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Abstract The paper considers a sequential inspection policy in an imperfect production process which
shifts randomly from an ‘in-control’ state to an ‘out-of-control’ state following a general probability distri-
bution. Two different inspection policies are adopted in the proposed model: (i) no action is taken in the
intermediate of a production run unless the process is found in an ‘out-of-control’ state by inspection and
(ii) preventive repair action is undertaken once the ‘in-control’ state of the process is detected by inspec-
tion. The manufacturer is in a contractual agreement with the customer to provide free minimal repair
service until a certain (warranty) period from the time of initial purchase. The objective is to determine the
optimal number of inspections and inspection time sequence during a production run which minimize the
manufacturer’s future expected costs in present term or average cost in distant future. The proposed model
is formulated under discounted as well as long-run average cost criteria and some structural properties on
the optimal inspection policy are derived analytically. For a numerical example, the optimal inspection
policy is determined and several managerial insights are investigated.

Keywords: Maintenance, inspection, EMQ model, imperfect repair, free repair warranty

1. Introduction

Economic manufacturing quantity (EMQ) models for batch production systems have been
studied extensively in the literature and in most of the cases, manufacturer’s optimal de-
cisions have been derived based on the assumption that the outputs are of perfect quality.
But the output quality often deteriorates due to variability in manufacturing processes. So
production systems need to be maintained through adequate maintenance program to re-
duce product defects and cost, and to provide both quality products and better service to
customer. Smart manufacturers are nowadays increasing their focus even on the post-sale
maintenance (warranty service) to build good relationship with the customer and enhance
brand reputation. During the past few decades, production and maintenance have so far
been treated as two separate issues. Recently many researchers have turned their attention
into the joint optimization of these two aspects of manufacturer’s concern.

At about the same time, Rosenblatt and Lee [13] and Porteus [9] developed economic
manufacturing quantity (EMQ) models which characterize the impact of process deteriora-
tion on lot sizing decisions. Assuming that the process shift from an ‘in-control’ state to
an ‘out-of-control’ state follows an exponential distribution, Rosenblatt and Lee [13] found
that the corresponding optimal EMQ is smaller than that of the classical one. Porteus [9]
assumed that the process goes to an ‘out-of-control’ state with a given probability at each
time when it produces an item, and observed the similar results to Rosenblatt and Lee [13].
After these seminal works, Lee and Rosenblatt [5], Porteus [10] and Lee and Park [6], among
others, addressed EMQ problems where the process is monitored through inspections as it
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may randomly go to ‘out-of-control’. For a deteriorating production process with increasing
failure rate (IFR), Banerjee and Rahim [1] determined jointly the optimal design param-
eters on an x control chart and preventive replacement time. Rahim [11] and Rahim and
Ben-Daya [12] investigated the effect of EMQ on the economic design of x control chart
for deteriorating production processes where the ‘in-control’ period follows a general prob-
ability distribution with IFR. The process was inspected using a sampling frequency that
increases with the age of the system. Tseng [14] introduced a preventive maintenance policy
to enhance the system reliability instead of inspection policy into an imperfect EMQ model.
Makis [7] considered the joint determination of the lot size and the inspection schedule,
minimizing the long-run expected cost per unit time when in-control periods are generally
distributed and inspections are imperfect.

To remain in the fray of the competitive market, manufacturers or distributors frequently
offer a warranty service with the sale of their products which in turn results in additional
costs due to servicing of any item fails during the warranty period. If any product does
not work satisfactorily within a limited period after the sale, then it is manufacturer’s
responsibility to repair or replace the product with no cost to the customer or refund a
fraction or whole of the sale price. Djamaludin et al. [3] were the first who studied the effect
of product warranty on the optimal lot sizing policy. They assumed that the production
system can shift to an ‘out-of-control’ state with a given probability at each time when an
item is produced. Describing the production process as a two-state discrete time Markov
chain, they derived the expected cost per unit item under free repair warranty (FRW) and
use it as a criterion of optimality. Yeh et al. [18] reformulated Djamaludin et al.’s model [3]
by considering exponentially distributed process shift distribution. Wang [16] and Wang and
Sheu [17] further extended Yeh et al.’s model [18] by incorporating continuous and discrete
time general shift distributions, respectively. However, inspection and maintenance in the
intermediate of a production run are not allowed in Wang’s models [15, 16]. Only at the
end of a production lot, the system is inspected once to detect the state of the production
process. If the system is found in an ‘out-of-control’ state then it is restored to ‘in-control’
state with some additional cost, otherwise, preventive maintenance is carried out to return
back the system to ‘as good as new’ condition.

Inspection of production process is common in modern industries, especially in deteri-
orating production systems. It reduces the defective item cost and the post-sale warranty
servicing cost but at the same time increases the maintenance cost. So there must be a
trade off relationship between these costs to keep the manufacturer’s expected cost at the
minimum level. In this paper, we consider an imperfect production process where process
shift follows a general probability distribution, sequential inspections are performed during
a production run and produced items are sold with a free minimal repair warranty. The
objective of this study is to determine the optimal number of inspections and the inspec-
tion sequence which minimize the manufacturer’s expected cost. We develop the stochastic
model under two different cost criteria: discounted and long-run average costs.

The rest of the paper is organized as follows. The next section explains the assumptions
and notation of the proposed model and provides the model description under two types of
inspection policies I and II adopted in this paper. Sections 3 and 4 deal with the formulation
and analysis of the stochastic model under inspection policy I and II, respectively. Some
characteristics of the model are studied analytically in these sections. Section 5 presents
the numerical solution of the developed model and gives managerial insights on optimal
decisions. Finally, in Section 6, we conclude the paper and suggest some future research
directions.
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2. Model Description

2.1. Notation

Throughout the paper we use the following notation:

f(·), F (·): probability density function, probability distribution function of the time to
process shift

F (·): the survivor function i.e., F (·) = 1 − F (·)
r(·): failure rate of F (·)
D (> 0): constant demand rate
P (> D): constant production rate
cs (> 0): setup cost
cm (> 0): manufacturing cost per unit product
ch (> 0): inventory holding cost per unit product per unit time
cr (> 0): cost of each minimal repair
v0 (> 0): inspection cost
v1 (> 0): preventive maintenance cost
W (> 0): free repair warranty period
n (≥ 1): number of inspections undertaken during each production run
Ti: elapsed time from the beginning of the production run until the i-th inspection takes

place, ∀ i = 1, 2, · · · , n
{T1, T2, · · · , Tn}: inspection time sequence
T (= Tn): production run length
ti: the i-th inspection interval, i.e., ti = Ti − Ti−1, ∀ i = 1, 2, · · · , n; T0 = 0
ρ (> 0): restoration cost per unit detection delay time
θ1: probability that the produced item in the ‘in-control’ state is non-conforming
θ2 (> θ1): probability that the produced item in the ‘out-of-control’ state is non-conforming
F1(t), F2(t): lifetime distributions of conforming and non-conforming items
r1(t): hazard rate of a conforming item
r2(t): hazard rate of a non-conforming item, where r2(t) >> r1(t), 0 < t <∞
δ (> 0): discount factor.

2.2. Basic assumptions

(1) The production process always starts in an ‘in-control’ state but it may shift to an
‘out-of-control’ state at any random time.

(2) The duration of ‘in-control’ period follows an arbitrary probability distribution.
(3) Each inspection is perfect and takes only a negligible time.
(4) Restoration cost is proportional to the detection delay time. After restoration, the

system can be returned back to the original ‘in-control’ state.
(5) The product defects are not readily detectable; the discovery occurs only through time

testing.
(6) The produced items are repairable and are sold with a free minimal repair warranty.

2.3. Inspection scheme

We consider the production of a single item on a single machine which starts in an ‘in-control’
state to produce items of acceptable quality at a rate P (> 0) to meet a demand rateD (< P )
for the product. The inventory builds up with a rate (P −D) during the production run and
reaches the maximum level (P−D)T at time T . Afterwards it decreases monotonically with
a rate D and reaches ultimately to the zero level at time PT/D. However, in the production
phase, if the process shifts from an ‘in-control’ state to an ‘out-of-control’ state then some

c© Operations Research Society of Japan JORSJ (2006) 49-3



Optimal Inspection Schedule 225

 

: Inspection time 

Time 

-d 
p-d 

.  .  .  .  ..  .  .  Tn=T T0 = 0 Ti T2 T1 

Stock level 

Production run length 

Figure 1: Configuration of the EMQ model with inspections.

percentage of produced items are of substandard quality, although a few substandard items
could have been produced when the process was in ‘in-control’ state. We assume that the
time to process shift follows a general probability distribution F (t) with density function
f(t). During the production run, inspections are carried out at times T1, T2, · · · , Tn = T to
assess its state. See Figure 1 for the configuration of the EMQ process with inspections.

The following two inspection policies are adopted for the proposed model:

Policy I: At each inspection, if the process is found in an ‘out-of-control’ state then
restoration is done, otherwise, no action is taken with the exception of the last inspection
at time Tn where preventive maintenance (PM) is done to ensure that the system will
be in ‘in-control’ state at the beginning of the next production run.

Policy II: At each inspection, if the process is found in an ‘out-of-control’ state then
restoration is done, otherwise, PM is performed to enhance the system reliability.

3. Model Formulation and Analysis under Inspection Policy I

In the following, we derive the manufacturer’s expected total discounted cost (pre-sale +
post-sale) over an infinite time horizon under inspection policy I and use it as the criterion
of optimality. We define the inventory holding time of one production lot together with the
warranty contract time as one cycle. Then the expected total discounted cost for holding
inventory per cycle is given by

ch

[∫ T

0
(P −D)ze−δzdz +

∫ PT/D

T
(PT −Dz)e−δzdz

]
=

ch
δ2

[
(P −D)(1 − e−δT )

+D
(
e−δPT/D − e−δT

)]
.
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Let Pj be the probability that the production process needs to be restored at time Tj, ∀ j =
1, 2, · · · , n. Then, we have

P1 = P0

∫ T1

0
dF (t) = P0[F (T1) − F (0)] = P0[F (T1 − T0) − F (T0 − T0)],

P2 = P0

∫ T2

T1

dF (t) + P1

∫ T2−T1

0
dF (t)

= P0[F (T2 − T0) − F (T1 − T0)] + P1[F (T2 − T1) − F (T1 − T1)],

P3 = P0

∫ T3

T2

dF (t) + P1

∫ T3−T1

T2−T1

dF (t) + P2

∫ T3−T2

0
dF (t)

= P0[F (T3 − T0) − F (T2 − T0)] + P1[F (T3 − T1) − F (T2 − T1)]

+P2[F (T3 − T2) − F (T2 − T2)],

and in general,

Pj =
j−1∑
i=0

Pi{F (Tj − Ti) − F (Tj−1 − Ti)}, j = 1, 2, · · · , n;

where P0 = 1.

Let Ni denote the conditional expectation of the number of non-conforming items pro-
duced in the time interval (Ti−1, Ti], i = 1, 2, · · · , n and τk denote the random elapsed time of
the first shift from the ‘in-control’ state to the ‘out-of-control’ state given that the previous
restoration was held at time Tk, k = 0, 1, 2, · · · , i− 1. Then we have

N1 =

⎧⎨
⎩
Pθ1τ0 + Pθ2(T1 − τ0), if T0 < τ0 ≤ T1;

Pθ1T1, otherwise.

Therefore, the expected number of non-conforming items produced in (0, T1] is

E(N1) =
∫ T1

0
{Pθ1τ0 + Pθ2(T1 − τ0)} dF (τ0) +

∫ ∞

T1

Pθ1T1 dF (τ0). (3.1)

The conditional expectation of the number of non-conforming items produced in the second
period (T1, T2] is

N2 =

⎧⎨
⎩
Pθ1(τj − T1−j) + Pθ2(T2 − Tj − τj), if T1 − Tj < τj ≤ T2 − Tj;

Pθ1(T2 − T1), if τj > T2 − Tj, ∀ j = 0, 1.

Therefore, the expected number of non-conforming items produced in the time interval
(T1, T2] is given by

E(N2) =
1∑

j=0

Pj

[∫ T2−Tj

T1−Tj

{Pθ1(τj − T1−j) + Pθ2(T2 − Tj − τj)} dF (τj)

+
∫ ∞

T2−Tj

Pθ1(T2 − T1) dF (τj)
]
. (3.2)
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By the same argument, the expected number of non-conforming items produced in the
i-th period (Ti−1, Ti] is given by

E(Ni) =
i−1∑
j=0

Pj

[∫ Ti−Tj

Ti−1−Tj

{Pθ1(τj − Ti−1−j) + Pθ2(Ti − Tj − τj)} dF (τj)

+Pθ1(Ti − Ti−1)F (Ti − Tj)
]
. (3.3)

Therefore, the fraction of non-conforming items produced in a production lot is

Δ12 =
1

PT

n∑
i=1

i−1∑
j=0

Pj

[∫ Ti−Tj

Ti−1−Tj

{Pθ1(τj − Ti−1−j) + Pθ2(Ti − Tj − τj)} dF (τj)

+Pθ1(Ti − Ti−1)F (Ti − Tj)
]

(3.4)

and hence the fraction of conforming items produced in a lot is Δ11 = 1 − Δ12.
The present value of the expected restoration cost in the time interval (0, T1] is

ρ
∫ T1

0

∫ T1−τ0

0
e−δ(τ0+y)dy dF (τ0).

Similarly, the present value of the expected restoration cost in the time interval (T1, T2] is

ρ
1∑

j=0

Pj

∫ T2−Tj

T1−Tj

∫ T2−Tj−τj

0
e−δ(Tj+τj+y)dy dF (τj). (3.5)

In general, since the present value of the expected restoration cost in the i-th period (Ti−1, Ti]
is given by

ρ
i−1∑
j=0

Pj

∫ Ti−Tj

Ti−1−Tj

∫ Ti−Tj−τj

0
e−δ(Tj+τj+y)dy dF (τj), (3.6)

the net present value of the expected pre-sale cost per cycle is derived as

A(n, T1, T2, · · · , Tn) = cs + cmPTne
−δTn +

n∑
i=1

v0e
−δTi + v1

n−1∑
j=0

PjF (Tn − Tj)e
−δTn

+
ch
δ2

[
(P −D)(1 − e−δTn) +D

(
e−δPTn/D − e−δTn

)]

+ρ
n∑

i=1

i−1∑
j=0

Pj

∫ Ti−Tj

Ti−1−Tj

∫ Ti−Tj−τj

0
e−δ(Tj+τj+y)dy dF (τj). (3.7)

Evidently the failure rates of conforming and non-conforming items are different in the post-
sale period. So, the present value of the expected warranty cost per cycle depends on the
individual number of conforming and non-conforming items sold in each time unit of the
stock holding period. Since it is difficult to estimate these numbers, we assume for simplicity
that the fractions of conforming and non-conforming items sold in each time unit are the
same as those produced in a production lot. Further, we assume that the minimal repair
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time of an item is short enough relative to the FRW period W . Under these assumptions,
the present value of the warranty servicing cost is given by

B(T1, T2, · · · , Tn) = cr

∫ PTn/D

0

{∫ W

0
DΔ11e

−δ(z+t)r1(t)dt+
∫ W

0
DΔ12e

−δ(z+t)r2(t)dt

}
dz,

where r1(t) and r2(t) are the failure rates of the associated lifetime distributions of con-
forming and non-conforming items, respectively. Hence, the expected total discounted cost
(pre-sale + post-sale) per cycle is given by

C1(n, T1, T2, · · · , Tn) = A(n, T1, T2, · · · , Tn) +B(T1, T2, · · · , Tn)

= cs + cmPTne
−δTn +

n∑
i=1

v0e
−δTi + v1

n−1∑
j=0

PjF (Tn − Tj)e
−δTn

+
ch
δ2

[
(P −D)(1 − e−δTn) +D

(
e−δPTn/D − e−δTn

)]

+ρ
n∑

i=1

i−1∑
j=0

Pj

∫ Ti−Tj

Ti−1−Tj

e−δ(Tj+τj) − e−δTi

δ
dF (τj)

+crD
∫ PTn/D

0

{∫ W

0
Δ11e

−δtr1(t)dt+
∫ W

0
Δ12e

−δtr2(t)dt

}
e−δzdz.

(3.8)

The expected length of a cycle is clearly given by PTn/D + W . Therefore, the present
value of one unit cost after one cycle becomes φ(Tn)= exp{−δ(PTn/D +W )}. Hence, the
manufacturer’s expected total discounted cost (TC1) over the time horizon [0,∞), when the
initial time point is taken to be the starting point of the production lot, is

TC1(n, T1, T2, · · · , Tn) =
∞∑
l=0

C1(n, T1, T2, · · · , Tn){φ(Tn)}l

=
C1(n, T1, T2, · · · , Tn)

1 − e−δ(PTn/D+W )
. (3.9)

Our objective is to seek the optimal number of inspections n and the inspection sequence
{T1, T2, · · · , Tn} which minimize TC1(n, T1, T2, · · · , Tn).

Unfortunately, it is quite hard to determine the optimal values of n, T1, T2, · · · , Tn simul-
taneously. So, we proceed in the following to derive a sub-optimal inspection policy. We
choose approximately the lengths of inspection intervals in such way that the integrated
hazard over each interval is same for all intervals i.e.,

∫ Tj+1

Tj

r(t)dt =
∫ T1

0
r(t)dt, j = 0, 1, 2, · · · , n− 1. (3.10)

This approximate method is proposed by Munford [8]. For the application to the EMQ
problem, see Rahim [11] and its references. If the time of production process staying in the
in-control state follows a Weibull distribution whose probability density function is given by

f(t) = λβ(λt)β−1e−(λt)β

, t > 0, β ≥ 1, λ > 0,
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then, from equation (3.10), the approximate inspection times can be determined recursively
as

Tj = (T β
j−1 + T β

1 )1/β, j = 1, 2, · · · , n. (3.11)

This reduces the cost function TC1(n, T1, T2, · · · , Tn) to a function of two independent vari-
ables n and T1 only. That is, we have

TC1(n, T1) =
C1(n, T1)

1 − e−δ(PTn/D+W )
.

For any given n, the optimal value of T1 can be obtained numerically by any one-dimensional
search technique. Consequently, a line search on n would determine a local optimal solution.
The assumption of constant hazard policy leads to the following fundamental result without
the proof.

Proposition 3.1 For any arbitrary number of inspections n during a production run, there
exists a sub-optimal inspection time sequence {T 0

1 , T
0
2 , · · · , T 0

n} such that

(i) t01 ≥ t02 ≥ t03 ≥ · · · ≥ t0n, where t0j = T 0
j − T 0

j−1, ∀ j = 1, 2, · · · , n,
(ii) limn→∞

∑n
j=1 t

0
j = ∞,

(iii) t0j = t01, ∀ j = 2, 3, · · · , n when β = 1 (exponential failure case), i.e., the periodic
inspection policy is optimal.

Remark 3.1 A non-gradient based approach (see e.g. Hooke and Jeeves [4]) can be applied
to minimize the cost function (3.9) directly by developing a pattern search algorithm.

Remark 3.2 The long-run average cost AC1(n, T1, T2, · · · , Tn) can be easily obtained as the
limiting value of the annualized total discounted cost as δ → 0+, although we omit to show
the result.

4. Model Formulation and Analysis under Inspection Policy II

Under inspection policy II, either restoration or preventive maintenance is performed at
each inspection. So, the process is in the original ‘in-control’ state immediately after each
inspection. In this case, the fraction of non-conforming items produced in a production lot
is given by

Δ22 =
1

PT

n∑
i=1

[∫ ti

0
{Pθ1t+ Pθ2(ti − t)} dF (t) +

∫ ∞

ti
Pθ1tidF (t)

]
. (4.1)

Therefore, the fraction of conforming items produced in a production lot is Δ21 = 1 − Δ22.
The expected total discounted cost over an infinite time horizon is given by

TC2(n, t1, t2, · · · , tn) =
C2(n, t1, t2, · · · , tn)

1 − e−δ(PT/D+W )
, (4.2)

where T = t1 + t2 + · · · + tn and

C2(n, t1, t2, · · · , tn) =
[
cs + cmPTe

−δT +
n∑

i=1

e−δ
∑i

k=1
tk(v0 + v1F (ti))

+
ch
δ2

{
(P −D)(1 − e−δT ) +D

(
e−δPT/D − e−δT

)}

+(ρ/δ)
n∑

i=1

∫ ti

0

{
e−δ(

∑i−1

k=1
tk+t) − e−δ

∑i

k=1
tk

}
dF (t)

+crD
∫ PT/D

0
e−δz

{∫ W

0
Δ21e

−δtr1(t)dt+
∫ W

0
Δ22e

−δtr2(t)dt

}
dz
]
.
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Remark 4.1 When n = 1, i.e., the process is inspected only once at the end of each pro-
duction run, (from equations (3.9) and (4.2)) we have TC1(1, T ) = TC2(1, T ).

Proposition 4.1 Suppose that v1f(t) ≤ (ρ + δv1)F (t) ≤ v1f(t) + δ(v0 + v1) for 0 ≤ t ≤
T . For any given n and T , if θ1 → 0 (i.e., no non-conforming item is produced in ‘in-
control’ state) then there exists a unique inspection interval sequence {t∗1, t∗2, · · · t∗n} which
is a minimizer of TC2(n, t1, t2, · · · , tn) provided that the associated Hessian matrix, H, is
positive definite at (t∗1, t

∗
2, · · · t∗n).

Proof. For any given n and T , the optimal inspection schedule can be obtained by solving
the following nonlinear programming (NP) problem:

min
t1,t2,···,tn

C2(n, t1, t2, · · · , tn)

subject to
n∑

i=1

ti = T, ti > 0 ∀ i = 1, 2, · · · , n. (4.3)

The Lagrangian function for the NP problem (4.3) is given by

L(t1, t2, · · · , tn) = C2(n, t1, t2, · · · , tn) + μ

(
T −

n∑
i=1

ti

)
,

where μ is the Lagrange multiplier. It is immediate to get the first order necessary conditions
of optimality as

∂L

∂ti
= 0, for i = 1, 2, · · · , n;

∂L

∂μ
= 0, (4.4)

which yield

Gi(t1, t2, · · · , tn) ≡ −δ
n∑

j=i

e−δ
∑j

k=1
tk

[
v0 + v1F (tj) + ρ

∫ tj

0

e−δ(t−tj) − 1

δ
dF (t)

]

−e−δ
∑i

k=1
tk

[
v1f(ti) − ρ

∫ ti

0
e−δ(t−ti)dF (t)

]

+
crD

T
{θ1 + (θ2 − θ1)F (ti)}

∫ PT/D

0

{∫ W

0
e−δ(z+t)r2(t)dt

−
∫ W

0
e−δ(z+t)r1(t)dt

}
dz − μ = 0, i = 1, 2, · · · , n (4.5)

and

n∑
i=1

ti = T. (4.6)

Again, differentiating Gi(t1, t2, · · · , tn) with respect to ti we get

∂Gi

∂ti
= δ2

n∑
j=i

e−δ
∑j

k=1
tk

[
v0 + v1F (tj) + ρ

∫ tj

0

e−δ(t−tj) − 1

δ
dF (t)

]
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+e−δ
∑i

k=1
tk

[
(ρ+ 2δv1)f(ti) − ρδ

∫ ti

0
e−δ(t−ti)dF (t) − v1

∂f(ti)

∂ti

]

+
crD

T
(θ2 − θ1)f(ti)

∫ PT/D

0
e−δz

{∫ W

0
e−δtr2(t)dt−

∫ W

0
e−δtr1(t)dt

}
dz

i = 1, 2, · · · , n
> 0, (4.7)

by assumption v1f(t) ≤ (ρ+δv1)F (t) ≤ v1f(t)+δ(v0+v1) . A closer look on equations (4.5)
reveals that a sequential backward search procedure can be applied to determine the optimal
values of tn, tn−1, · · · , t1 satisfying equations (4.5) and (4.6). The sequential approach for
each of i = n, n − 1, n − 2, · · · , 1 in fact finds Gi as a function of single variable only. Also
note that when θ1 → 0+, we have limtn→0+ Gn(tn) < 0 and limtn→∞Gn(tn) > 0. Since
Gn(tn) is increasing in (0,∞), therefore, there exists a unique positive root t∗n of Gn(tn) = 0.
Replacing

∑n−1
k=1 tk by (T − t∗n) in equation Gn−1(tn−1) = 0 the optimal value of tn−1 can

be determined in the next step. Proceeding in this way, the optimal inspection interval
sequence {t∗1, t∗2, · · · t∗n} can be obtained. This inspection sequence will be a minimizer of
TC2(n, t1, t2, · · · , tn) provided that the associated Hessian matrix H is positive definite at
the point (t∗1, t

∗
2, · · · t∗n). This completes the proof of the proposition.

The following result follows immediately from the proof of Proposition 4.1.

Proposition 4.2 When δ → 0, for any given n and T , there exists a unique optimal periodic
inspection schedule for which t∗1 = t∗2 = · · · = t∗n = T/n.

By taking the limit as δ → 0 and applying L’Hospital’s rule, the long-run average cost
AC2(n, t1, t2, · · · , tn) can be obtained from equation (4.2) as

AC2(n, t1, t2, · · · , tn) = lim
δ→0

δ · TC2(n, t1, t2, · · · , tn)

=
[
cs + cmPT +

n∑
i=1

(v0 + v1F (ti) +
ch(P −D)PT 2

2D

+ρ
n∑

i=1

∫ ti

0
(ti − t) dF (t) + crD

∫ PT/D

0

{∫ W

0
Δ21r1(t)dt

+
∫ W

0
Δ22r2(t)dt

}
dz
]
/(PT/D +W ). (4.8)

Under the periodic inspection policy, the above equation takes the form:

AC2(n, T ) =
[
cs + cmPT + n(v0 + v1F (T/n) +

ch(P −D)PT 2

2D

+ρn
∫ T/n

0
(T/n− t) dF (t) + crPT

{
Δ31

∫ W

0
r1(t)dt

+Δ32

∫ W

0
r2(t)dt

}]
/(PT/D +W ), (4.9)

where

Δ32 = θ1 + (n/T )(θ2 − θ1)
∫ T/n

0
F (t)dt and Δ31 = 1 − Δ32.
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To derive the optimal number of inspections for a known production time T , we define

RW = crP (θ2 − θ1)

{∫ W

0
r2(t)dt−

∫ W

0
r1(t)dt

}
,

ψ(t) = (ρ+RW )F (t) − v1f(t).

Proposition 4.3 For any given T , if

n
∫ T/n

T/(n+1)
ψ(t)dt− (n+ 1)

∫ T/n

0
ψ(t)dt < v0 + v1, ∀n ≥ 1, (4.10)

then the optimal number of inspections which minimizes AC2(n, T ) is given by n∗ = 1,
otherwise, n∗ is the smallest positive integer greater than 1 which satisfies the following
inequality:

(n∗ + 2)
∫ T/(n∗+1)

T/(n∗+2)
ψ(t)dt < (n∗ + 1)

∫ T/n∗

0
ψ(t)dt+ v0 + v1. (4.11)

Proof. Taking the difference of AC2(T, n) with respect to n we get

q(n) = AC2(n+ 1, T ) − AC2(n, T )

= v0 + v1 + (n+ 1)

{
(ρ+RW )

∫ T/(n+1)

0
F (t)dt− v1F (T/(n+ 1))

}

−n
{

(ρ+RW )
∫ T/n

0
F (t)dt− v1F (T/n)

}
.

If the condition (4.10) holds then AC2(n, T ) is a strictly increasing function of n and con-
sequently, the optimal number of inspections is n∗ = 1, i.e., the only one inspection is to
be performed at the end of the production run. On the other hand, there exists a unique
number of inspections n > 1 provided that AC2(n, T ) is convex with respect to n. Taking
the difference of q(n) with respect to n, after some algebraic manipulations, we get

q(n+ 1) − q(n) = n
∫ T/n

T/(n+1)
ψ(t)dt− (n+ 2)

∫ T/(n+1)

T/(n+2)
ψ(t)dt. (4.12)

From equation (4.12) and the condition given in equation (4.10), it follows that the optimal
number of inspections n∗ is the smallest integer greater than 1 which satisfies the inequality
(4.11). This completes the proof of the proposition.

Proposition 4.4 Suppose that both F1(t) and F2(t) have IFR (increasing failure rate) prop-
erty. Then, for any given n and T , there exists a unique warranty period W ∗ (0 < W ∗ <∞)
which minimizes the expected total cost per unit time in the steady state and the correspond-
ing minimum average cost is crPT{Δ31r1(W

∗) + Δ32r1(W
∗)}.

Proof. Considering W as a decision variable in equation (4.9), the first order condition of
optimality gives

cr(PT/D +W )PT{Δ31r1(W ) + Δ32r2(W )} −
[
cs + cmPT + n(v0 + v1F (T/n)

+
ch(P −D)PT 2

2D
+ ρn

∫ T/n

0
(T/n− t) dF (t) + crPT

{
Δ31

∫ W

0
r1(t)dt

+Δ32

∫ W

0
r2(t)dt

}]
= 0. (4.13)
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Table 1: Influence of λ on the expected total discounted cost when n = 4

Inspection policy Ia Inspection policy II
λ TC0

1 t∗1 t∗2 t∗3 t∗4 TC∗
2

0.1 7254.17 0.32754 0.28315 0.23042 0.16089 7353.36
0.2 7267.87 0.27012 0.25716 0.24358 0.22923 7356.14
0.3 7290.19 0.25906 0.25310 0.24703 0.24083 7360.58
0.4 7320.39 0.25517 0.25176 0.24832 0.24485 7366.75
0.5 7357.54 0.25336 0.25115 0.24893 0.24670 7374.67
0.6 7400.57 0.25235 0.25080 0.24924 0.24769 7384.30
0.7 7448.35 0.25175 0.25059 0.24943 0.24828 7395.63
0.8 7499.78 0.25142 0.25052 0.24963 0.24873 7408.69
0.9 7553.82 0.25108 0.25036 0.24965 0.24893 7423.32

a Sub-optimal inspection schedule {T 0
1 , T

0
2 , T

0
3 , T

0
4 }={0.5, 0.70711, 0.86602, 1.0}, where

superscript 0 indicates sub-optimal results.

It is easy to see that the function on the left hand side of equation (4.13) is increasing in W
for known values of n and T . Moreover, its limits as W → 0 and W → ∞ are negative and
positive, respectively. So the equation (4.13) has a finite unique positive root W ∗ (> 0).
Further, the second order derivative of the right hand side of equation (4.9) with respect to
W at W = W ∗ leads to crPT {Δ31r

′
1(W

∗) + Δ32r
′
2(W

∗)} /(PT/D+W ∗)2 > 0, where prime
denotes differentiation with respect to W . Hence the proposition follows.

5. Numerical Examples

Suppose that the process shift from an ‘in-control’ state to an ‘out-of-control’ state follows
the Weibull distribution:

F (t) = 1 − e−(λt)β

, t > 0, λ > 0, β ≥ 1.

The lifetime distributions of conforming and non-conforming items are also Weibull distri-
butions with failure rates r1(t) = t/50 and r2(t) = t/25, respectively. The parameter values
of the proposed model are as follows: D = 90 (units/week), P = 150 (units/week), cs = 250
($), ch = 0.1 ($/unit/week), cm = 5 ($/unit), cr = 3 ($), v0 = 10 ($), v1 = 15 ($), ρ = 20
($), θ1 = 0, θ2 = 1, β = 2, W = 24 (weeks), T = 1 (week) and δ = 0.02. Table 1 presents
the influence of λ on the expected total discounted cost over an infinite time horizon when
the process is inspected 4 times during a production run.

As expected, the expected total discounted cost increases with the failure parameter λ.
Table 1 further shows that when the failure rate is low (λ = 0.1 ∼ 0.5), inspection policy
I performs better than inspection policy II. On the other hand, inspection policy II results
in lower cost than inspection policy I for higher failure rates (λ = 0.6 ∼ 0.9). When the
failure rate is high, one would expect that preventive maintenance at the time of inspection
when the system is in ‘in-control’ state could reduce the defective item cost and expected
restoration cost. However, the overall cost performance strongly depends on each of the
cost components. It is also to be observed from Table 1 that the first inspection interval
in each inspection sequence is the longest one as the process is in ‘in-control’ state at the
beginning. The subsequent intervals decrease as the cumulative hazards increase with time.
The results in Table 2 show a high impact of δ on the expected total discounted cost. For
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Table 2: Dependence of the expected total discounted cost on δ when n = 4 and λ = 0.5

Inspection policy Ia Inspection policy II
δ TC0

1 t∗1 t∗2 t∗3 t∗4 TC∗
2

0.02 7357.54 0.25331 0.25110 0.24888 0.24666 7374.67
0.03 4961.51 0.25583 0.25197 0.24807 0.24414 4983.54
0.04 3772.31 0.25928 0.25330 0.24724 0.24108 3797.17
0.05 3065.90 0.26341 0.25478 0.24597 0.23694 3092.50
0.06 2600.85 0.26843 0.25655 0.24428 0.23155 2629.12
0.07 2273.61 0.27465 0.25885 0.24231 0.22484 2303.06
0.08 2032.33 0.28230 0.26186 0.24012 0.21661 2062.76
0.09 1848.18 0.29127 0.26543 0.23741 0.20612 1879.40
0.10 1703.83 0.30210 0.27011 0.23464 0.19331 1735.76
a Sub-optimal inspection schedule {T 0

1 , T
0
2 , T

0
3 , T

0
4 }={0.5, 0.70711, 0.86602, 1.0}

example, when δ is increased from 2% to 3% the total discounted cost under inspection
policy I reduces by 32.57%.

The pre-specified number of inspections during a production run may be restrictive in
some manufacturing systems as it does not allow to control the production of defective items
in an optimal way, whereas a fixed production run time or lot size in a production cycle is
quite common in practice. We keep the production time duration T = 1 week as fixed and
determine the optimal inspection policy. Table 3 presents the optimal/sub-optimal number
of inspections, inspection sequence and the associated total discounted cost for different
values of the failure parameter λ. From Tables 1 and 3, it could be observed that given
a production run time T , a flexible number of inspections provide lower expected total
discounted cost than that for inflexible one.

Table 4 exhibits the corresponding results of Tables 1 and 3 under long-run average
cost criterion. It can be observed from Tables 1, 3 and 4 that the characteristics of the
optimal/sub-optimal inspection policy are quite similar to those under discounted cost cri-
terion. Table 5 explores that the zero warranty policy (W = 0) is not the true optimum. In
fact, there exists a unique non-zero warranty period W which minimizes the manufacturer’s
expected cost under discounted or long-run average cost criterion. This signifies the impor-
tance of considering warranty issue in the integrated production and maintenance model
under consideration.

6. Conclusions and Future Research Directions

The primary goal of this paper is to incorporate a sequential inspection policy during a
production run in an imperfect production process. When the manufacturer involves in a
contractual deal with the customer to provide post-sale free repair service until a certain
period, such a sequential inspection policy not only reduces the number of defective items
in a production lot but also lowers the warranty servicing cost. In this paper, we have
developed an imperfect EMQ model under discounted as well as long-run average cost
criteria assuming that the process shift time from an ‘in-control’ state to an ‘out-of-control’
state follows a general probability distribution and the process is subject to inspection
policy I or II during a production run. Inspection policies I and II designate respectively
no action and preventive repair action taken at each inspection in the intermediate of a
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Table 3: Dependence of optimal/sub-optimal inspection policies on λ under discounted cost
criterion when n is not fixed

Inspection policy I Inspection policy II
λ n∗ {T 0

1 , T
0
2 , · · · , T 0

n} TC0
1 n∗ {t∗1, t∗2, · · · , t∗n} TC∗

2

0.1 1 {1.0} 7207.01 2 {0.51344, 0.48666} 7233.06

0.2 2 {0.70760, 1.0} 7240.14 2 {0.50341, 0.49664} 7244.20

0.3 3 {0.57731, 0.81644, 1.0} 7279.51 2 {0.50155, 0.49850} 7262.65

0.4 3 {0.57731, 0.81644, 1.0} 7318.40 2 {0.49916, 0.50091} 7288.26

0.5 4 {0.5, 0.70711, 0.86602, 1.0} 7357.54 2 {0.50057, 0.49942} 7320.79

0.6 5 {0.44726, 0.63252, 0.77468, 7396.67 3 {0.33457, 0.33338, 7348.47
0.89452, 1.0} 0.33220}

0.7 6 {0.40837, 0.577522, 0.707318, 7435.19 3 {0.33423, 0.33334, 7368.82
0.81674, 0.913143, 1.0} 0.33246}

0.8 6 {0.40837, 0.577522, 0.707318, 7471.45 3 {0.33399, 0.33330, 7392.21
0.81674, 0.913143, 1.0} 0.33261}

0.9 7 {0.37800, 0.53457, 0.65472, 7506.09 3 {0.33386, 0.33330, 7418.42
0.75600, 0.84523, 0.92591, 1.0} 0.33274}

production run if the process is found in an ‘in-control’ state. Since it is hard to derive
the optimal solution of the model analytically under inspection policy I, we have derived a
sub-optimal inspection policy. Numerical results show that given the production run length
T , the manager has to choose the right inspection policy from I and II, depending on the
system failure information. The free minimal repair warranty which he or she has to offer
the customer is non-zero and unique. The model developed in this paper can be extended
in several ways. We have assumed that all non-conforming items are saleable. However, it
would be more realistic if it is assumed that a fraction of non-conforming items are to be
scrapped before sale. Another direction may be to study the model under pro-rata warranty
policy (Blischke and Murthy [2]) for which the manufacturer agrees to refund a fraction of
the purchase price when the item fails before the warranty period W . Analysis of the model
under an extended warranty policy for which some options are available to the customers
at the expiry time W of FRW would also be a worthful contribution in future.
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Table 4: Dependence of optimal/sub-optimal inspection policies on λ under the long-run
average cost criterion

n = 4, T = 1 T = 1
λ AC0

1 AC∗
2 (n0, AC0

1) (n∗, AC∗
2)

0.1 142.514 144.059 (1, 141.832) (1, 141.449)
0.2 142.813 144.118 (2, 142.468) (2, 142.417)
0.3 143.301 144.216 (3, 143.203) (2, 142.832)
0.4 143.961 144.354 (4, 143.961) (2, 143.386)
0.5 144.772 144.530 (5, 144.727) (3, 143.951)
0.6 145.712 144.745 (6, 145.467) (3, 144.337)
0.7 146.755 144.998 (7, 146.170) (3, 144.789)
0.8 147.877 145.288 (7, 146.860) (4, 145.288)
0.9 149.056 145.615 (8, 147.519) (4, 145.615)

Table 5: Impact of FRW on the expected total discounted cost/long-run average cost when
λ = 0.5

Discounted cost criterion Long-run average cost criterion
W n0 TC0

1 n∗ TC∗
2 n0 AC0

1 n∗ AC∗
2

6 1 8297.80 1 8240.04 1 162.04 1 156.88
12 2 6674.28 2 6660.93 2 126.75 2 125.48
18 3 6777.75 2 6744.27 4 129.916 2 129.22
24 4 7357.54 2 7320.79 5 144.73 3 143.95
36 6 8932.84 4 8898.31 6 185.88 3 184.90
48 7 10602.80 5 10566.50 9 233.72 4 232.07
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