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Abstract Supply chain scheduling is a new emerging area of research. We study batch arrival scheduling
problems at the manufacturer in a multi-level customer-centric supply chain, where promised job due dates
are considered constraints which must be satisfied. We analyze the tradeoff between inventory holding costs
and batch delivery costs. We show that the problems are closely related to batch scheduling problems on
a single machine with flow-time related objectives. We prove that minimizing the sum of total weighted
flow time and delivery costs is strongly NP-hard. For the unweighted version of the problem, we present
efficient solution algorithms both for single machine and assembly systems. We also develop a dynamic
programming solution for minimizing the sum of maximum flow time and delivery costs.
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1. Introduction

Supply chain management has been one of the most important research topics in manufac-
turing over the last fifteen years. Most of the supply chain literature focuses on inventory
control issues on the strategic level, using stochastic models. However, Thomas and Grif-
fin [21] point out in their review of the literature that for many products logistics expen-
ditures can constitute as much as 30% of their cost. This underlines the need for research
dealing with supply chain problems on the operational level, using deterministic rather than
stochastic models. The recently emerging research area of supply chain scheduling tries to
address this problem.

As it is a new area for research, there are relatively few papers dealing specifically
with scheduling problems in supply chains. Hall and Potts [11] presented the first paper
on this important topic. They model the supply chain using three levels for potential
decision makers: the supplier, the manufacturer(s) and the customers. Figure 1 depicts
the network for a problem with one supplier (S), one manufacturer (M), and m customers
(C1, C2, ..., Cm). The manufacturer receives the products (jobs) in batches and batch arrival
times are specified by the supplier. The manufacturer processes the jobs and delivers the
finished products to customers. Partitioning of jobs into batches and batch delivery times of
finished products to customers are decided by the manufacturer to satisfy the demand during
the planning horizon. Each stage of the supply chain is viewed by Hall and Potts [11] as a
single machine for scheduling purposes and they study a variety of scheduling, batching and
delivery problems with the objective of minimizing the overall scheduling and delivery cost.
Chen and Hall [4] extended the model to supply chains with assembly-type manufacturing
systems. Selvarajah and Steiner [19, 20] studied the supplier’s scheduling problem in detail
when the objective is to minimize the sum of inventory holding and delivery costs.

A common feature of the above papers is that they assume that whoever makes the
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Figure 1: Network showing the supplier, manufacturer, and customer relationship

scheduling decisions, i.e., the supplier or the manufacturer, they incur the associated costs.
This means that once the scheduling decisions have been made at one stage, the batches of
products are pushed through the system to the next stage accordingly. Many modern man-
ufacturing systems and supply chains use a pull approach, however, in which the scheduling
decisions are made at the later stage and the products are pulled from the preceding stage
to arrive in the right quantities and just in time (JIT ) when they are needed. JIT man-
ufacturing is a management philosophy that strives to increase value added and eliminate
sources of manufacturing waste. The interested reader in JIT is referred to Monden [13] for
more detail. Another key feature of JIT systems is that they strive to reduce lead times be-
tween the stages. Treville et. al [23] argue that supply chain coordination between partners
without lead time reduction may not improve the chain’s performance to its best possible.
Another key point of successful JIT manufacturing is maintaining low inventory levels while
meeting the customer demands on time. This puts increased emphasis on the synchronized
movement of inputs and outputs in the production and delivery of goods and services to
customers. Frequent deliveries are used to reduce inventories, which of course increases
delivery costs. In this paper, we study this tradeoff in supply chains which operate as a pull
system, i.e., the recipient of the goods or parts (the customer at stage 3 or the manufacturer
at stage 2) makes the decisions how frequently and when the batches of products should be
delivered to him. We assume that it is always the recipient who incurs the costs associated
with any delivery schedule he or she decides. This implies that unreasonably high deliv-
ery frequencies with very high delivery costs will be avoided. We refer to such systems as
customer-centric supply chains, where the generic word customer is used for the recipient.

Our study is motivated by the wide adoption of JIT systems in many successful pro-
duction organizations. One example is BMW, the winner of the productivity award for
manufacturing by Modern Materials Handling [2]. BMW’s newly expanded manufacturing
plant in Spartanburg, S.C., uses a pull system to build customer-specified vehicles within
10 days of order placement. Although the plant builds only two models, X-5 sports utility
vehicles and the two-seater Z-4 roadster, there are many options available for each model in
terms of shape, colour, and interior requirements. For example, for the X-5 model, there are
8 body variances, 12 colours, 19 engine choices, 16 interior choices, and 85 other options.
The plant keeps its suppliers constantly informed of accurate and stable demand data. As
a result, the plant is able to follow the JIT philosophy successfully.

In today’s competitive environment, the most important objective for supply chains
is to meet the customers’ demand in a timely fashion. Classical push-type supply chain
scheduling tries to meet the due dates by assigning tardiness or lateness penalties to the
schedule and trying to minimize these penalties. In a customer-centric supply chain it is a
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constraint that all due dates (deadlines) must be met. In fact these due dates (final delivery
schedules) are assumed to be given as input, and they drive (pull) the system.

Several papers in the literature have studied single-machine scheduling problems with
deadline constraints. Smith [22] develops a polynomial-time algorithm for the sum of com-
pletion time problem with deadline constraints and Heck and Roberts [9] present an algo-
rithm for minimizing the sum of completion times subject to not increasing the maximum
tardiness. The weighted sum of completion time problem was shown to be strongly NP-
hard by Lenstra et al. [12]. A number of branch and bound algorithms have appeared in
the literature for this problem. These include the algorithms of Potts and Van Wassenhove
[16], Posner [15] and Werner [25]. The relatively most efficient one is a recent algorithm due
to Pan [14].

In the model we study, there are N jobs, J1, J2, . . . , JN , to be processed at the man-
ufacturer whose system may be modeled by either a single machine or an assembly-type
operation with subtasks Ji,j to be processed on l machines in a series for i = 1, ..., N and
j = 1, ..., l. Job Ji must be delivered to a customer at time Di. The cost of these deliveries
is borne by the customer. In the single-machine model, Ji requires processing for pi time for
i = 1, 2, . . . , N . In the assembly operation, the processing time of subtask Ji,j is denoted by
pi,j . (If a job skips a certain operation then pi,j = 0 for the corresponding subtask.) Since
no job is delivered before its deadline, the manufacturer wants to complete them as close
to these deadlines as possible. Therefore, we assume that the jobs are processed in earliest
due date (EDD) order and this leads to a feasible schedule, i.e., the manufacturer has suf-
ficient capacity to make this schedule feasible for meeting the deadlines. The manufacturer
receives parts and supplies for each job or subtask from its supplier(s) in batches and is
charged a delivery cost of d for each batch. The manufacturer must receive the batches in
time to enable him to meet the final deadlines, but does not want to receive the supplies
too early because each job Ji incurs an inventory holding cost in the time interval [ai, Di],
where ai is its arrival time at the manufacturer for i = 1, 2, . . . , N . The inventory holding
cost of a job Ji is closely related to its flow time defined as Di − ai. Since the delivery
cost is measured in monetary terms, we multiply flow-time related performance measures
by appropriate constants in order to maintain compatibility in measurement. Therefore,
we multiply the sum of flow times by a constant h, which is the cost of holding a job in
inventory over a unit time; multiply the maximum flow time by a constant K, which is the
penalty cost associated with the maximum flow time; and multiply the flow time of job Ji

by wi, which is the holding cost of job Ji over a time unit when the objective is to minimize
the sum of the weighted flow times and delivery costs. Without loss of generality we may
assume that the job sequence is J1, J2, . . . , JN . Then the manufacturer wants to find the
optimal arrival time aj of each job Jj, the number of batches n and the partitioning of the
jobs into arrival batches which defines the batch sizes so that the total cost is minimized.
We assume there always exists a feasible schedule at the manufacturer, i.e.,

max
k=1,2,...,j

{ak +

j∑
i=k

pi} ≤ Dj (1.1)

We consider the following objectives:

1. For the sum of flow times with batching, total cost TC1 =
N∑

j=1

h(Dj − aj) + nd;

2. For the maximum flow time with batching, total cost TC2 = K max
j=1,...,N

(Dj − aj) + nd;
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3. For the sum of weighted flow times with batching, total cost TC3 =
N∑

j=1

wj(Dj−aj)+nd.

Batch scheduling problems have been extensively studied before. Potts and van Wassen-
hove [18], Albers and Brucker [1], Webster and Baker [24], and Potts and Kovalyov [17] gave
comprehensive surveys. Even though there have been many papers, only a few deal with
batch scheduling problems with delivery costs. Cheng et al. [5] study batch scheduling on
a single machine to minimize the sum of delivery costs and earliness penalties. Yang [26]
analyzes a similar model with given batch delivery dates and Hall et al. [10] study related
problems in different machine environments. Chen [3] presents a dynamic programming
algorithm for single-machine scheduling and common due date assignment with earliness-
tardiness penalties and batch delivery costs.

The paper proceeds as follows. In the next section, we study problems of batch arrival
scheduling to minimize the total weighted flow time and delivery costs, i.e., cost function
TC3. First we prove that the problem is strongly NP-hard on a single machine even with
a common due date for all the jobs. Following this, we present a linear-time dynamic
programming algorithm for the problem on a fixed job arrival sequence. This algorithm
is used repeatedly in Section 3 for minimizing TC1 both for single-machine and assembly-
shop environments. In Section 4, we present an efficient dynamic programming algorithm
for batch arrival scheduling with objective TC2. The last section contains our concluding
remarks.

2. Batch Arrival Scheduling to Minimize the Total Weighted Flow Time and
Delivery Costs

2.1. Complexity

Let us consider the batch arrival scheduling problem at the manufacturer when its system
is modeled by a single machine and the objective is to minimize TC3.

Theorem 2.1 Minimizing TC3 =
N∑

j=1

wj(Dj − aj) + nd is strongly NP-hard.

Proof: Hall and Potts [11] have proved that minimizing the sum of total weighted flow times
and delivery costs for a supplier in a push-type system is strongly NP-hard. They used
the well-known strongly NP-hard 3-PARTITION problem to reduce it to their scheduling
problem. We show how this reduction can be adapted to prove the strong NP-hardness of
our problem.

3-PARTITION [8]:
Given 3r integers u1, ..., u3r, where

∑3r
i=1 ui = rz and z/4 < ui < z/2, for i = 1, ..., 3r,

does there exist a partition A1, ..., Ar of the index set {1, ..., 3r}, such that |Aj| = 3 and∑
i∈Aj

ui = z, for j = 1, ..., r?
Consider the following instance of our scheduling problem: N = 3r, job Ji has pi =

wi = ui and Di = rz, for i = 1, ..., 3r, d = z2/2 and let C = r(r + 2)z2/2 be a threshold
value. We prove that there exists a batch arrival schedule for this instance with TC3 =
N∑

j=1

wj(Dj − aj) + nd ≤ C if and only if there exists a solution for 3-PARTITION.

Suppose 3-PARTITION has a solution and assume, without loss of generality, that the
integers are numbered so that u3i−2 + u3i−1 + u3i = z, for i = 1, ..., r. Consider the schedule
in which the jobs are scheduled in this sequence J1, ..., JN and supply batch Bi for jobs
{J3i−2, J3i−1, J3i} arrives at the time J3i−2 starts its processing, i.e., a3i−2 = a3i−1 = a3i =
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(i−1)z, for i = 1, ..., r. It is easy to see that each of the jobs {J3i−2, J3i−1, J3i} has flow time
equal to rz−(i−1)z = (r−i+1)z. Therefore, TC3 =

∑r
i=1(u3i−2+u3i−1+u3i)(r−i+1)z+rd =∑r

i=1(r − i + 1)z2 + rz2/2 = C for this schedule.
Next we prove the theorem in the other direction. Suppose we have a schedule with n

arrival batches and let xi be the total processing time of the jobs corresponding to the ith
batch Bi for i = 1, ..., n. It is clear that supplies for Bi must arrive at the time the last job
in Bi−1 completes its processing, i.e., at

∑i−1
j=1 xj. Therefore, the flow time of the jobs in Bi

will be rz−∑i−1
j=1 xj =

∑n
j=i xj for i = 1, ..., n. Thus we have TC3 =

∑n
i=1 xi

∑n
j=i xj +nd =∑n

i=1 xi

∑n
j=i xj + nz2/2 =

(∑n
j=1 xj

)2

/2 +
∑n

j=1 x2
j/2 + nz2/2. Thus minimizing TC3 on

n batches can be written as

minimize

(
n∑

j=1

xj

)2

/2 +
n∑

j=1

x2
j/2 + nz2/2 (2.1)

subject to
n∑

j=1

xj = rz. (2.2)

Since the first term of this objective is (rz)2, it is easy to see that the whole function
will be minimized when x1 = x2 = ... = xn = rz/n. Thus for any n-batch solution we must
have TC3 ≥ (rz)2/2 + n(rz/n)2/2 + nz2/2. Simple arguments from calculus show that this
expression reaches its minimum at n = r and the minimum value is C. Thus if there exists
a batching schedule with TC3 = C, then we must have n = r and each batch must have a
size xj = z. This implies that each batch has 3 jobs in it and 3-PARTITION has a solution.

2.2. Batching a given job sequence on a single machine

In this section, we study the optimal batching problem at the manufacturer to minimize

TC3 =
N∑

j=1

wj(Dj −aj)+nd when the order of job processing and arrival at the manufacturer

is given and this is also the order of job arrivals. Without loss of generality, let this sequence
be J1, ...JN . Note that the given job processing sequence is assumed to be feasible for meeting
the promised delivery times. Let Si denote the latest start time for job Ji such that the
schedule is feasible. Consider an n-batch arrival schedule, and let ij be the index of the first
job of arrival batch Bj, i.e., the batch schedule is {i1, i1 + 1, . . . , i2 − 1}, {i2, i2 + 1, . . . , i3 −
1}, . . . , {in, in + 1, . . . , N}. Then it is easy to see that batch Bj should arrive at time Sij

and not earlier. Thus

TC3 =
n∑

k=1

ik+1−1∑
j=ik

wj(Dj − Sik) + nd. (2.3)

Note that we assume that a feasible schedule exists for this problem thus the Equation 1.1
is satisfied.

If we define SN+1 = DN , then we can write Sik = DN −
N∑

j=ik

(Sj+1 − Sj). Therefore,

TC3 =
N∑

j=1

wjDj −
n∑

k=1

ik+1−1∑
j=ik

wj

(
DN −

N∑
j=ik

(Sj+1 − Sj)
)

+ nd

=
N∑

j=1

wj(Dj − DN ) +
n∑

k=1

ik+1−1∑
j=ik

wj

N∑
j=ik

(Sj+1 − Sj) + nd. (2.4)
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Let Sj+1 − Sj = p′j for j = 1, 2, . . . , N . Note that p′j ≥ pj and p′j can be interpreted as the
length of time on the machine ‘allocated’ to job j. (We have p′j > pj if there is an idle time
in the schedule.) Then

TC3 =
N∑

j=1

wj(Dj −DN ) +
n∑

k=1

ik+1−1∑
j=ik

wj

N∑
j=ik

p′j + nd. (2.5)

By extending the results of Coffman et al. [7], Albers and Brucker [1] presented an
O(N) time shortest path algorithm for finding the optimal batching to minimize the sum
of weighted completion times of a fixed job sequence on a single machine. We show that
minimizing TC3 can also be formulated as a special shortest path problem by exchang-
ing processing times for weights and weights for allocated times p′j in the Albers-Brucker
formulation:

TC3 =
N∑

j=1

wj(Dj − DN ) +
n∑

k=1

( ik+1−1∑
j=ik

wj

N∑
j=ik

p′j
)

+ nd

=
N∑

j=1

wj(Dj −DN ) +
n∑

k=1

( N∑
j=ik

p′j
ik+1−1∑
j=ik

wj + d
)

(2.6)

Since the first sum is a constant, it is sufficent to minimize the second sum only. If we
set

cij =

(( N∑
v=i

p′v
)( j−1∑

v=i

wv

)
+ d

)
for 1 ≤ i < j ≤ N, (2.7)

then TC3 =
N∑

j=1

wj(Dj −DN )+
n∑

j=1

cij ,ij+1−1. Thus cij represents the contribution to the cost

by a batch containing jobs Ji, Ji+1, ..., Jj−1. Furthermore, for any k > j ≥ i,

cik − cij =
( N∑

v=i

p′v
)( k−1∑

v=j

wv

)
= f(i)h(j, k), where f(i) =

N∑
v=i

p′v and h(j, k) =

k−1∑
v=j

wv.

Since f(i) is monotone nonincreasing and h(j, k) > 0 for all j < k, our problem is
also equivalent to the special shortest path problem discussed by Albers and Brucker. The
following is the corresponding network:

a. Each job Ji (i = 1, 2, ..., N) is represented by vertex i in the network.

b. The network contains directed edges (i, j) for all pairs i < j.

c. Edge (i, j) is assigned the edge length cij.

d. A dummy job JN+1 with pN+1 = wN+1 = 0 is added.

It is easy to see then that minimizing TC3 is equivalent to finding the shortest path from
vertex 1 to vertex N + 1 in the network.

Let Fj be the length of the shortest path from vertex j to vertex N + 1, and Fj(k) the
length of a shortest path from j to N + 1 which contains (j, k) as first edge. Then,

Fj(k) = cjk + Fk + d, and Fj = min{Fj(k)|j < k ≤ N + 1}.
Furthermore, Fj(k) ≤ Fj(l) for vertices j < k < l is equivalent to Fj(k) − Fj(l) =

cjk + Fk − cjl − Fl ≤ 0. Since cjl − cjk = f(j)h(k, l), we obtain that

Fj(k) ≤ Fj(l) is equivalent to f(j) ≥ Fk − Fl

h(k, l)
.
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� � � � � �tail next(i) i previous(i) head

Figure 2: Structure of the queue q.

Thus for any two vertices k < l, if the threshold δ(k, l) = Fk−Fl

h(k,l)
≤ f(j), then Fj(k) ≤

Fj(l) and l is called not better than k with respect to j. On the other hand, if f(j) <
δ(k, l), then Fj(k) > Fj(l) and l is called better than k with respect to j. Based on these
monotonicity properties, we present Algorithm 1, which is a slightly modified version of the
algorithm by Albers and Brucker adapted to our problem. It uses the queue data structure
shown in Figure 2.

Algorithm 1 Modified Algorithm of Albers and Brucker

begin
Step 1 q = N + 1; FN+1 = 0
Step 2: for j = N to 1 do begin
Step 3: while head(q) �= tail(q) and f(j) ≥ δ(next(head(q)), head(q)) do

Delete head(q) from q
Step 4: N(j) = head(q); Fj = cjN(j) + FN(j)

Step 5: while head(q) �= tail(q) and δ(j, tail(q)) ≤ δ(tail(q), previous(tail(q))) do
Delete tail(q) from q

Step 6: Add j to the tail of q
end
end

The correctness of the algorithm and its O(N) time complexity can be proved the same
way as in [1].

Theorem 2.2 Algorithm 1 computes in O(N) time the optimal batching which minimizes
N∑

j=1

wj(Dj − aj) + nd on a given job sequence.

Note that Algorithm 1 is also applicable to minimize the objective function TC1.

3. Minimizing the Total Flow Time and Delivery Costs

In this section, we study simultaneous sequencing and batching of jobs for arrival at the

manufacturer to minimize TC1 = (
N∑

j=1

h(Dj − aj) + nd).

3.1. Scheduling batch arrivals on a single machine

Lemma 3.1 There is an optimal schedule for all three objectives, TC1, TC2, TC3, in which
the order of job arrivals is the same as the order of job processing.

Proof: A job cannot start processing until the job immediately preceding it in the EDD
processing sequence is not completed, and the arrival of any job before the arrival of a job
preceding it in the processing sequence can only make the total flow time larger. Therefore,
no job should arrive in the optimal schedule before any of its predecessors in the EDD order.
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Without loss of generality, we index jobs in the order they are in this common sequence
of arrival and processing. Then the latest possible start time of job Ji, Si, can be recursively
calculated by SN = DN − pN , and Si = min{Di, Si+1} − pi for i = N − 1, N − 2, ..., 2, 1.

Although the job arrival and job processing sequence is the same, the optimal schedule
may contain jobs which arrive early and wait in the shop. Consider the following example
for minimizing TC1 with h = 1:

j 1 2 3 4 5 6
pj 9 7 5 12 6 5
Dj 23 23 23 48 48 48

Let us say that we are given the job processing sequence {1,2,3,4,5,6} and we have to find
the optimal 2-batching schedule. For this problem, the optimal batching is B1 = {1, 2, 3, 4}
and B2 = {5, 6} with total flow time of 131. In this batching solution, the second batch
arrives at t = S5 = 37 and the processing of job set {5, 6} is completed at t = 48; the first
batch arrives at t = S1 = 2 and the processing of job set {1, 2, 3} is completed at t = 23, and
the processing of job set {4} is completed at t = 35. If we move job J4 to the second batch,
then B2 must arrive at t = 25 so that the job set {4, 5, 6} will be completed by t = 48; and
the job set {1, 2, 3} must arrive at t = 2 and will be completed at time t = 23. The total
flow time of this new schedule will increase to 132. This shows that in the optimal schedule
some jobs may arrive with early batches and wait in the shop.

Lemma 3.2 There exists an optimal schedule, for all three objectives TC1, TC2, and TC3,
in which a batch arrives only when all the previously available jobs at the manufacturer have
completed processing, i.e., a batch arrives only when the machine is available to start its
processing.

Proof: Since the job processing sequence is given, a job cannot be started before its im-
mediately preceding job is completed. From Lemma 3.1, the order of job arrivals follows
the processing sequence. Therefore, jobs assigned to any batch will be processed after the
last job of the previous batch has completed processing. Thus arrival of a batch before the
completion of the processing of the last job of the previous arrival batch can only increase
the flow time of the schedule.

Lemma 3.3 Let job Jj be the first job to be processed in arrival batch Bk, then batch Bk

should arrive at time Sj , for all three objectives TC1, TC2 and TC3.

Proof: Let us assume that there is an optimal schedule which does not satisfy the lemma,
but it is consistent with Lemmas 3.1 and 3.2. Select the last batch which arrives before the
latest start time of the first job of the batch in this schedule. If we delay the batch arrival
time to the latest start time of the first job of this batch, the schedule will remain feasible.
Furthermore, the flow times of all the jobs belonging to this batch will be reduced, flow
times of all the jobs belonging to other batches will remain the same. This contradicts the
optimality assumption for the schedule.

Lemma 3.4 There exists an optimal schedule, for all three objectives, TC1, TC2, and TC3,
in which the jobs to be delivered to customer(s) at the same due date are scheduled in LPT
(Largest Processing Time first) order at the manufacturer.

Proof: We know that jobs to be delivered at the same delivery time to customer(s) are
processed consecutively at the manufacturer because of the EDD processing order. Without
loss of generality, let this sequence be J1, ..., JN. Let us assume that the lemma is not
true for an optimal schedule. Then there will be at least two jobs Ji and Ji+1 at the
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manufacturer such that pi < pi+1 and Di = Di+1. If jobs Ji and Ji+1 belong to the same
arrival batch, then interchanging them will not affect the flow time of any job. If jobs Ji and
Ji+1 belong to different arrival batches, say, to Bk and Bk+1, respectively, then let the arrival
time of batch Bk be tk and the arrival time of Bk+1 be tk+1. From Lemma 3.3, we know
tk+1 = min{Di+1, Si+2}−pi+1. Interchange jobs Ji and Ji+1 in these batches, which does not
change the arrival batch sizes. Call the new batches B

′
k and B

′
k+1. Thus in the new schedule,

B
′
k arrives at tk and B

′
k+1 arrives at t′k+1 = min{Di, Si+2} − pi = min{Di+1, Si+2} − pi =

tk+1 +pi+1 −pi. Note that the interchange will not affect the feasibility of the schedule. The
interchange will not affect the flow times of the jobs in Bk\Ji in the original schedule. The
flow time of every job in Bk+1\ Ji+1 is decreased by pi+1 − pi > 0 compared to the original
schedule. The flow time of Ji+1 is increased by tk+1 − tk and the flow time of Ji is decreased
by t′k+1 − tk > tk+1 − tk. Thus the net change in the total flow time is a decrease by at least
pi+1 − pi, which contradicts the optimality of the original schedule. Therefore, any jobs Ji

and Ji+1 not in LPT order must belong to the same batch. Repeatedly resequencing the
jobs with the same due date into LPT order within the batches does not change the cost or
the feasibility of the schedule and leads to an optimal schedule satisfying the conditions of
the lemma.

The combination of EDD ordering with LPT ordering of jobs with the same due date
within batches fixes the optimal sequence for the jobs. Since we know the job sequence,
Algorithm 1 can be used to find the optimal batch sizes. Algorithm 2 summarizes the steps
needed to find the optimal batch arrival schedule.

Algorithm 2: Algorithm to minimize the sum of flow times and delivery costs

Step 1: Order the jobs in EDD order and schedule the jobs with the same due date in
LPT order.

Step 2: Call Algorithm 1 to find the optimal arrival batch sizes of the found sequence.

Theorem 3.1 Algorithm 2 finds in O(N log N) time an optimal batch arrival schedule that
minimizes TC1, the sum of flow times and delivery costs.

Proof: Step 1 finds the optimal job sequence by sorting, which requires O(N log N) time.
Algorithm 1 finds the optimal batching of this job processing sequence in O(N) time.

3.2. Batch arrival scheduling for an assembly shop

In this section, we study the optimal batch arrival policy in an assembly shop where jobs
are processed and assembled on a series of l machines. At each machine, a job may require
parts which are delivered from one of q suppliers. The schematic of the supply chain for
this problem is shown in Figure 3. The manufacturer has to deliver the right products
in the right quantities at the promised times to customers and delivery costs are charged
to the customers. In order to meet the promised delivery times, the manufacturer has
to order the parts from the suppliers, and process and assemble them on the l machines.
For any product Ji (i = 1, 2, . . . , N) which does not need processing on the jth machine
(j = 1, 2, . . . , l), we set pi,j to zero. Suppliers have to deliver parts to the manufacturer
at the manufacturer’s required times and the costs for deliveries from part suppliers to
the manufacturer are charged to the manufacturer. Thus the manufacturer wants to find
the optimal batch arrival schedules for the parts from each supplier so that the total of
sum of flow times and delivery costs is minimized while meeting promised delivery times to
customers.
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Figure 3: Network showing the manufacturer’s relationship with q suppliers, and m cus-
tomers

Let Si,j denote the latest possible start time of task Ji,j in a feasible schedule. Then the
fact that the jobs are ‘pulling’ their subtasks through the system can be captured by the
following backward recursive calculations:

SN,l = DN − pN,l

Si,l = min{Di, Si+1,l} − pi,l, for i = 1, 2, ..., N − 1
Si,j = min{Si,j+1, Si+1,j} − pi,j , for i = 1, 2, ..., N : j = 1, 2, ..., l − 1

⎫⎬
⎭ (3.1)

Lemma 3.5 There exists an optimal batch arrival schedule and associated production sched-
ule in which task Ji,j (for i = 1, 2, ..., N ; j = 1, 2, ..., l) starts its processing at time Si,j.

Proof: By using Si+1,l as an upper bound on the completion time of task Ji,l, the first two
rows of (3.1) ensure that sufficient time will be available at the last machine to finish the
processing of Ji,l by Di. The calculations in the last row of (3.1) make sure that there is
sufficient time also for task Ji,j at machine j for i = 1, 2, ..., N ; j = 1, 2, ..., l. (The schedule
is feasible if Si,1 ≥ 0 for i = 1, 2, ..., N.) It is also clear that the arrival time of the parts for
Ji,j, ai,j, must satisfy ai,j ≤ Si,j for the schedule to be feasible, but some parts may arrive
early. Now suppose we have an optimal schedule in which there are some tasks starting
before their latest start time. Consider the last such task, say Jr,k, and shift its processing
to start at Sr,k. The shift will neither affect the feasibility of the schedule nor the flow time
of any task. Repeatedly applying the above argument to all remaining early tasks will lead
to a schedule which satisfies the lemma.

Lemma 3.6 The batch arrival scheduling problems from each supplier are separable (i.e.,
arrival schedule from a supplier is independent of arrival schedules from other suppliers)
and can be solved independent of each other.

Proof: We know from Lemma 3.5 that there exists an optimal production schedule in which
each task Ji,j starts at its latest possible start time Si,j. Then Si,j can be viewed as the
deadline for the arrival of the parts needed from their supplier. Since each task Ji,j receives
its part(s) from at most one supplier by assumption, each Si,j can become a delivery deadline
only for one supplier. Thus whatever batch arrival times are scheduled from a supplier, this
does not affect the flow time of other parts (tasks) from other suppliers. So by considering
the delivery requirements from one supplier, we get a separable batch arrival scheduling
problem for this supplier. Therefore, the problems can be solved saparate from each other
for each supplier.

Theorem 3.2 The batch arrival scheduling problem at an assembly manufacturer can be
optimally solved in O(qlN log(lN)) time.
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Proof: By Lemma 3.6, parts arriving from each supplier can be scheduled for arrival in a
separate batch scheduling problem. We have (at most) q of these problems. Each of them
can be solved by Algorithm 2 in O(lN log(lN)) time, thus the overall time required is at
most O(qlN log(lN)) indeed.

4. Minimizing Maximum Flow Time and Delivery Costs

In this section, we consider the batch arrival scheduling problem with objective TC2 =
K max

j=1,2,...,N
{Dj−aj} + nd at the manufacturer. It is easy to see that Lemmas 3.1-3.3 apply

to this problem too and they can be proved the same way.

Lemma 4.1 There exists an optimal schedule in which the jobs to be delivered to cus-
tomer(s) at the same due date are scheduled in LPT order at the manufacturer.

Proof: Let there be an optimal schedule in which jobs with the same due date do not
follow the LPT order. Without loss of generality, let the job sequence be J1, J2, . . . , JN .
Then there will be at least two jobs Ji and Ji+1 with pi < pi+1 and Di = Di+1. If Ji

and Ji+1 belong to the same batch, then interchanging these two jobs will not affect the
maximum flow time. If jobs Ji and Ji+1 belong to different arrival batches, say, to Bk

and Bk+1, respectively, then let the arrival time of batch Bk be tk and the arrival time
of Bk+1 be tk+1. From Lemma 3.3, we know tk+1 = min{Di+1, Si+2} − pi+1. Interchange
jobs Ji and Ji+1 in these batches without changing the arrival batch sizes. Call the new
batches B

′
k and B

′
k+1. Thus in the new schedule, B

′
k arrives at tk and B

′
k+1 arrives at

t′k+1 = min{Di, Si+2} − pi = min{Di+1, Si+2} − pi = tk+1 + pi+1 − pi. Note that the
interchange will not affect the feasibility of the schedule. Furthermore, the interchange will
not affect the flow times of the jobs in Bk\Ji in the original schedule. The flow time of every
job in Bk+1\ Ji+1 is decreased by pi+1 − pi > 0 compared to the original schedule and the
flow time of Ji clearly decreases. The only flow time that is increased is that of Ji+1, which
goes up by tk+1 − tk < Di+1 − tk. We have, however, Di+1 − tk=Di − tk, and the latter is
the flow time of Ji in the original schedule. Therefore, the maximum flow time of the new
schedule will not be greater than that of the original one. Repeating this interchange for
every violation of the job order in the lemma will yield an optimal schedule satisfying its
conditions.

Note that the lemma implies that there is a job sequence which is optimal for both the
maximum flow time plus delivery cost and sum of flow time plus delivery cost objectives. To
find the optimal arrival batching for TC2 = K max

j=1,2,...,N
{Dj−aj} + nd, however, we cannot

use Algorithm 1, which was designed for the sum of flow times objective. Therefore, we
present a new dynamic programming algorithm below.

Algorithm 3 Algorithm to minimize TC2 = K max
j=1,2,...,N

{Dj−aj} + nd on job sequence

J1, J2, . . . , JN

Let f(k, j) be the minimum value of TC2 on the first j jobs in a schedule using k
arrival batches for 1 ≤ k ≤ j ≤ N. For easier notation, we also define f(k, j) = ∞ for
1 ≤ j < k ≤ N. The optimal value of TC2 can be obtained by mink=1,...,N f(k, N). The
recursive computation of f(k, j) for 1 ≤ k ≤ j ≤ N is defined as follows.
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f(k, j) =

min

⎧⎨
⎩ K min

r=k−1,...,j−1

{
max{[f(k − 1, r) − (k − 1)d]/K, max

u=r+1,...,j
{Du − Sr+1}}

}
+ kd,

K max
{
[f(k, j − 1) − kd]/K, Dj − Si(k,j−1)

}
+ kd,

(4.1)

where Si(k,j−1) is the starting time of the first job, i(k, j−1), of the last batch in the schedule
realizing f(k, j−1). The first row of the recursion corresponds to taking the optimal schedule
realizing f(k − 1, r) and adding to it a new arrival batch containing jobs {r + 1, ..., j} for
r = k − 1, ..., j − 1. Here [f(k − 1, r) − (k − 1)d]/K expresses the maximum flow time of
the schedule realizing f(k − 1, r). The second row of the recursion corresponds to the case
when job Jj is simply added to the last batch of the schedule realizing f(k, j − 1) without
starting a new batch. To facilitate the computations, we need to store the index of the first
job of the last batch in the schedule realizing f(k, j), denoted by i(k, j).

Initial conditions: f(0, 0) = 0 and f(k, j) = ∞ for j, k = 1, ..., N.

Theorem 4.1 Algorithm 3 finds an optimal batch arrival schedule at the manufacturer to
minimize the total cost of maximum flow time and deliveries in O(N3) time.

Proof. The algorithm needs to compute O(N2) f(k, j) values. Each computation needs
O(N) time. By storing the indices i(k, j), we can obtain the optimal batching at the end
by backtracking.

5. Summary and Concluding Remarks

We have studied batch arrival scheduling problems at the manufacturer in a customer-
centric supply chain where promised job due dates are considered constraints which must be
satisfied. We have shown that the problems are closely related to batch scheduling problems
on a single machine with flow-time related objectives. We proved that minimizing the sum
of total weighted flow time and delivery costs is strongly NP-hard. For the unweighted
version of the problem, we presented efficient solution algorithms both for single machine
and assembly systems. We also developed a dynamic programming solution for minimizing
the sum of maximum flow time and delivery costs.

Future research in this area may look at alternative objective functions or look for
efficient heuristic or approximating solutions for the computationally difficult weighted case.
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