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Abstract In this paper a new approach of Jordan canonical formulation for analysis of a PH-subgenerator
is proposed. Based on the new method, this paper shows that if all eigenvalues of a PH-subgenerator are
real then the closed form of the PH-distribution is a linear combination of Erlang distributions, while if the
subgenerator has complex eigenvalues then the closed form of the PH-distribution is no longer such a simple
form but more complex form that includes trigonometric functions in addition to a linear combination of
Erlang distributions. This paper also shows that the dominant parameter for degree of a PH-distribution
is not the size but the degree of minimal polynomial of the PH-subgenerator.
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1. Introduction

Phase-type distribution (PH-distribution) was proposed by Neuts [5] as the distribution of
absorption time in a finite-state Markov process. Since then, PH-distribution has been used
widely in a variety of fields in stochastic modelling such as queueing theory, risk analysis and
reliability theory [3],[6]. Many authors have contributed to the study of PH-distributions
and related issues including the minimal PH-representation problem, the triangular PH-
distribution, PH-simplicity and PH-majorizaton, polytope and matrix-exponential distribu-
tion [1],[7],[8],[9]. Survey of current status of the studies about PH-distribution is given in
O’Cinneide [10].

In this paper, we propose a new approach that is different from those of previous stud-
ies, and derive the closed form of PH-distribution using the new approach. Representation
of probability distribution function and probability density function for a PH-distribution
include the matrix exponential term that expressed in the infinite series of the matrices,
so that they are not closed but open forms. In order to derive the closed form of them,
systematic analysis for the matrix structure of the PH-subgenerator is required. To achieve
systematic study for PH-distribution, we use Jordan canonical form which is a well es-
tablished formulation that provides complete analysis of matrix structures, particularly for
matrices with multiplicated eigenvalues.

Based on the closed form of PH-distribution, we show that if all eigenvalues of a PH-
subgenerator are real, then the closed form of the PH-distribution is a linear combination of
Erlang distributions, while if a PH-subgenerator has complex eigenvalues, then the closed
form of the PH-distribution is no longer a linear combination of Erlang distributions but
more complex form that includes trigonometric functions.

This paper is organised as follows. In Section 2, we consider a PH-subgenerator Q all
of which eigenvalues are real. In Subsection 2.1, we introduce some basic concepts of PH-
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subgenerator and related issues. In Subsection 2.2, for the simplest case, we consider a
PH-subgenerator Q with one real multiplicated eigenvalue. In Subsection 2.3, generalizing
the results obtained in Subsection 2.2, we consider a PH-subgenerator Q with multiple real
eigenvalues which may be multiplicated and derive the closed form of the PH-distribution.
Two examples are given in Subsection 2.4. In Section 3, we consider a PH-subgenerator
which has conjugate complex eigenvalues in addition to real eigenvalues. In Subsection 3.1,
we introduce some basic concepts of conjugate complex eigenvalues of a PH-subgenerator
and provide preliminary propositions. In Subsection 3.2, we consider a PH-subgenerator Q
that has one multiplicated real eigenvalue and a pair of multiplicated conjugate complex
eigenvalues for the simplest case. One example is given in this Subsection. In Subsection 3.3,
generalizing the results obtained in Subsection 3.2, we consider a PH-subgenerator Q which
has multiplicated multiple real eigenvalues and multiplicated multiple pairs of conjugate
complex eigenvalues. The main result of this paper is given in Section 4. We conclude the
paper in Section 5. Through this paper, we refer to Han and Iri[2] and Meyer[4] for matrix
theory and Jordan canonical form.

2. PH-subgenerator with Real Eigenvalues

2.1. Preliminary

PH-subgenerator: Let Q be a (n×n) matrix with a negative diagonal, non-negative off-
diagonal elements, non-positive row sums, and at least one negative row sum. The matrix
Q is called a subgenerator in the Markov processes literature. Based on Q, we define a
continuous time Markov process with (n+1) states (0, 1, 2, . . . , n) and with an infinitesimal
generator Q∗ of the following form:

Q∗ =

(
0 0
q Q

)
(2.1)

where the 0 state is an absorption state, the states (1, 2, . . . , n) are transient, 0 is a row
vector with all elements being 0, q = −Q1 and 1 is a column vector with all elements
being 1. We write α∗ = (α0,α) to denote the initial probability vector of Q∗. The PH-
distribution represented by (α,Q) is defined as the distribution of the absorption time
to the absorption state 0 with the initial probability α∗ in the Markov process. We call
Q a PH-subgenerator of the Markov process and (α,Q) a PH-representation of the PH-
distribution. The probability distribution function F (t) and the density function f(t) for a
PH-distribution with representation (α,Q) are given as

F (t) = 1 − α exp (Qt)1 (2.2)

f(t) = α exp (Qt)q (2.3)

for t ∈ [0,∞). If α0 �= 0, then the PH-distribution has a mass at time 0. In the case that
α0 = 0, we can simply add f(0) = α0 to an absolutely continuous part of f(t), t > 0 to
obtain f(t) for t ∈ [0,∞). In this paper, we therefore assume that α0 = 0 or, equivalently,
α1 = 1. As shown in (2.2) and (2.3), F (t) and f(t) include the matrix exponential exp (Qt)
expressed in the infinite series of matrices, thus they are not closed forms, but rather open
forms.

Characteristic polynomial and minimal polynomial: The characteristic polyno-
mial for a matrix Q of a PH-subgenerator is defined as c(t) = det (tI − Q), where I is

c© Operations Research Society of Japan JORSJ (2006) 49-2



100 Y. Kishi & I. Kino

the identity matrix and c(t) is a monic polynomial, i.e., its leading coefficient is 1. Monic
polynomials p(t) that satisfy p(A) = 0 are said to be annihilating polynomials for a square
matrix A, in general. It is well known that there is a unique annihilating polynomial of
minimal degree for matrix A, and this polynomial is called the minimal polynomial for ma-
trix A. We write m(t) to denote the minimal polynomial for the PH-subgenerator Q, i.e.,
m(t) is a unique monic polynomial of minimal degree such that m(Q) = 0. The Cayley-
Hamilton theorem guarantees that dig[m(t)] ≤ n. The minimal polynomial m(t) divides the
characteristic polynomial c(t). It is well known that Q is diagonalisable if and only if m(t)
is a product of distinct linear factors, otherwise Q is similar to a Jordan canonical form.

Eigenvalues: The matrix Q has n eigenvalues, including multiplicity, and these form
the solution of the characteristic equation c(t) = 0. The eigenvalues may be either real or
complex. The index for an eigenvalue λ of Q is defined as the smallest positive integer k such
that rank

[
(Q − λI)k

]
= rank

[
(Q − λI)k+1

]
and is written as index(λ) = k. The geometric

multiplicity for an eigenvalue λ is equal to the maximum number of linearly independent
eigenvectors associated with λ and is equivalent to the number of Jordan cells for λ in the
Jordan canonical form of Q.

From the Perron-Frobenius theory, we have the following lemma.

Lemma 2.1 The PH-subgenerator Q has at least one negative eigenvalue and the real part
of the other eigenvalues are strictly negative.

Multiplicated eigenvalues: If every eigenvalue of a given PH-subgenerator Q is dis-
tinct from every other eigenvalue, or the minimal polynomial of Q is a product of distinct
factors, then Q is simply diagonalisable and the problem becomes easy to analyse. PH-
subgenerators, however, may have multiplicated eigenvalues and some may have a different
eigenvalue index. For example, a PH-subgenerator Q(k) of the k-Erlang distribution has one
real eigenvalue λ, the algebraic multiplicity of which is k and the index of which is k − 1.
On the other hand, a PH-subgenerator Q(k1+k2) of a mixture of k1-Erlang and k2-Erlang
distributions, where k1 + k2 = k, has the same eigenvalue λ with the same algebraic mul-
tiplicity k as Q(k). However, the index of the eigenvalue is different from Q(k) in general.
Thus, even though Q(k) and Q(k1+k2) have the same spectrum (a set of distinct eigenvalues)
and the same algebraic multiplicity, the structure of these matrices are different. In order
to determine the matrix structures of PH-subgenerators and their difference, we need the
Jordan canonical forms of Q(k) and Q(k1+k2).

2.2. Multiplicated single real eigenvalue

In this subsection, we consider the most simple case, in which the PH-subgenerator Q
(n×n) has only one multiplicated real eigenvalue λ with index m, so that the characteristic
polynomial and the minimal polynomial are given in the form

c(t) = (t− λ)n and m(t) = (t− λ)m (2.4)

for m ≤ n. From Proposition 2.1, λ < 0. In this case, the algebraic multiplicity of λ is n and
the largest Jordan cell size is m. The geometric multiplicity of λ is defined as dimN(Q−λI)
where N(Q − λI) is the nullspace of (Q − λI) , i.e., N(Q − λI) = {x|(Q − λI)x = 0}.

The standard theory for the Jordan canonical form shows that Q is similar to the Jordan
canonical form

J(λ) =

�(λ,1)⊕
�=1

J �(λ, 1) ⊕
�(λ,2)⊕
�=1

J �(λ, 2) ⊕ · · · ⊕
�(λ,m)⊕
�=1

J �(λ,m) (2.5)
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where �(λ, k) is the number of Jordan cells of size k for k = 1, 2, . . . , m. In other words,
there exists a regular matrix U such that

U−1QU = J(λ) or equivalently Q = UJ(λ)U−1. (2.6)

In expression (2.5), if �(λ, k) = 0, then we simply skip J �(λ, k), i.e., we assume J �(λ, k) = ∅
for �(λ, k) = 0. We also use the following notations in expression (2.5). We denote a Jordan
cell of size k associated with the eigenvalue λ and a nilpotent matrix with index k (the
smallest positive integer such that (N k)

k = 0) to give

J �(λ, k) =

⎡
⎢⎢⎢⎢⎢⎣

λ 1
λ 1

. . .
. . .

λ 1
λ

⎤
⎥⎥⎥⎥⎥⎦ and N k =

⎡
⎢⎢⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0 1
0

⎤
⎥⎥⎥⎥⎥⎦ .

for k ≥ 2. Both of these are (k × k) matrices. We define N 1 = (0) and J �(λ, 1) = λ. Note
that,

J �(λ, k) = λIk + N k (2.7)

where Ik is an identity matrix of size k. The subscript � in J �(λ, k) is used to distinguish
Jordan cells of the same size and same eigenvalue for � = 1, 2, . . . We write a block-diagonal
matrix A with block diagonals of square matrices A1,A2, . . . ,An in the following forms

A =

⎡
⎢⎢⎢⎣

A1

A2

. . .

An

⎤
⎥⎥⎥⎦ = A1 ⊕ A2 ⊕ · · · ⊕ An or A =

n⊕
�=1

A�.

We apply the Jordan chain technique to accomplish this similarity transformation (2.6)
(see Appendix A in details). Let U �(λ, k) be the right-side Jordan chain block associated
with Jordan cell J �(λ, k), then the regular matrix U is given in the form

U =
(
(U �(λ, k))

�(λ,k)
�=1

)m

k=1
(2.8)

Note that U �(λ, k) is an (n × k) matrix that consists of k right-side Jordan chain column
vectors. In the form (2.8), we write U = (Ui)

�
i=1 to denote the matrix U = (U 1,U2, . . . ,U �)

for the matrices U1,U 2, . . . ,U � having the same row size.

Matrix exponential form: The matrix exponential form of Qt is written in the infinite
series of the following matrices:

exp(Qt) = I + tQ +
t2

2!
Q2 + · · · + tn

n!
Qn + · · · (2.9)

From similarity transformation (2.6), the n-th power of matrix Q is given in the form

Qn = UJ(λ)nU−1. (2.10)

c© Operations Research Society of Japan JORSJ (2006) 49-2
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Substituting (2.10) into (2.9), we can express matrix exponential exp(Qt) in the following
form:

exp(Qt) = U exp(J(λ)t)U−1

= U

⎛
⎝ m⊕

k=1

�(λ,k)⊕
�=1

exp (J �(λ, k)t)

⎞
⎠U−1. (2.11)

Using the relation (2.7) and the property of nilpotent matrix N k, we derive that

exp (J �(λ, k)) = exp(λtIk) exp(N kt)

= eλt exp(N k)

= eλt

(
Ik + tN k +

t2

2!
N 2

k + · · · + tk−1

(k − 1)!
N k−1

k

)
. (2.12)

Together with (2.11) and (2.12), we can derive the closed form expression of matrix expo-
nential exp(Qt) to provide

exp(Qt) = eλtU

⎛
⎝ m⊕

k=1

�(λ,k)⊕
�=1

exp (N kt)

⎞
⎠U−1. (2.13)

Density function: Let matrix V be an inverse matrix of U , i.e., V = U−1. We define
a row vector and a column vector as

g�(λ, k) = αU �(λ, k) and h�(λ, k) = V �(λ, k)q

for k = 1, 2, . . . , m, � = 1, 2, . . . , �(λ,m), respectively, where V �(λ, k) is a (k×n) submatarix
in U−1 that appears at the corresponding position at which U �(λ, k) appears in tU . Note
that V �(λ, k) consists of the generalised left-side eigenvectors associated with the Jordan
cell J �(λ, k). Hereinafter, we use the notation tA to denote the transposition of A, which
is either a matrix or a vector.

To represent each element of g�(λ, k) and h�(λ, k), we denote

g�(λ, k) = (γ�,j(λ, k))
k
j=1 and h�(λ, k) = [δ�,j(λ, k)]

k
j=1

where we write a row vector u = (u1, u2, . . . , uk) in the form u = (ui)
k
i=1, and a column

vector v =t (v1, v2, . . . , vk) in the form v = [vi]
k
i=1.

Note that
g = αU and h = V q

(
= U−1q

)
where a row vector g and a column vector h are defined as

g =
(
(g�(λ, k))

�(λ,k)
�=1

)m

k=1
and h =

[
[h�(λ, k)]

�(λ,k)
�=1

]m

k=1
.

Using this notation, we have the following proposition.
Proposition 2.1 The probability density function f(t) of a PH-distribution with represen-
tation (α,Q) is given in the closed form

f(t) =
m−1∑
n=0

ϕn(λ)
tn

n!
eλt (2.14)
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where

ϕn(λ) =
m∑

k=n+1

�(λ,k)∑
�=1

k−n∑
s=1

γ�,s(λ, k) · δ�,s+n(λ, k) for n = 0, 1, . . . , m− 1. (2.15)

Proof. Since Nk is a nilpotent matrix, we can write exp (N kt) in the form

exp(N kt) = Ik + tNk +
t2

2!
N 2

k + · · · + tk−1

(k − 1)!
N k−1

k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2

2!
· · · tk−1

(k−1)!

1 t t2

2!

...
. . .

. . .
. . .

. . .
. . . t2

2!
. . . t

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.16)

Substituting the matrix exponential form (2.13) into (2.3) and using (2.16), we obtain

f(t) = a exp(Qt)q

= eλtaU

⎛
⎝ m⊕

k=1

�(λ,k)⊕
�=1

exp (N kt)

⎞
⎠U−1q

= eλtg

⎛
⎝ m⊕

k=1

�(λ,k)⊕
�=1

exp (N kt)

⎞
⎠h

= eλt

m∑
k=1

�(λ,k)∑
�=1

g�(λ, k) exp (N kt)h�(λ, k)

=
m−1∑
n=0

tn

n!
eλt

m∑
k=n+1

�(λ,k)∑
�=1

k−n∑
s=1

γ�,s(λ, k) · δ�,s+n(λ, k)

Remark 2.1 If we write En,λ for Erlang(n, λ) density

En,λ(t) =
(−λ)ntn

(n− 1)!
eλt, t ≥ 0,

then we can rewrite the density function (2.14) in the form

f(t) =
m∑

n=1

ζn(λ)En,λ(t) where ζn(λ) =
ϕn−1(λ)

(−λ)n
. (2.17)

The expression (2.17) implies that the density function f(t) is a linear combination of
Erlang distributions. Here, we use the term “linear combination” instead of “mixture ”
because the coefficient ζn(λ) may be either positive or negative.
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Remark 2.2 Laplace-Stieltjes transform (LST) of a PH-distribution with representation
(α,Q), with Q an (n× n) matrix, is given as

φ(θ) = α (θI − Q)−1 q for Re(θ) > 0

which is a rational function of θ. The degree of a PH-distribution is defined to be the degree
of the denominator of φ(θ). Proposition 2.1 asserts that the degree D(α,Q) of the PH-
distribution is not equal to the order n of the PH-distribution, but rather is smaller or equal
to degree m of the minimal polynomial, i.e., D(α,Q) ≤ m. In other words, the dominant
parameter of a PH-distribution is not the order of the PH-subgenerator, but rather the
degree of the minimal polynomial.

2.3. Multiplicated multiple real eigenvalues

Generalising the results obtained in the previous section, we consider a PH-subgenerator
Q (n×n) with r (0 < r ≤ n) real and different eigenvalues λ1, λ2, ..., λr with index m1, m2,
... , mr and with algebraic multiplicity n1, n2, ... , nr, respectively. Thus, the characteristic
polynomial and the minimal polynomial of Q are

c(t) =
r∏

i=1

(t− λi)
ni and m(t) =

r∏
i=1

(t− λi)
mi, (mi ≤ ni). (2.18)

The standard theory for the Jordan canonical form shows again that Q is similar to the
Jordan canonical form

J(λ1, λ2, . . . , λr) =
r⊕

i=1

J(λi) (2.19)

where

J(λi) =

�(λi,1)⊕
�=1

J �(λi, 1) ⊕
�(λi,2)⊕
�=1

J �(λi, 2) ⊕ · · · ⊕
�(λi,mi)⊕

�=1

J �(λi, mi) (2.20)

and �(λi, k) is the number of Jordan cells of size k associated with eigenvalue λi for k =
1, 2, . . . , mi. If �(λi, k) = 0, then J �(λi, k) = ∅. There exists a regular matrix U such that

U−1QU = J(λ1, λ2, . . . , λr) or equivalently Q = UJ(λ1, λ2, . . . , λr)U
−1. (2.21)

Applying a procedure similar to that described in the previous subsection to each
eigenvalue λi, we can build Jordan chains associated with the Jordan segment J(λi) for
i = 1, 2, . . . , r.

Let U �(λi, k) be the right-side Jordan chains associated with Jordan cell J �(λi, k), then
the regular matrix U is given in the form

U =
((

(U �(λi, k))
�(λi,k)
�=1

)mi

k=1

)r

i=1

The matrix exponential form of Qt is given such that

exp(Qt) = U exp (J(λ1, λ2, . . . , λr)t)U−1

= U

⎛
⎝ r⊕

i=1

mi⊕
k=1

�(λi,k)⊕
�=1

exp (J �(λi, k)t)

⎞
⎠U−1

= U

⎛
⎝ r⊕

i=1

mi⊕
k=1

�(λi,k)⊕
�=1

eλit · exp (N kt)

⎞
⎠U−1. (2.22)
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We define matrix V as the inverse matrix U−1, i.e., UV = I , such that

V =
[[

[V �(λi, k)]
�(λi,k)
�=1

]mi

k=1

]r

i=1

where V �(λi, k) is a (k × n) submatarix in U−1 that appears at the corresponding position
at which U �(λi, k) appears in tU . Note that V �(λi, k) consists of generalised left-side
eigenvectors associated with the Jordan cell J �(λi, k).

The row vector g and the column vector h are defined as

g = αU and h = V q
(
= U−1q

)
.

To represent each element of g and h, we denote

g�(λi, k) = (γ�,j(λi, k))
k
j=1 and h�(λi, k) = [δ�,j(λi, k)]

k
j=1 .

Then, we have

g =
((

(g�(λi, k))
�(λi,k)
�=1

)mi

k=1

)r

i=1
and h =

[[
[h�(λi, k)]

�(λi,k)
�=1

]mi

k=1

]r

i=1
.

Using this notation, we have the following proposition:
Proposition 2.2 The probability density function f(t) of a PH-distribution with represen-
tation (α,Q) is given in the following closed form:

f(t) =
r∑

i=1

mi−1∑
n=0

ϕn(λi)
tn

n!
eλit (2.23)

where

ϕn(λi) =

mi∑
k=n+1

�(λi,k)∑
�=1

k−n∑
s=1

γ�,s(λi, k) · δ�,s+n(λi, k) for n = 0, 1, . . . , mi − 1. (2.24)

The proof is similar to that given in Proposition 2.1 and so will not be presented here.

Remark 2.3 We can rewrite the density function (2.23) as a linear combination of Erlang
distribution En,λ in the form

f(t) =
r∑

i=1

mi∑
n=1

ζn(λi)En,λi(t) where ζn(λi) =
ϕn−1(λi)

(−λi)n
. (2.25)

Remark 2.4 Proposition 2.2 asserts that the degree D(α,Q) of the PH-distribution is
smaller than or equal to the summation of index for each eigenvalue, i.e., D(α,Q) ≤ m1 +
m2 + · · · +mr.

2.4. Examples

Example 2.1 for a PH-subgenerator with a multiplicated single eigenvalue. Consider a
PH-distribution with representation (α,Q), where for ν > 0

Q = Q1 ⊕ Q2 ⊕ Q3, (2.26)

Q1 =

[−3ν ν
0 −3ν

]
, Q2 =

[−3ν 2ν
0 −3ν

]
, Q3 =

⎡
⎣−3ν 2ν ν

0 −3ν ν
0 0 −3ν

⎤
⎦ ,

c© Operations Research Society of Japan JORSJ (2006) 49-2



106 Y. Kishi & I. Kino

α = (α1, α2, . . . , α7), αi > 0 for i = 1, 2, . . . , 7 and q = −Q1 =t (2ν, 3ν, ν, 3ν, 0, 2ν, 3ν).

In this example, the characteristic polynomial and the minimal polynomial for Q are

c(t) = (t+ 3ν)7 and m(t) = (t+ 3ν)3 (2.27)

so that algebraic multiplicity of the eigenvalue −3ν is 7 and index(−3ν) = 3, i.e., m = 3.
Thus the largest Jordan cell size is 3. Applying Jordan chain technique, we can derive Jordan
chains U1(−3ν, 2), U 2(−3ν, 2), U 1(−3ν, 3) in the following procedure (see Appendix for the
definition of notations Mk and Nk). Solving linear equation (Q+3νI)kx = 0 for k = 3, 2, 1,
we see that M3 = {e7, e6, . . . , e1}, M2 = {e6, e5, . . . , e1} and M1 = {e5, e3, e1}, where ei is
a unit i-th column vector for i = 1, 2, . . . , 7. Consequently complementary spaces N3, N2

and N1 are fixed such that N3 = {e7}, N2 = {e6, e4, e2} and N1 = {e5, e3, e1}, respectively.
Since �(−3ν, 3) = dimN3 = 1, �(−3ν, 2) = dimN2 − dimN3 = 2, �(−3ν, 1) = dimN1 −
dimN2 = 0, there exist one Jordan cell of size 3, two Jordan cells of size 2 and no Jordan
cell of size 1. To accomplish Jordan chains U 1(−3ν, 3) U1(−3ν, 2) and U 2(−3ν, 2), we derive
that (Q + 3νI)e7 = t(0, 0, 0, 0, ν, ν, 0), (Q + 3νI)2e7 =t (0, 0, 0, 0, 2ν2, 0, 0), (Q + 3νI)e4 =
t(0, 0, 2ν, 0, 0, 0, 0) and (Q + 3νI)e2 = t(ν, 0, 0, 0, 0, 0, 0). Using these Jordan chains, the
regular matrix U is accomplished in the form

U = (U1(−3ν, 2),U 2(−3ν, 2),U 1(−3ν, 3))

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν 0
0 1
0 0
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
2ν 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0

2ν2 ν 0
0 ν 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
ν 0
0 1

]
⊕
[
2ν 0
0 1

]
⊕
⎡
⎣2ν2 ν 0

0 ν 0
0 0 1

⎤
⎦(2.28)

so that the inverse matrix of U−1(= V ) is given in the form

U−1 =

[
1

ν
0

0 1

]
⊕
[

1

2ν
0

0 1

]
⊕

⎡
⎢⎢⎢⎣

1

2ν2
− 1

2ν2
0

0
1

ν
0

0 0 1

⎤
⎥⎥⎥⎦ . (2.29)

We can obtain the Jordan canonical form

J(−3λ) = U−1QU

=

[−3ν 1
0 −3ν

]
⊕
[−3ν 1

0 −3ν

]
⊕
⎡
⎣−3ν 1 0

0 −3ν 1
0 0 −3ν

⎤
⎦ . (2.30)

Since

exp(N 2t) = I + tN 2 =

[
1 t
0 1

]
and exp(N 3t) = I + tN3 +

t2

2!
N 2

3 =

⎡
⎢⎣1 t

t2

2!
0 1 t
0 0 1

⎤
⎥⎦

c© Operations Research Society of Japan JORSJ (2006) 49-2



Closed Form of PH-Distribution 107

we can derive the relation

exp(Qt) = e−3νtU (exp(N 2) ⊕ exp(N 2) ⊕ exp(N 3)⊕)U−1

= e−3νtU

⎛
⎜⎝[

1 t
0 1

]
⊕
[
1 t
0 1

]
⊕

⎡
⎢⎣1 t

t2

2!
0 1 t
0 0 1

⎤
⎥⎦
⎞
⎟⎠U−1

Simple calculation yields

g = αU =
(
α1ν, α2, 2α3ν, α4, 2α5ν

2, (α5 + α6)ν, α7

)
and

h = U−1q =t

(
2, 3ν,

1

2
, 3ν, −1

ν
, 2, 3ν

)
.

Consequently, closed form of the PH-distribution is derived such that

f(t) = α exp(Qt)q

= e−3νg

⎛
⎜⎝
[
1 t
0 1

]
⊕
[
1 t
0 1

]
⊕

⎡
⎢⎣1 t

t2

2!
0 1 t
0 0 1

⎤
⎥⎦
⎞
⎟⎠h

= ϕ0(−3ν)e−3νt + ϕ1(−3ν)te−3νt + ϕ2(−3ν)
t2

2!
e−3νt

where

ϕ0(−3ν) = (2α1 + 3α2 + α3 + 3α4 + 2α6 + 3α7) ν

ϕ1(−3ν) = (3α1 + 6α3 + 7α5 + 3α6) ν
2

ϕ2(−3ν) = 6α5ν
3.

One can see immediately that the degree D(α,Q) of the PH-distribution given in this
Example is equal to not the order 7 of the PH-subgenerator but smaller than or equal to
the degree 3 of the minimal polynomial, i.e., D(α,Q) ≤ 3. Thus one can confirm Remark
2.4.

Example 2.2 for PH-subgenerator with multiplicated multiple eigenvalues. Consider a
PH-distribution with representation (α,Q), where for ν > 0

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ν 0 0 0 0 0 0
0 −ν −ν 0 0 0 0
0 0 −2ν ν 0 0 0
0 0 ν −2ν 0 0 0
0 0 0 0 −3ν ν 0
0 0 0 0 0 −3ν 2ν
0 0 0 0 0 0 −3ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.31)

α = (α1, α2, . . . , α7), αi > 0 for i = 1, 2, . . . , 7, and q = −Q1 =t (ν, 0, ν, ν, 2ν, ν, 3ν). Note
that this example contains a feedback loop, i.e., Q is not a triangular matrix. Eigenvalues
of Q are −ν and −3ν. The characteristic polynomial and the minimal polynomial for Q are

c(t) = (t+ ν)3(t+ 3ν)4 and m(t) = (t+ ν)2(t+ 3ν)3 (2.32)
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so that the algebraic multiplicity of eigenvalues −ν and −3ν are 3 and 4, index(−ν) = 2
and index(−3ν) = 3, i.e., m1 = 2, m2 = 3, respectively. The largest Jordan cell sizes for −ν
and −3ν are 2 and 3, respectively.

Proceeding for each eigenvalue according to a procedure similar to that of the previous
example, we see that there exist two Jordan cells of sizes 1 and 2 for the eigenvalue −ν,
and two Jordan cells of sizes 1 and 3 for the eigenvalue −3ν, respectively. Solving linear
equations, we can build Jordan chains in the form

(U1(−ν, 1),U 1(−ν, 2)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
ν 0
0 1
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

(U 1(−3ν, 1),U 1(−3ν, 3)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2−1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0

2ν2 0 0
0 2ν 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

so that

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 ν 0 1

2
0 0 0

0 0 1 −1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 2ν2 0 0
0 0 0 0 0 2ν 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and U−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0
1

ν

1

4ν
− 1

4ν
0 0 0

0 0
1

2

1

2
0 0 0

0 0 −1

2

1

2
0 0 0

0 0 0 0
1

2ν2
0 0

0 0 0 0 0
1

2ν
0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.33)

Consequently, the Jordan canonical form of Q is given in the form

J(−ν,−3ν) = U−1QU

= J1(−ν, 1) ⊕ J 1(−ν, 2) ⊕ J1(−3ν, 1) ⊕ J1(−3ν, 3)

=
[−ν]⊕ [−ν 1

0 −ν
]
⊕ [−3ν

]⊕
⎡
⎣−3ν 1 0

0 −3ν 1
0 0 −3ν

⎤
⎦ . (2.34)

We can obtain the relation

exp(Qt) = U
(
e−νt(exp(N 1t) ⊕ exp(N 2t))⊕ e−3νt(exp(N 1t) ⊕ exp(N 3t)

)
U−1

= U

⎛
⎜⎝e−νt

(
[1] ⊕

[
1 t
0 1

])
⊕ e−3νt

⎛
⎜⎝[1] ⊕

⎡
⎢⎣1 t

t2

2!
0 1 t
0 0 1

⎤
⎥⎦
⎞
⎟⎠
⎞
⎟⎠U−1.
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Simple calculation yields that

g = αU =
(
α1, α2ν, α3 + α4,

α2

2
− α3 + α4, 2α5ν

2, 2α6ν, α7,
)

and

h = U−1q =t

(
ν, 0, ν, 0,

1

ν
,

1

2
, 3ν

)
.

Therefore we can obtain closed form of the probability density function in the form

f(t) = α exp(Qt)q

= g

⎛
⎜⎝e−νt

(
[1] ⊕

[
1 t
0 1

])
⊕ e−3νt

⎛
⎜⎝[1] ⊕

⎡
⎢⎣1 t

t2

2!
0 1 t
0 0 1

⎤
⎥⎦
⎞
⎟⎠
⎞
⎟⎠h

= ϕ0(−ν)e−νt + ϕ1(−ν)te−νt + ϕ0(−3ν)e−3νt + ϕ1(−3ν)te−3νt + ϕ2(−3ν)
t2

2!
e−3νt

where

ϕ0(−ν) = (α1 + α3 + α4)ν ϕ1(−ν) = α2ν
2

ϕ0(−3ν) = (2α5 + α6 + 3α7)ν ϕ1(−3ν) = (α5 + 6α6)ν
2

ϕ2(−3ν) = 6α5ν
3.

One can see immediately that the degree of the PH-distribution given in this example
is not the order 7 of the PH-subgenerator but smaller than or equal to the summation of
index for each eigenvalue −ν and −3ν, i.e., D(α,Q) ≤ 2+3. Thus one can confirm Remark
2.4,

3. PH-subgenerator with Real and Complex Eigenvalues

3.1. Preliminary

The eigenvalues of Q may be either real or complex. We consider the cases that Q has
real and complex eigenvalues and derive the general form of PH-distribution in closed form
in this section. Since the PH-subgenerator Q consists of only real number elements, the
complex eigenvalues occur in conjugate pairs, i.e., if σ is a complex eigenvalue of Q, then
σ̄ is also a complex eigenvalue of Q, where σ̄ denotes the conjugate complex number of σ.
Thus, without loss of generality, we assume that Q has r real eigenvalues {λi}r

i=1 and s
conjugate pairs of complex eigenvalues {σi, σ̄i}r+s

i=r+1, so that the characteristic polynomial
c(t) can be written in the form

c(t) =
r∏

i=1

(t− λi)
ni

r+s∏
i=r+1

((t− σi)(t− σ̄i))
ni (3.1)

where ni is the algebraic multiplicity of the i-th eigenvalue for i = 1, 2, . . . , r + s.
In the same way, we can write the minimal polynomial m(t) as

m(t) =
r∏

i=1

(t− λi)
mi

r+s∏
i=r+1

((t− σi)(t− σ̄i))
mi (3.2)

where mi is the index of the i-th eigenvalue and mi ≤ ni for i = 1, 2, . . . , r + s.
To derive Jordan canonical form of Q, the following auxiliary lemmas are required:
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Lemma 3.1 If x is a generalised right-side eigenvector in a generalised right-side eigenspace
Mk(σ) for σi, i.e., x ∈ Mk(σ) = {x|(Q − σiI)kx = 0}, then x̄ is a generalised right-
side eigenvector in a generalised right-side eigenspace Mk(σ̄) for σ̄i, i.e., x̄ ∈ Mk(σ̄) =
{x|(Q − σ̄iI)kx = 0}.
Proof. If (Q − σiI)kx = 0, then (Q − σiI)kx = (Q − σ̄iI)kx̄ = 0.

Lemma 3.2 Let �(σi, k) and �(σ̄i, k) be the number of size-k Jordan cells for a pair of
conjugate complex eigenvalues σi and σ̄i, respectively, then for i = r+1, r+2, . . . , r+ s and
k = 1, 2, . . . , mi,

�(σi, k) = �(σ̄i, k).

Proof. Both �(σi, k) and �(σ̄i, k) are determined through the relation (A.2) given in Ap-
pendix. From lemma 3.1, the relation dimMk(σi) = dimMk(σ̄i) is valid for i = r + 1, r +
2, . . . , r + s and k = 1, 2, . . . , mi.

3.2. A multiplicated real eigenvalue and a pair of conjugate complex eigenvalues

In this subsection, we consider a simple case in which the PH-subgenerator Q (n × n)
has only one multiplicated real eigenvalue λ and a pair of conjugate complex eigenvalues
(σ, σ̄) with multiplication. We assume that the characteristic polynomial and the minimal
polynomial of Q are given in the form

c(t) = (t− λ)n1 ((t− σ)(t− σ̄))
n2 and m(t) = (t− λ)m1 ((t− σ)(t− σ̄))

m2 (3.3)

for m1 ≤ n1 and m2 ≤ n2. From Lemma 2.1, λ < 0 and Re(σ) < 0.
Using Lemma 3.1 and Lemma 3.2, discussion similar to that in previous sections indicates

that Q is similar to the Jordan canonical form

J(λ, σ, σ̄) = J(λ) ⊕ J(σ)⊕ J(σ̄) (3.4)

where

J(λ) =
m1⊕
k=1

�(λ,k)⊕
�=1

J �(λ, k), J(σ) =
m2⊕
k=1

�(σ,k)⊕
�=1

J �(σ, k) and J(σ̄) = J(σ). (3.5)

There exists a regular matrix U such that

U−1QU = J(λ, σ, σ̄) or equivalently Q = UJ(λ, σ, σ̄)U−1. (3.6)

Let U �(λ, k) and U �(σ, k) be the right-side Jordan chains associated with Jordan cells
J �(λ, k) and J �(σ, k), respectively, The regular matrix U is then given in the form

U = (U (λ),U (σ),U(σ̄))

where

U (λ) =
(
(U �(λ, k))

�(λ,k)
�=1

)m1

k=1
, U(λ) =

(
(U �(σ, k))

�(σ,k)
�=1

)m2

k=1
and U (σ̄) = U (σ).

We define matrix V as the inverse matrix U , i.e., UV = I , such that

V = [V (λ),V (σ),V (σ̄)] ,

V (λ) =
[
[V �(λ, k)]

�(λ,k)
�=1

]m1

k=1
, V (σ) =

[
[V �(σ, k)]

�(σ,k)
�=1

]m2

k=1
, V (σ̄) = V (σ)
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where V �(λ, k) and V �(σ, k) are (k×n) submatarices in U−1 that appear at the correspond-
ing positions at which U �(λ, k) and U �(σ, k) appear in tU , respectively. The row vector g
and the column vector h are defined as

g = αU and h = V q
(
= U−1q

)
.

To represent each element of g and h, we write

g�(λ, k) = αU �(λ, k) = (γ�,j(λ, k))
k
j=1 , h�(λ, k) = V �(λ, k)q = [δ�,j(λ, k)]

k
j=1

for λ

g�(σ, k) = αU �(σ, k) = (γ�,j(σ, k))
k
j=1 , h�(σ, k) = V �(σ, k)q = [δ�,j(σ, k)]

k
j=1

and

g�(σ̄, k) = αU �(σ̄, k) = (γ�,j(σ̄, k))
k
j=1 , h�(σ̄, k) = V �(σ̄, k)q = [δ�,j(σ̄, k)]

k
j=1

for σ and σ̄, respectively.
Using this notation, we can derive the probability density function in the form

f(t) = α exp(Qt)q

= eλt

m1∑
k=1

�(λ,k)∑
�=1

g�(λ, k) exp(N kt)h�(λ, k)

+ eσt
m2∑
k=1

�(σ,k)∑
�=1

g�(σ, k) exp(N kt)h�(σ, k)

+ eσ̄t

m2∑
k=1

�(σ̄,k)∑
�=1

g�(σ̄, k) exp(N kt)h�(σ̄, k). (3.7)

After some calculation, we can transform (3.7) into the form

f(t) =

m1−1∑
n=0

tn

n!
eλtϕn(λ) +

m2−1∑
n=0

tn

n!

{
eσtηn(σ) + eσ̄tηn(σ̄)

}
(3.8)

where

ϕn(λ) =

m1∑
k=n+1

�(λ,k)∑
�=1

k−n∑
s=1

γ�,s(λ, k)δ�,s+n(λ, k) (3.9)

ηn(σ) =

m2∑
k=n+1

�(σ,k)∑
�=1

k−n∑
s=1

γ�,s(σ, k)δ�,s+n(σ, k) and ηn(σ̄) = ηn(σ). (3.10)

Let
μ(σ) = Re(σ), ν(σ) = Im(σ)

and for n = 0, 1, . . . , m2 − 1

τn(σ) = |ηn(σ)|, θn(σ) = arg ηn(σ), ψn(σ, t) = 2τn(σ) cos {ν(σ)t+ θn(σ)}
The probability density function is then given in the following proposition.
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Proposition 3.1 The probability density function f(t) of a PH-distribution with represen-
tation (α,Q) is given in the closed form

f(t) =

m1−1∑
n=0

ϕn(λ)
tn

n!
eλt +

m2−1∑
n=0

ψn(σ, t)
tn

n!
eμ(σ)t. (3.11)

Proof. Substitution of the following relation to (3.8) yields the statement.

eσtηn(σ) + eσ̄tηn(σ̄) = 2Re
{
eσtηn(σ)

}
= 2τn(σ)eμ(σ)t cos {ν(σ)t+ θn(σ)}.

Remark 3.1 As shown in Proposition 3.1, if Q has complex eigenvalues, then the closed
form of f(t) is no longer a linear combination of Erlang distributions, but instead is of more
complex form that includes trigonometric functions.

Example 3.1 for a PH-subgenerator with a real eigenvalue and a pair of conjugate complex
eigenvalues with multiplication. Consider a PH-distribution with representation (α,Q)
where

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 2 0.5 0 0 0
0.5 −4 1.5 0 0 0
3.5 0.5 −5 0 0 0
0 0 0 −5 0.5 3.5
0 0 0 1.5 −4 0.5
0 0 0 0.5 2 −3

⎤
⎥⎥⎥⎥⎥⎥⎦
, α = (0.2, 0, 0, 0.5, 0.3, 0). (3.12)

Eigenvalues λ, σ and σ̄ of Q are λ = −1.122, σ = −5.438+1.307i and σ̄ = −5.438− 1.307i,
respectively, and q =t (0.5, 2, 1, 1, 2, 0.5). In this example, the characteristic polynomial and
the minimal polynomial for Q are

c(t) = (t+ λ)2(t+ σ)2(t+ σ̄)2 and m(t) = (t+ λ)(t+ σ)(t+ σ̄) (3.13)

so that all of these eigenvalues have the same algebraic multiplicity of 2 and the same index
of 1, i.e., n1 = n2 = 2 and m1 = m2 = 1. Clearly, we have

μ(σ) = −5.438 and ν(σ) = 1.307.

Numerical computation shows that U is given in the form

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.637 0 0 −0.042 + 0.341i 0 −0.042 − 0.341i
−0.440 0 0 −0.358 − 0.444i 0 −0.358 + 0.444i
−0.632 0 0 0.745 0 0.745

0 0.632 0.745 0 0.745 0
0 0.440 −0.358 − 0.444i 0 −0.358 + 0.444i 0
0 0.637 −0.042 + 0.341i 0 −0.042 − 0.341i 0

⎤
⎥⎥⎥⎥⎥⎥⎦

so that the Jordan canonical form of Q is in the form

J(λ, σ, σ̄) = U−1QU

=

[
λ 0
0 λ

]
⊕
[
σ 0
0 σ

]
⊕
[
σ̄ 0
0 σ̄

]
.

By numerical computation, we see that

g = (−0.127, 0.448, 0.265 − 0.133i,−0.0084 + 0.0683i, 0.265 + 0.133i,−0.0084 − 0.0683i)

h = t(−1.978, 1.978,−0.168 + 1.134i,−0.168 + 1.134i,−0.168 − 1.134i,−0.168 − 1.134i).
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Based on these numerical results, we derive that

ϕ0(λ) = 1.139 and η0(σ) = 0.0304 + 0.302i.

Consequently, we have
τ0(σ) = 0.305 and θ0(σ) = 1.470.

The closed form of the PH-distribution is then given in the form

f(t) = ϕ0(λ)e
−λ + 2τ0(σ)eμ(σ)t cos {ν(σ)t+ θ0(σ)}

= 1.139 e−1.122t + 0.610 e−5.438t cos {1.307t + 1.470}. (3.14)

Remark 3.2 The PH-representation (3.12) given in example 3.1 is consistent but redun-
dant. Representation (α,Q), where

Q =

⎡
⎣−3 2 0.5

0.5 −4 1.5
3.5 0.5 −5

⎤
⎦ , α = (0.2, 0.3, 0.5)

is equivalent to the PH-representation (3.12).

4. General Form

Generalising the results described in previous sections, we can obtain the closed form of the
PH-distribution for the general PH-representation of (α, Q). We consider subgenerator Q,
the characteristic polynomial c(t) and minimal polynomial m(t) of which are given in the
forms of (3.1) and (3.2), respectively.

Let U �(λi, k), i = 1, 2, . . . , r, and U �(σi, k), i = r + 1, r + 2, . . . , r + s, be the right-
side Jordan chains associated with Jordan cell J �(λi, k) and J �(σi, k), respectively, and let
V �(λi, k), i = 1, 2, . . . , r, and V �(σi, k), i = r + 1, r + 2, . . . , r + s be (k × n) submatarices
in U−1 that appear the corresponding positions at which U �(λi, k) and U �(σi, k) appear in
tU . We write

g�(λi, k) = αU �(λi, k) = (γ�,j(λi, k))
k
j=1 , h�(λi, k) = V �(λi, k)q = [δ�,j(λi, k)]

k
j=1

for i = 1.2. . . . , r and

g�(σi, k) = αU �(σi, k) = (γ�,j(σi, k))
k
j=1 , h�(σi, k) = V �(σi, k)q = [δ�,j(σi, k)]

k
j=1

g�(σ̄i, k) = αU �(σ̄i, k) = (γ�,j(σ̄i, k))
k
j=1 , h�(σ̄i, k) = V �(σ̄i, k)q = [δ�,j(σ̄i, k)]

k
j=1

for i = r + 1, r + 2. . . . , r + s. For i = 1, 2, . . . , r, we define that

ϕn(λi) =

mi∑
k=n+1

�(λi,k)∑
�=1

k−n∑
s=1

γ�,s(λi, k)δ�,s+n(λi, k), n = 0, 1, . . . , mi − 1

and for i = r + 1, r + 2, . . . , r + s,

ηn(σi) =

mi∑
k=n+1

�(σi,k)∑
�=1

k−n∑
s=1

γ�,s(σi, k)δ�,s+n(σi, k),

ηn(σ̄i) = ηn(σi), n = 0, 1, . . . , mi − 1.
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Furthermore, we define that

μ(σi) = Re(σi), ν(σi) = Im(σi), τn(σi) = |ηn(σi)|, θn(σi) = arg ηn(σi)

for i = r + 1, r + 2, . . . , r + s and for n = 0, 1, . . . , mi − 1.
The main result of the present paper is summarised in the following Proposition.

Proposition 4.1 The probability density function f(t) of a PH-distribution with general
representation (α,Q) is given in the closed form

f(t) =
r∑

i=1

mi−1∑
n=0

ϕn(λi)
tn

n!
eλit +

r+s∑
i=r+1

mi−1∑
n=0

ψn(σi, t)
tn

n!
eμ(σi)t (4.1)

The proof is straightforward and so is not presented here.

5. Conclusion

In this paper, we proposed a new method of Jordan canonical form to analyze a PH-
subgenerator. Based on the new approach, we derive the closed form of PH-distribution and
show that the closed form of PH-distribution is expressed in terms of a linear combination
of Erlang distributions if all eigenvalues of the PH-subgenerator are real, while it includes
ripple terms consisting of trigonometric functions in addition to a linear combination of
Erlang distribution if the PH-subgenerator has complex eigenvalues. We conclude that the
new method is effective and may provide clear insights into the study of PH-distribution.

Acknowledgement: The authors wish to acknowledge their grateful thanks to anony-
mous referees for their helpful comments on the paper.
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Appendix

A. Jordan chain

We apply the Jordan chain technique in order to accomplish this similarity transformation
(2.6) in the following manner. Let Ωλ be the generalised right-side eigenspace for λ, i.e.,
Ωλ = {x|(Q − λI)mx = 0} and Mk be the subspace of Ωλ such that

Mk = {x|(Q − λI)kx = 0} for k = 0, 1, 2, . . . (A.1)

It is clear that Ωλ = Mm ⊇Mm−1 ⊇ · · · ⊇ M1 ⊇M0 = {0} and Mm+1 = Mm+2 = · · · = Ωλ.
All elements in these subspaces are called generalised right-side eigenvectors. The sub-

space M1 is the eigenspace for eigenvalue λ. The geometric multiplicity and the algebraic
multiplicity for the eigenvalue λ are equal to dimM1 and dim Ωλ, respectively.

Let Nk be the complementary space of Mk−1 in Mk for k ≥ 2, i.e., Nk ∪Mk−1 = Mk

and Nk ∩Mk−1 = ∅ for k = 2, 3, . . . , m, then for linearly independent vectors x1,x2, . . . ,xp

in Nk, (Q − λI)�x1, (Q − λI)�x2, and (Q − λI)�xp are also linearly independent vectors,
and these are generalised right-side eigenvectors in Mk−l. For � = 1, 2, . . . , m, dimN� =
dimM� − dimM�−1.

If we write d� = dimN� for � = 1, 2, . . . , m and dm+1 = 0, then the number of Jordan
cells with size k is given as �(λ, k) = dk − dk+1 for k = 1, 2, . . . , m, or equivalently

�(σi, k) = − dimMk−1(σ) + 2dimMk(σ)− dimMk+1(σ). (A.2)

Thus, we can calculate �(λ, k) of expression (2.5) for k = 1, 2, . . . , m. Note that

dimM1 =
m∑

k=1

�(λ, k) and dim Ωλ =
m∑

k=1

k × �(λ, k).

In order to derive the regular matrix U in (2.6), we build Jordan chains. Since �(λ,m) =
dimNm, we can fix �(λ,m) bases in Nm such that

Bm =
(
b

(m)
1 , b

(m)
2 , . . . , b

(m)
�(λ,m)

)
.

Starting with each base b
(m)
� ∈ Bm, we can build a Jordan chain to provide

U �(λ,m) =
(
(Q − λI)m−1b

(m)
� , (Q − λI)m−2b

(m)
� , . . . , (Q − λI)b

(m)
� , b

(m)
�

)
(A.3)

for � = 1, 2, . . . , �(λ.m). For notation simplicity, for j = 1, 2, . . . , m− 1, we write

u
(m)
�,m−j = (Q − λI)jb

(m)
� and u

(m)
�,m = b

(m)
� .

The Jordan chain (A.3) is then written in the form

U �(λ,m) =
(
u

(m)
�,1 ,u

(m)
�,2 , . . . ,u

(m)
�,m

)
for � = 1, 2, . . . , �(λ,m). (A.4)

The Jordan chain (A.4) is associated with the Jordan cell J �(λ,m). Since {(Q−λI)b
(m)
� }�(λ.m)

�=1

are linearly independent vectors with index m−1 in Mm−1, there exists Nm−1 that includes
these vectors.
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Therefore, we can choose additional linearly independent vectors {b(m−1)
� }�(λ,m−1)

�=1 such

that, together with {(Q−λI)b
(m)
� }�(λ.m)

�=1

(
= {u(m)

�,m−1}�(λ,m)
�=1

)
, {b(m−1)

� }�(λ,m−1)
�=1 can constitute

bases of Nm−1. We thus write

Bm−1 =
(
b

(m−1)
1 , b

(m−1)
2 , . . . , b

(m−1)
�(λ,m−1)

)
.

Based on the bases of Bm−1, we can again build a Jordan chain to provide

U �(λ,m− 1) =
(
(Q − λI)m−2b

(m−1)
� , (Q − λI)m−3b

(m−1)
� , . . . , (Q − λI)b

(m−1)
� , b

(m−1)
�

)

for � = 1, 2, . . . , �(λ.m − 1). For j = 1, 2, . . . , �(λ,m − 1) u
(m−1)
�,m−j = (Q − λI)jb

(m−1)
� and

u
(m−1)
�,m−1 = b

(m−1)
� we have

U �(λ,m− 1) =
(
u

(m−1)
�,1 ,u

(m−1)
�,2 , . . . ,u

(m−1)
�,m−1

)

where � = 1, 2, . . . , �(λ,m − 1). Since {(Q − λI)2b
(m)
� }�(λ,m)

�=1 and {(Q − λI)b
(m−1)
� }�(λ,m−1)

�=1

are linearly independent vectors in Mm−2, there exists Nm−2 that includes these vectors.

Therefore, we can choose additional linearly independent vectors {b(m−2)
� }�(λ,m−2)

�=1 such

that, together with {(Q− λI)2b
(m)
� }�(λ.m)

�=1

(
= {u(m)

�,m−2}�(λ,m)
�=1

)
and {(Q− λI)b

(m−1)
� }�(λ,m−1)

�=1(
= {u(m−1)

�,m−1}�(λ,m−1)
�=1

)
, {b(m−2)

� }�(λ,m−2)
�=1 can form bases of Nm−2.

Repeating this procedure, we can obtain all Jordan chains and construct the regular
matrix U as

U =
(
(U �(λ, k))

�(λ,k)
�=1

)m

k=1
where U �(λ, k) =

(
u

(k)
�,1 ,u

(k)
�,2 , . . . ,u

(k)
�,k

)
.
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