+V , SV :mn(θ) can be computed

from (5.13). In Figure 7, FV :mθ(n) are plotted for x0 = 0, θ = 1, 3, 5, and V = 50, where
the stochastic ordering T01 ≺ T03 ≺ T05 is observed as expected.

c© Operations Research Society of Japan JORSJ (2006) 49-3



274 U. Sumita, J. Gotoh & H. Jin

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

t

x=0.5 

x=1.0 

x=1.5 

x=2.0 

Figure 5: First passage time density functions (x0 = 0, V = 50)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x=0.5 

x=1.0 

x=1.5 

x=2.0 

Figure 6: Survival functions of first passage times (x0 = 0, V = 50)

Table 3: Comparison of the first passage times starting from x0 = 0
x t∗(0, x, 25%) t∗(0, x, 50%) t∗(0, x, 75%)

Ehrenfest Keilson&Ross Ehrenfest Keilson&Ross Ehrenfest Keilson&Ross
0.5 0.9309 0.9289 0.2776 0.2808 0.0925 0.0982
1 2.8714 2.8779 1.1853 1.1898 0.4415 0.4427

1.5 6.3951 - 3.0639 3.0752 1.2279 1.2388
2 14.3903 - 7.2389 - 3.0995 3.0946
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Appendix

In this appendix, some interesting new results are derived concerning the first passage time
structure of the Ehrenfest process. We first show that gV (s) determined by (3.18) has
negative odd integers as its root. A preliminary lemma is needed.
Lemma A.1 For m, n ∈ N , one has gn(−m) = gm(−n).
Proof. Because of an elementary property of binomial coefficients, one sees that(

2V −n
m−j

)(
n
j

)
(

2V
m

) =
(2V − n)!

(m− j)! (2V − n−m+ j)!
· n!

j! (n− j)!
· m! (2V −m)!

(2V )!

=

(
2V −m
n−j

)(
m
j

)
(

2V
n

) ,

and the result follows from (3.19). �
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Theorem A.1

gV (s) =
V∏

j=1

s+ 2j − 1

2j − 1

Proof. Corollary 3.1 b) states that gn(−V ) = 0 whenever n ∈ N is odd. Hence from
Lemma A.1, one has gV (−n) = gn(−V ) = 0 whenever n ∈ N is odd. Since gV (s) is a
polynomial of degree V , the theorem follows. �

We are now in a position to evaluate the limiting behavior of T0V as V → ∞. For a
random variable X with FX(x) = P [X ≤ x ] , −∞ < x < ∞, suppose the corresponding

Laplace transform ϕX(s) = E[ e−sX ] =
∫ ∞

−∞
e−sx dFX(x) has the convergence strip contain-

ing the imaginary axis on the complex plane. Then the conjugate transform Y of X is
defined as

FY (y) = P [Y ≤ y ] =

∫ y

−∞
e−sx dFX(x)

ϕX(s)
, −∞ < y <∞. (A.1)

The reader is referred to Keilson [12] for more detailed discussions of the conjugate trans-
form. The next theorem shows that T0V with certain shifting and scaling converges in law
to a conjugate transform of an extreme-value random variate.
Theorem A.2 Let Y be a random variable having the probability density function

fY (τ) =
1√
π

exp
{
−1

2
τ − e−τ

}
, −∞ < τ <∞. (A.2)

Then 2T0V − log V converges in law to Y as V → ∞.
Proof. Let Z = 2T0V − log V . Then from Theorem A.1 and (2.13), one sees that

ϕZ(s) = E[ e−sZ ] = V s σ0V (2s) = V s
V∏

j=1

2j − 1

2s+ 2j − 1
.

By simple algebra, this then leads to

ϕZ(s) =
V

1
2

22V

(
2V

V

)⎧⎨⎩V s− 1
2

V∏
j−1

j

s− 1
2

+ j

⎫⎬⎭ . (A.3)

The factor inside the braces converges to Γ(s + 1
2
) as V → ∞, while the rest converges

to 1
Γ( 1

2
)

= 1√
π
, i.e., ϕZ(s) → Γ(s+ 1

2
)

Γ( 1
2
)

as V → ∞. It is known that Γ(s + 1) is the Laplace

transform of the extreme value distribution with p.d.f. exp{−τ − e−τ}, −∞ < τ <∞, and
thus the theorem follows. �

We saw in (2.18) that the upward first passage time T+
n is a finite mixture of exponential

variates for general birth-death processes. In case of the Ehrenfest process, the fact that
the exit rate of each state νn = λn + μn = V is constant enables one to show that T+

n can
also be expressed as an infinite mixture of Gamma variates of odd order.
Theorem A.3 For the Ehrenfest process, T+

n and T−
n (n ∈ N ) are infinite mixtures of

Gamma variates of odd order with Laplace transforms Γ(V, 2j + 1), j = 0, 1, 2, ...
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Proof. The recursive formula for σ+
n (s) in (2.11) can be rewritten as

σ+
n (s) =

r+
n ε(s)

1 − r−n ε(s)σ
+
n−1(s)

; ε(s) = σ+
0 (s) =

V

s+ V
, n ≥ 1, (A.4)

where r+
n = 1 − n

2V
is the probability of going up given exit from n and r−n = n

2V
is that of

going down given exit from n. For Re(s) > 0, Equation (A.4) has a series expression

σ+
n (s) = r+

n ε(s)
∞∑

j=0

{
r−n ε(s)σ

+
n−1(s)

}j

and the result follows by induction for σ+
n (s). For σ−

n (s), it suffices to note that σ+
n (s) =

σ−
2V −n(s), completing the proof. �
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