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Abstract For calculations of the boundary vector arising in a BMAP/G/1 queue, we consider a spectral
method based on eigenvalues and eigenvectors without assuming a structure of a BMAP. We define a
nonlinear function of the determinant of a matrix function. It is proved that there are M zeros of the
nonlinear function on a disk in the complex plane, where M is the size of rate matrices of a BMAP. And for
the calculation of all the zeros, we propose a modification of the Durand-Kerner method which is known as
an iterative method for calculating all zeros of a polynomial simultaneously. Spectral methods for calculating
the stationary probabilities just after service completion epochs and at arbitrary time are given.
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1. Introduction

A batch Markovian arrival process (BMAP) introduced by Neuts ([10] and [11]) is great
flexible and its queueing models are analytically tractable. For a BMAP/G/1 queue, several
methods for calculating the stationary probability of the queue length have been studied.
Matrix analytic methods in Lucantoni and Ramaswami ([7], [8], [19] and [20]) are customary
techniques for analysis of a stationary probability of a BMAP/G/1 queue. Bini and Meini
([2], [3] and [9]) propose efficient methods named the cyclic reduction algorithms based on
the fast Fourier transform (FFT).

All these methods are divided into two computational steps. The first is to calculate the
boundary vector whose components are probabilities at idle states. The boundary vector is
obtained from the stationary probability vector g of the stochastic matrix G which is the
minimal nonnegative solution of a matrix nonlinear equation. The second is to calculate
the stationary probability from the boundary vector. Since the precision of the stationary
probability strongly depends on that of the boundary vector, it is important to get the
precise values of the boundary vector. It is proved in Gail et al. ([4] and [5]) that there
are M zeros of the determinant of a matrix function on the unit disk, where M is the size
of a matrix of a BMAP. And G is obtained from all the zeros zi (i = 1, . . . ,M) and the
corresponding null vectors. Owing to the difficulty to find all the zeros on the unit disk, there
are few implementations of this spectral method based on eigenvalues and eigenvectors.

If an underlying process of a BMAP is modulated as a birth-death process (BDMMAP),
all the zeros are real and simple (Nishimura [14]). If a BMAP has a tree structure (TSMAP),
it is also proved in Nishimura [13] that under regularity conditions, all the zeros are real
and simple. For the first step calculation, zeros of these queueing models are calculated by
the bisection method and the boundary vector is efficiently calculated. The inverse discrete
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FFT for the probability generating function discussed in [23] is applied to the second step
calculation. Under the assumption of the simplicity of eigenvalues, the vector probability
generating function is computed using the diagonal representation of matrixes. And the
probability function of the queue length is calculated by the inverse discrete FFT for the
vector probability generating function.

The objective of this paper is to represent a spectral method for the calculation of the
vector g without assuming a special structure of a BMAP. It is proved in Theorem 4.3 that
there are M zeros of the determinant of a matrix function on a disk. And it is proved
in Theorems 4.4-4.5 that the vector g is calculated by all the M zeros on the disk and
corresponding null vectors. Remaining our problem is how to calculate all the M zeros.
For this calculation we propose a modification of the Durand-Kerner method (D-K method)
known as an iterative method for calculation of all zeros of a polynomial simultaneously
([1], [6], [22] and [25]).

Let Ak be the matrix whose (i, j) element is the phase transition probability from i to
j with k arrivals during the service time. In order to derive Ak, a lot of calculations and a
large memory are required if a BMAP has a large batch size. Under the spectral methods,
the stationary probability is derived without calculations of Ak (k = 0, 1, . . .). This is a
great advantage to compute the stationary probability when we analyze a BMAP with a
large batch size as IP traffic. Modeling IP traffic of the Bellcore Ethernet using a BMAP is
studied in [17]. Under the assumption that a BMAP has a tree structure, rate matrices of a
BMAP is estimated from traffic data by the EM algorithm. And the stationary probability
is computed by the spectral method in [13]. Recently traffic measured by Wide Project
is modeled by a BMAP without assuming its structure in [18]. The stationary probability
of the queue length of a BMAP/D/1 queue is analytically derived by the spectral method
given in this paper. It is found that the stationary probability of the analytical model is in
good agreement with that of simulation driven from raw traffic. A BMAP seems to be a
good model describing dynamics of IP traffic well.

We consider the algorithm of the spectral method for calculating the stationary prob-
abilities of the queue length of a BMAP/G/1 queue just after service completion epochs
and at arbitrary time. This algorithm can also be applied to other queueing model whose
input process is formulated as a BMAP. The spectral method of the stationary probability
of the queue length of a MAP/D/N is studied in [12], where Newton’s method is proposed
to calculate the zeros. However, applying the modified D-K method to a MAP/D/N queue
we efficiently obtain the boundary vector. And the spectral method for calculating the
stationary probability of a nonpreemptive priority queue with two classes of customers is
given in [15]. In this case the boundary vector and the boundary generating function are
efficiently calculated by the modified D-K method and the joint probability of two queue
lengths of two classes are calculated by the inverse discrete two-dimensional FFT for the
probability generating function.

In Section 2, definitions are enumerated. In Section 3, fundamental results for eigenvalues
of the z-transform of rate matrices are proven. In Section 4, it is proved in Theorem 4.3
that there are M zeros of the determinant on a disk in the complex plane. And from the
M zeros and the corresponding null vectors, the vector g is derived in Theorems 4.4-4.5.
In Section 5, for the calculation of all zeros on the disk, the modified D-K method with
a double for-loop is introduced. In Section 6, for numerical examples, zeros are calculated
by the modified D-K method and the stationary probabilities are obtained by the Fourier
inversion transform of the vector generating function. In Appendix computing algorithms
for the stationary probabilities just after service completion epochs and at arbitrary time
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are given.

2. Definitions

We define 0 = (0, . . . , 0) and e = (1, . . . , 1)T , where the symbol T is the transposition of
a matrix. Let I be the identity matrix. We consider a batch Markovian arrival process
whose state space of the underlying process is {i : i = 1, . . . ,M}. Let Dk =

(
d

(k)
i,j

)
(i, j =

1, 2, . . . , M) be the M × M matrix, where d
(k)
i,j is phase transition rate from i to j with an

arrival of batch size k (k = 1, 2, . . .). Let D0 =
(
d

(0)
i,j

)
(i, j = 1, 2, . . . , M) be the M × M

matrix, where d
(0)
i,j (i �= j) is phase transition rate from i to j without arrival and

d
(0)
i,i = −

[ ∞∑
k=1

d
(k)
i,i +

M∑
j �=i

∞∑
k=0

d
(k)
i,j

]
. (2.1)

Let δ = maxi(−d
(0)
i,i ). As usual, assume that for |z| ≤ 1,

D(z) =
∞∑

k=0

Dkz
k =

(
di,j(z)

)
=

( ∞∑
k=0

d
(k)
i,j zk

)

is analytic and that D = D(1) =
∑∞

k=0 Dk is the irreducible infinitesimal generator of the
underlying process. And let π = (π1, π2, . . . , πM) be the stationary probability vector of D
(πD = 0 and πe = 1). The mean arrival rate of customers is given by λ = πD′(1)e =
π

∑∞
k=1 kDke.
Let H(t) be a distribution function of the service time with the mean 1/µ. For simplicity,

we set H(0) = 0. Let h(α) =
∫ ∞
0 eαtdH(t) denote the moment generating function of H(t).

Let Ak be the matrix whose (i, j) element is the phase transition probability from i to j
with an arrival of size k during a service time. Then A(z) =

∑∞
k=0 Akz

k =
∫ ∞
0 eD(z)tdH(t).

Assume that the traffic intensity ρ = λ/µ < 1.

3. Eigenvalues of D(z)

Let αi(z) (i = 1, . . . ,M) be the ith eigenvalue of D(z). Let

ui(z) = (ui,1(z), . . . , ui,j(z), . . . , ui,M(z)),

and
vi(z) = (v1,i(z), . . . , vj,i(z), . . . , vM,i(z))T ,

be the corresponding left and right eigenvectors (ui(z)D(z) = αi(z)ui(z) and D(z)vi(z) =
αi(z)vi(z)) normalized as U(z)V (z) = I with

U(z) =




u1(z)
...

uM(z)


 and V (z) = (v1(z), . . . ,vM(z)).

Particularly, α1(1) = 0, u1(1) = π and v1(1) = e. We assume that in later discussions
all eigenvalues are simple. The corresponding left and right eigenvectors are efficiently
calculated.

Assumption 1 For z on the unit circle (|z| = 1), all eigenvalues αi(z) are simple.
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Suppose αi(z̃) is simple. The characteristic function det(αI−D(z)) is a polynomial in α
of degree M and di,j(z) is analytic for each i and j. It follows from the theorem on implicit
functions that αi(z) is analytic in a neighborhood of z = z̃ (see [16]).

We use the matrix norm ‖D(z)‖∞ defined as

‖D(z)‖∞ = max
i

M∑
j=1

|dij(z)|.

Proposition 3.1 For any z on the unit disk, a region Ω of eigenvalues αi(z) is given by
the disk of radius δ with the center −δ in the complex plane. That is,

αi(z) ∈ Ω ≡ {α : |α + δ| ≤ δ}. (3.1)

Proof. If α is an eigenvalue of D(z),

0 = det(αI − D(z))

= δMdet
((α

δ
+ 1

)
I −

(D(z)

δ
+ I

))
.

Since all terms in the bracket in the right hand side of (2.1) are nonnegative and δ+d
(0)
i,i ≥ 0,

for 1
δ
D(z) + I, the ith row sum of absolute values is

1

δ

(
|δ + di,i(z)| +

M∑
j �=i

|di,j(z)|
)

≤ 1

δ

(
|δ + d

(0)
i,i | + |

∞∑
k=1

d
(k)
i,i zk| +

M∑
j �=i

|
∞∑

k=0

d
(k)
i,j zk|

)

≤ 1

δ

(
δ + d

(0)
i,i +

∞∑
k=1

d
(k)
i,i +

M∑
j �=i

∞∑
k=0

d
(k)
i,j

)

= 1. (3.2)

The spectral radius of 1
δ
D(z) + I is

∣∣∣α
δ

+ 1
∣∣∣ ≤ ‖1

δ
D(z) + I‖∞ ≤ 1,

(see [24]). This leads the conclusion. �

We have the next proposition.

Proposition 3.2 Suppose αi(ζ) is simple. Then

d

dz
αi(z)

∣∣∣
z=ζ

= ui(ζ)D′(ζ)vi(ζ).

Proof. From the assumption, an eigenvalue αi(z) is analytic in a neighborhood of z = ζ. It
is also proved that there exists the corresponding analytic left (res. right) eigenvector ui(z)
(res. vi(z)) in a neighborhood of z = ζ (see [16]). Therefore, we have

αi(z) = αi(ζ) + (z − ζ)α′
i(ζ) + o(|z − ζ|),

ui(z) = ui(ζ) + (z − ζ)u′
i(ζ) + o(|z − ζ|),

vi(z) = vi(ζ) + (z − ζ)v′
i(ζ) + o(|z − ζ|),
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in a neighborhood of z = ζ. Substituting the above expansions of αi(z) and ui(z) into
ui(z)D(z) = αi(z)ui(z) and comparing the coefficients of z − ζ we have

u′
i(ζ)(D(ζ) − αi(ζ)I) = ui(ζ)(D′(ζ) − α′

i(ζ)I).

By postmultiplying vi(ζ), we have

d

dz
αi(z)

∣∣∣
z=ζ

= ui(ζ)D′(ζ)vi(ζ),

because the left hand side is equal to 0 and ui(ζ)vi(ζ) = 1. �

4. Spectral Method for the Vector g

Let pk = (pk,1, . . . , pk,M) (k ≥ 0) be the M -dimensional row vector whose ith entry pk,i is
the stationary joint probability that just after service completion epochs, the arrival phase
is i and the number of customers in the system is k. Then p = (p0,p1, . . .) is the stationary
probability vector just after service completion epochs. Define p(z) =

∑∞
k=0 pkz

k. As in
Neuts [11] let G and g be the phase transition stochastic matrix of the first passage time
from the level k+1 to k and its invariant probability vector (gG = g, ge = 1), respectively.
In Lucantoni [7], p(z) is given by

p(z) = λ−1(1 − ρ)gD(z)A(z)(zI − A(z))−1. (4.1)

Similarly, let qk = (qk,1, . . . , qk,M) (k ≥ 0) be the M -dimensional row vector whose ith
entry qk,i is the stationary joint probability that the arrival phase is i and the number
of customers in the system is k at arbitrary time. For the stationary probability vector
q = (q0, q1, . . .) at arbitrary time, the vector generating function q(z) =

∑∞
k=0 qkz

k is given
by

q(z) = (1 − ρ)(z − 1)gA(z)(zI − A(z))−1 (4.2)

in [7].
In this section we consider a spectral method based on eigenvalues for calculating the

probability vector of g. In Gail et al. [4] and [5], for an M/G/1 type Markov chain, the
number of zeros of det(zI − A(z)) on the unit disk is studied. In particular, under the
ergodic condition, there are M zeros on the disk and G is derived by the zeros and the
corresponding null vectors. Since the infinitesimal generator D is irreducible and ρ < 1,
the BMAP/G/1 we consider is an ergodic M/G/1 type Markov chain. Then we have the
following theorem.

Theorem 4.1 ([4], [5]) There are M zeros of

det(zI − A(z)) = 0 (4.3)

on the unit disk (|z| ≤ 1) counting multiplicities. And 1 is a simple zero and there are M−1
zeros on the open unit disk (|z| < 1).

The next theorem is proved in Lucantoni ([7]).

Theorem 4.2 ([7]) Let D[G] be the infinitesimal generator of a Markov process obtained
by excising the busy period defined by D[G] =

∑∞
k=0 DkG

k. Then

G =
∫ ∞

0
eD[G]tdH(t). (4.4)

c© Operations Research Society of Japan JORSJ (2006) 49-2



88 S. Nishimura, H. Tominaga & T. Shigeta

From the above two theorems, we will prove the next theorem. Let γi (i = 1, . . . ,M)
and ηi be the ith eigenvalue of D[G] and the corresponding right eigenvector with γ1 = 0
and η1 = e. Denote zi = h(γi) (i = 1, . . . ,M).

Theorem 4.3 1. zi (i = 1, . . . ,M) is an eigenvalue of G. And ηi is the corresponding
eigenvector of G.

2. zi (i = 1, . . . ,M) are the M zeros of det(zI − A(z)) in Theorem 4.1. ηi is the corre-
sponding right null vector of ziI − A(zi).

3. Counting multiplicities, there are M zeros of

det
(
αI − D(h(α))

)
, (4.5)

in Ω. γi (i = 1, . . . ,M) and ηi are the M zeros of (4.5) in Ω and the corresponding
right null vector of

γiI − D(h(γi)), (4.6)

respectively.

Proof. 1. From (4.4) D[G] and G have the common right eigenvectors ηi (i = 1, . . . ,M).
Then h(γi) (i = 1, . . . ,M) are the M eigenvalues of G counting multiplicity.

2. Postmultiplying (4.4) by ηi we get

h(γi)ηi =
∫ ∞

0
eD(h(γi))tdH(t)ηi

= A(h(γi))ηi, (4.7)

because A(z) =
∫ ∞
0 eD(z)tdH(t). This implies that

det
(
h(γi)I − A(h(γi))

)
= 0.

Therefore, zi = h(γi) (i = 1, . . . ,M) is the M zeros of (4.3) in Theorem 4.1 counting
multiplicities. And ηi is the corresponding right null vector of h(γi)I − A(h(γi)).

3. Postproducting γiI−D[G] by ηi, we see that (γiI−D(h(γi)))ηi = (γiI−D[G])ηi = 0.
So, γi is an eigenvalue of D(h(γi)). Then γi (i = 1, . . . ,M) are zeros of (4.5) in Ω. And
there are at least M zeros of (4.5) in Ω counting multiplicity.

Suppose that counting multiplicities there is another zero of (4.5) in Ω, say det(γI −
D(h(γ))) = 0. Then h(γ) is on the unit disk and det(h(γ)I − A(h(γ))) = 0, that is, h(γ) is
a zero of (4.3) in Theorem 4.1. This contradicts Theorem 4.1. Therefore, γi (i = 1, . . . ,M)
are the M zeros of (4.5) in Ω and ηi is the right null vector of γiI −D(h(γi)). The proof is
completed. �

We set the following assumption.

Assumption 2 All the M zeros γi (i = 1, . . . , M) of det(αI − D(h(α))) in Ω are simple.

Define the matrix Y as Y = (η1, . . . ,ηM). From Assumption 2 Y is nonsingular. From
Theorem 4.2, we have the diagonal representation of G.

Theorem 4.4

G = Y




z1

. . .

zM


 Y −1. (4.8)
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The matrix G calculated by (4.8) should be stochastic. This property is useful to check
the precision of numerically calculated zero points and the corresponding null vectors. From
gG = g and ge = 1, g is calculated. If we need g in (4.1) not G, we directly obtain the
vector g as follows.

Theorem 4.5 The vector g is given by

g = e1Y
−1,

where e1 = (1, 0, . . . , 0) is the first unit column vector.

Proof. By postmultiplyion of p(zi)(ziI − A(zi)) = λ−1(1 − ρ)gD(zi)A(zi) by ηi, from
(ziI − A(zi))ηi = 0, D(zi)ηi = γiηi and γi �= 0 (i = 2, . . . ,M), we have

gηi = 0 i = 2, . . . ,M.

And gη1 = ge = 1. The proof is completed. �

It is hard to find all the distinct M zeros zi of (4.3) on the unit disk. By the virtue
of Theorem 4.3 if we get distinct M zeros γi (i = 1, . . . ,M) of (4.5) in Ω, zi = h(γi)
(i = 1, . . . ,M) are all the distinct M zeros zi of (4.3) on the unit disk. Our next problem is
how to calculate all the M zeros of (4.5) in Ω. In general, the calculations of matrices Ak

require a large memory and a large computational time if a BMAP contains a large batch
size. For our method, g is obtained without Ak. The spectral method for calculations of
the stationary vectors p and q are given in Appendix.

5. The Modified Durand-Kerner Method

The Durand-Kerner method (the D-K method) is known as an iterative method for calcu-
lation of all zeros of a polynomial, simultaneously. Let P (α) be a polynomial of degree M
whose coefficient of αM is 1 and zeros are γi (i = 1, . . . ,M). We have

P (α) =
M∑
i=0

aiα
i =

M∏
i=1

(α − γi),

where ai (i = 0, . . . ,M) are coefficients of a polynomial with aM = 1. Suppose that as the

νth iterative approximation of γ1, . . . , γM we have M distinct α
(ν)
1 , . . . , α

(ν)
M . By defining

∆α
(ν)
i ≡ γi − α

(ν)
i , the expansion of P (α) is written as

P (α) =
M∏
i=1

(α − α
(ν)
i ) −

M∑
i=1

∆α
(ν)
i

M∏
j=1,j �=i

(α − α
(ν)
j ) + · · · .

Dropping all terms of ∆αi higher than the first and substituting α
(ν)
i to P (α), we have

P (α
(ν)
i ) ≈ −∆α

(ν)
i

M∏
j=1,j �=i

(α
(ν)
i − α

(ν)
j ),

that is,

∆α
(ν)
i ≈ − P (α

(ν)
i )∏M

j=1,j �=i(α
(ν)
i − α

(ν)
j )

.
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From the νth approximation, the (ν + 1)st approximation of γi is defined as

α
(ν+1)
i = α

(ν)
i − P (α

(ν)
i )∏M

j=1,j �=i(α
(ν)
i − α

(ν)
j )

. (5.1)

This iteration is known as the D-K method ([1], [6], [22] and [25]). It is proved that the
D-K method is a locally quadratic convergence if all zeros are simple. And several improved
methods which are a cubic convergence have been studied.

In this calculation, the property that all zeros of a polynomial are calculated simul-
taneously is useful for our problem. By using the D-K method we consider to obtain all
the M zeros γi (i = 1, . . . ,M) of (4.5) in Ω, simultaneously. It should be noted that for
the equation (4.5) in general, there are infinitely many zeros which we need not use. We
consider a modification of the D-K method to fit our problem. Since from Assumption 2 γi

(i = 1, . . . ,M) are simple and det(αI − D(h(α))) is analytic in Ω, there exists a function
φ(α) such that φ(α) is unknown but analytic in Ω and is not equal to 0 for α ∈ Ω, and
f(α) ≡ det(αI − D(h(α))) is represented as

f(α) = φ(α)
M∏

j=1

(α − γj). (5.2)

If α is in a neighborhood of γi, we may approximate as

P (α) =
M∏

j=1

(α − γj)

≈ f(α)

φ(γi)
. (5.3)

From (5.1), we define an iteration given by

α
(ν+1)
i = α

(ν)
i − det(α

(ν)
i I − D(h(α

(ν)
i )))

φ(γi)
∏M

j=1,j �=i(α
(ν)
i − α

(ν)
j )

. (5.4)

In the next proposition we derive φ(γi).

Proposition 5.1 Suppose γi is the l(i)th eigenvalue of D(zi), i.e. γi = αl(i)(zi). Then we
have

φ(γi) = (1 − α′
l(i)(zi)h

′(γi))

∏M
j=1,j �=l(i)(γi − αj(zi))∏M

j=1,j �=i(γi − γj)
, (5.5)

where αj(zi) is the jth eigenvalue of D(zi) and α′
l(i)(zi) = ul(i)(zi)D

′(zi)vl(i)(zi) is given in
Proposition 3.2.

Proof. Since the jth eigenvalue of αI − D(h(α)) is α − αj(h(α)) and the determinant of a
matrix is the product of eigenvalues, we have

f(α) =
M∏

j=1

(α − αj(h(α))).

The function f(α) has simple zeros γi of det(αI − D(h(α))). Put zi = h(γi). By differenti-
ating f(α) at α = γi, from Proposition 3.2 we have

f ′(γi) =
M∑

k=1

(1 − α′
k(h(γi))h

′(γi))
M∏

j=1,j �=k

(γi − αj(h(γi)))

=
M∑

k=1

(1 − α′
k(zi)h

′(γi))
M∏

j=1,j �=k

(γi − αj(zi)),
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where α′
k(zi) = uk(zi)D

′(zi)vk(zi). For k �= l(i) the product of the right hand side is 0
because γi = αl(i)(zi) for j = l(i) . Therefore,

f ′(γi) = (1 − α′
l(i)(zi)h

′(γi))
M∏

j=1,j �=l(i)

(γi − αj(zi)). (5.6)

On the other hand by differentiating (5.2) at α = γi we have

f ′(γi) = φ′(γi)
M∏

j=1

(γi − γj) + φ(γi)
M∑

k=1

M∏
j=1,j �=k

(γi − γj).

The first term in the right hand side is 0 because
∏M

j=1(γi − γj) = 0. And

M∏
j=1,j �=k

(γi − γj) = 0 if k �= i.

Then

f ′(γi) = φ(γi)
M∏

j=1,j �=i

(γi − γj). (5.7)

Comparing (5.6) and (5.7), we get (5.5). �

There are M zeros of det
(
αI − D(h(α))

)
in Ω but in general det

(
αI − D(h(α))

)
has

infinite unnecessary zeros on the right-half complex plane Ω∗ = {α | 	(α) > 0 }. For
unsuitable initial values an iterative sequence converges to an unnecessary zero on Ω∗. This
situation is quite different from the problem for calculating zeros of a polynomial by the
Durand-Kerner method. To overcome this difficulty we propose a double for-loop iteration.

Suppose µs be a decreasing sequence of service rates (µ0 = ∞ > µ1 > . . . > µK = µ).
Define the sequence of distribution functions of the service time as H(s)(t) = H(µs

µ
t). For

each H(s)(t), let γ
(s)
i (i = 1, . . . ,M) be the zeros of det(αI − D(h(s)(α))) in Ω, where

h(s)(α) =
∫ ∞
0 eαtdH(s)(t). In the case of s = 0, γ

(0)
i is an eigenvalue of D(1) and γ

(0)
i = αi(1).

And h(0)(α) ≡ 1 implies that h(0)(α)′ ≡ 0 in (5.5). So φ(0)(γ
(0)
i ) ≡ 1.

In order to calculate γ
(s)
i (i = 1, . . . ,M) for s = 1, . . . , K we propose the iteration with

initial values γ
(s−1)
i (i = 1, . . . ,M). The intermediate zeros γ

(s)
i (s = 1, . . . , K − 1, i =

1, . . . ,M) are need not to be numerically precise values. For s < K we set the number N1

of iterations to a small number, e.g. N1 = 5 or 10. However, the zeros γ
(K)
i (i = 1, . . . ,M)

should be numerically precise values. For s = K we set the number N2 of iterations to a
large number, e.g. N2 = 50 or 100. This algorithm is summarized as

Algorithm(the modified D-K method)

1. Calculate all the eigenvalues αi(1) of D(1). Set γ
(0)
i = αi(1), φ(0)(γ

(0)
i ) = 1, s = 1, ν = 1.

If K > 1 then set N = N1 else N = N2.
2. Calculate

α
(s,ν+1)
i = α

(s,ν)
i − det(α

(s,ν)
i I − D(h(s)(α

(s,ν)
i )))∏M

j=1,j �=i(α
(s,ν)
i − α

(s,ν)
j )

· 1

φ(s−1)(γ
(s−1)
i )

, (5.8)

for i = 1, . . . ,M .
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3. If ν < N then set ν = ν + 1 and go to Step 2.
4. Set γ

(s)
i = α

(s,N+1)
i and calculate φ(s)(γ

(s)
i ) by (5.5). If s ≤ K − 2 then set ν = 1 and

s = s + 1 and go to Step 2. If s = K − 1 then set ν = 1, s = K and N = N2 and go to
Step 2.

5. Set γi = γ
(K)
i and calculate the right null vector ηi of γiI−D(h(γi)) with the max norm

||ηi||∞ = 1.
6. End.

Remark 1. It is assumed that for the conventional D-K method in (5.1) the coefficient
aM of αM is 1. Since our problem is calculating only the zeros on Ω, there is an unknown
analytic function φ(α) in (5.2). For the modified D-K method in (5.8), φ(s−1)(γ

(s−1)
i ) is an

approximation of the unknown non-zero function φ(α). Comparing a method with φ(s)(α) ≡
1 we get a good convergence of the iterative sequence derived by (5.8).
Remark 2. For a fixed sufficiently small number ε > 0, the accuracy of γi is checked by

max
i=1,...,M

||
(
γiI − D(h(γi))

)
ηi||∞ < ε.

This formula also can be used to the stopping criterion instead of the fixed number N2.
Remark 3. In the numerical examples of the next section, the sequence {µs | s = 1, . . . , K}
is defined as µ(s) = Kµ/s. In this case we have ρ(s) ≡ λ/µ(s) = sρ/K.

6. Numerical Examples

In this section, we implement two numerical experiments. The stationary probabilities of
the number of customers just after service completion epochs and at arbitrary time are
calculated by two computational steps. The first is the computation for the zeros γi of
det(αI − D(h(α))) by the modified D-K method in Section 5. From Theorems 4.3-4.5, the
vector g is obtained. The second step is to calculate the stationary probability pn and
qn by using a spectral method based on the fast Fourier inversion transform in Appendix.
All calculations are performed for double precision in DECIMAL BASIC on the personal
computer (CPU 3.06GHz, RAM 512MB).

Model 1
In order to check the efficiency of our algorithm we require the following three properties to
a BMAP for a numerical example:
1. a BMAP is bursty,
2. there are complex zeros γi,
3. the maximum batch size is large.

It is known that the model introduced in [21] is bursty but for this tree-structured model,
all γi are real and all arrivals are single (a MAP). We modify this model. There are the root
phase 1 and C cyclic leaves with 3 phases (M = 3C + 1) as illustrated in Figure 1. From
these cyclic leaves complex zeros γi are derived. The phases in cth leaf are numbered as
3c− 1, 3c and 3c + 1. For each i and j (i, j = 1, . . . ,M), the phase transition rates without
arrival and the arrival rates without transition are given by



d
(0)
1,3c−1 = c

a
, d

(0)
3c−1,1 = c,

d
(0)
3c−1,3c = d

(0)
3c,3c+1 = d

(0)
3c+1,3c−1 = c

a
,

d
(bc−1)
3c−1,3c−1 = 1 (c = 1, 2, . . . , C),

d
(k)
i,j = 0 (otherwise),

(6.1)

where a is positive and b is an integer. In the first line, transition rates from 1 to 3c − 1
and from 3c − 1 to 1 are given. By the second line, a cyclic phase transition in a leaf is
represented. In the third line, arrival rates with batch size bc−1 at 3c − 1 are given.
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Table 1: Numerical results of αi(1), γi(zi), zi and g

αi(1) γi zi gi

0 0 1 0.16008
−2.82857 − 0.39884i −4.10388 0.81599 0.09885
−2.82857 + 0.39884i −2.15196 0.89885 0.11862
−1.72423 − 0.52062i −1.90689 − 0.40443i 0.90965 − 0.01823i 0.13178
−1.72423 + 0.52062i −1.90689 + 0.40443i 0.90965 + 0.01823i 0.07246
−1.01265 − 0.22747i −1.03554 − 0.19982i 0.94993 − 0.00940i 0.09504
−1.01265 + 0.22747i −1.03554 + 0.19982i 0.94993 + 0.00940i 0.10827

−6.18078 −6.85028 0.71217 0.06649
−0.45866 −0.53398 0.97388 0.07178
−0.22962 −0.24940 0.98771 0.07657

We set parameters as C = 3,M = 10, a = 2 and b = 10. For the deterministic service
time with ρ = 0.5 the stationary probabilities are calculated as followings. By the QR
method we calculate eigenvalues αi(1), where there are 4 real numbers and 3 pairs of mutu-
ally complex conjugate numbers. Using the modified D-K method, for K = 1 we calculate
γi, where there are 6 real numbers and 2 pairs of mutually complex conjugate numbers. And
from Theorems 4.3-4.5, zi and gi are calculated. The 5 place numbers of these computational
results in double precision are given in Table 1.

3 4 3C 3C + 1

2

1

· · ·

6 7

5 3C − 1

Figure 1: The phase transition

Next using Propositions 7.1-7.2 pn and qn are calculated by the Fourier inversion trans-
form. Let pn = pne and qn = qne be the queue length probabilities just after service
completion epochs and at arbitrary time, respectively. And F (n) and G(n) are the corre-
sponding cumulative distribution functions. The computational results of pn, qn, F (n) and
G(n) are listed in Table 2. Particularly, pn is illustrated in Figure 2. Since for arbitrary
time q0 = .5 by Little’s formula but qn < .006 (n > 0) with a long tail, it is hard to illustrate
qn in one graph. This comes form the bursty BMAP whose batch sizes are 10c−1 c = 1, 2, 3.
For service completion epochs p0−p1, p9−p10 and p99− p100 are nearly 3×10−3, see Figure
2 and Table 2. For a small n G(n)−F (n) is large but for a large n qn ≈ .5×pn from ρ = .5.
For the first and second computational steps defined in the first paragraph of this section,
the elapsed time is 1.9 sec. and 220 sec., respectively.

Setting parameters [M = 10, C = 3, a = 2, b = 10, ρ = 0.95] and [M = 31, C = 10, a =
1.1, b = 2, ρ = 0.5], in two cases (i.e. heavy traffic and a large number of phases), we calculate
zeros and the stationary probability pk. In the second case, we set a = 1.1 because for a = 2
and M = 31, the tail of the distribution function is too long. In both cases the stationary
probabilities pk are calculated. We report T1, T2, n∗ in Table 3, where Ti is the time (sec.)
needed for the ith computational step (i = 1, 2) and n∗ = min{n : F (n) ≥ 1 − 10−5}.

Model 2
In order to apply the spectral methods to more general cases described above, we conduct
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Table 2: The queue length probability of Model 1

n pn F (n) qn G(n)
0 1.1783495E-2 .01178349 5.0000000E-1 .50000000
1 7.2293525E-3 .01901284 5.9763759E-3 .50597637
2 7.0827611E-3 .02609560 3.5795161E-3 .50955589
9 7.9749300E-3 .07882400 3.9413443E-3 .53569221
10 4.5950561E-3 .08341906 4.0386703E-3 .53973088
99 5.9452968E-3 .49747881 2.9429760E-3 .74642516
100 2.7978123E-3 .50027662 3.007813E-3 .74943297
1000 6.6051661E-6 .99906249 3.314196E-6 .99952959
2000 5.9278497E-9 .99999976 2.9743465E-9 .99999988

200 400 600 800
Number of customers in the system
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0.008
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Figure 2: The probability function pn

the following experiments. We fix M = 10 and the arrival rate matrices Dk given by


 d

(2i−1)
i,i = 1 (i = 1, 2, . . . , 10),

d
(k)
i,j = 0 (otherwise).

(6.2)

The off-diagonal elements of the matrix D0 are randomly obtained as P{d(0)
i,j = 0} = 1/3,

P{d(0)
i,j = 0.1} = 1/3 and P{d(0)

i,j = 1} = 1/3. For ρ = 0.5 we adopt a deterministic service
time with µ = λ/0.5, where λ is the arrival rate corresponding to a randomly constructed
BMAP.

In randomly selected irreducible 100 cases, setting K = 1 we success to obtain the
stationary probability distributions in 76 cases but we fail in 24 cases. Then setting K = 2
for the 12 cases in the remaining 24, the stationary probabilities are obtained. Table 4
shows the numbers of the cases that for s = 1, . . . , K − 1 the stationary probability cannot
be obtained and that for s = K it can be obtained. The last remaining case requires K = 10.

Table 3: Calculation time and n∗

M a b ρ T1(sec.) T2(sec.) n∗

The first case 10 2 10 0.95 4.9 3523 18241
The second case 31 1.1 2 0.5 134.4 38760 4037

Table 4: The number of cases of the first success at K
K 1 2 3 4 5 · · · 10

success/total 76/100 12/24 7/12 2/5 2/3 · · · 1/1
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7. Appendix

In this appendix we discuss the spectral method for calculations of the stationary probability
pn and qn using the Fourier inversion transform of the vector generating functions p(z) in
(4.1) and q(z) in (4.2), respectively.

First we consider pn. Let L be a sufficiently large integer such that the tail probability∑∞
l=L ple is negligible and define

p̃n =
∞∑
l=0

plL+n (n = 0, . . . , L − 1),

p̃(z) =
L−1∑
k=0

p̃kz
k.

Let ω = ei2π/L be the Lth root of the unity. Since for n = lN + k ωn = ωk then p̃(ωk) =
p(ωk). From the Fourier inversion formula, we have for n = 0, . . . , L − 1

pn ≈ p̃n =
1

L

L−1∑
k=0

p̃(ωk)ω−kn =
1

L

L−1∑
k=0

p(ωk)ω−kn.

From Assumption 1 and the diagonal representation of D(z)A(z)(zI −A(z))−1 we have

Proposition 7.1 The stationary probability just after service completion epochs is given by

pn ≈ λ−1(1 − ρ)g

L

·
L−1∑
k=0

V (ωk)




α1(ωk)h(α1(ωk))
ωk−h(α1(ωk))

. . .
αM (ωk)h(αM (ωk))

ωk−h(αM (ωk))


 U(ωk)ω−kn. (7.1)

In (7.1), for k = 0 and i = 1, we define as

αi(ω
k)h(αi(ω

k))

ωk − h(αi(ωk))
=

λ

1 − ρ
.

Similarly, we have

Proposition 7.2 The stationary probability at arbitrary time is given by

qn ≈ (1 − ρ)g

L

·
L−1∑
k=0

V (ωk)




(ωk−1)h(α1(ωk))
ωk−h(α1(ωk))

. . .
(ωk−1)h(αM (ωk))

ωk−h(αM (ωk))


 U(ωk)ω−kn. (7.2)

In (7.2), for k = 0 and i = 1, we define as

(ωk − 1)h(αi(ω
k))

ωk − h(αi(ωk))
=

1

1 − ρ
.
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It should be noted that the Fourier inversion transforms of the vector generating functions
p(z) and q(z) are effectively calculated using the fast Fourier transform (FFT) in [23] for
L = 2N , where N is integer.

Remaining our problem is how to calculate αi(ω
k) (i = 1, . . . , M and k = 0, . . . , L − 1)

and corresponding matrixes U(ωk) and V (ωk) at (k = 0, . . . , L − 1). The characteristic
equation αI −D(ωk) of the matrix D(ωk) is a polynomial of α with degree M . W apply the
conventional D-K method in (5.1) to derive eigenvalues αi(ω

k). Setting the initial values of
iterations as αi(ω

k−1), we calculate αi(ω
k) as

α
(ν+1)
i = α

(ν)
i − det(α

(ν)
i I − D(ωk))∏M

j=1,j �=i(α
(ν)
i − α

(ν)
j )

.

This algorithm is efficient since the eigenvalue αi(ω
k) is closed to αi(ω

k−1) for a large
L. After αi(ω

k) are calculated matrices U(ωk) and V (ωk) are easily calculated because
Rank(αi(ω

k)I − D(ωk)) = M − 1.
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