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Abstract We consider an optimal search plan for a movable target. A searcher conducts a two-stage search
consisting of a broad search and an investigating search. In the broad search phase, the searcher seeks for
many uncertain signals featuring target. They are called contacts. There are three possible entities of the
origin of a contact. They are a true target, false object or noise. When a contact is gained, the searcher
executes the investigating search in the following step. He gives a judgment on the contact after it. At the
moment, the searcher could make the errors of the first and the second kind. We model the search procedure
taking account of these three possible entities and the two kinds of human errors and derive conditions of the
optimal investigating time so as to maximize the detection probability of a target. By numerical examples,
we show some optimal investigating plans and explain the properties of these optimal plans.

Keywords: Search, dynamic programming, two stage search

1. Introduction

We will consider an optimal search plan. A searcher seeks for a movable target within
a certain area and within some limited time. We suppose that the area is large enough
compared to the detection range of search sensors. In such a huge area, the searcher usually
conducts a two-stage search consisting of a broad search and an investigating search with
suitable sensors. The two-stage search procedure is shown in Figure 1. In the first broad
search phase, the searcher uses long-range sensors to get rough information about the target.
It is called as ‘contacts’. When he gets a contact, it is classified as the i-th class by the
feature of the signal. He must investigate it precisely to confirm what the source of it is.
This second stage search is called as investigating search, or investigation.

As we have supposed that the target is movable, it can run away or hide itself so the
searcher must investigate the gained contact as soon as possible. There are three possible
sources of a contact. They are a true target, false objects or system noise. When he
executes the investigation of the contact for relatively long time period and cannot get any
information from it, he wastes the operational time. It means that the target has moved
away or the contact originates from noise. The searcher cannot tell them apart. On the
other hand, if he quits the investigation too shortly, he may lose the chance to detect a
true target. So it is often the case that the searcher decides reasonable investigating time
period τi before he starts an investigation. Then the problem is how long the searcher
should execute an investigation. Within the planned time τi, the searcher may finish the
investigation or not. If he cannot finish the investigation, he must come back to the broad
search. If he can, he gives judgment on a contact. But he can make the errors of the first
and the second kind at the same time. When the searcher makes the error of the second
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An Optimal Investigation with Recognition Errors 131

kind, he chases a vacant entity and loses his limited operational time.
In this paper, we will make optimal investigating plans under circumstances stated above.

They are considering three possible sources and two kinds of errors in judgment. When we
make an optimal plan, we maximize the detection probability of the true target until the
end of the operational time.

Phase 1：Broad Search

Start Search Operation ; t = T

get  a contact ?

Phase 2：Investigation 

Decide the upper limit τi

Judicable within τi ?

yes
no

no
yes

True 
target

False
objects

Noise

Judgment

Quit  Search Operation ; t = 0

Classify it as the i – th class

Figure 1: Procedure of the two-stage search operation

We generalize former studies focused on this investigating time. Several authors have
studied the optimal investigating problem with false contacts. As for search problems with
the false contacts by real objects resembling the true target, Stone and Stanshine [7], Stone
et al. [8] and Dobbie [1] dealt with the optimal broad search including the investigating
search uninterrupted until finishing the investigation. These studies are compiled in the
textbook [9]. Sakurai [6] studied the optimal investigating plan both with time restriction
and without time restriction. He assumed that contacts are caused by a true target or
false objects. In the case of no time restriction, he made an optimal plan to minimize the
expected time to detect a true target. When there is the time restriction, he made another
plan to maximize the expected number of true targets and he studied the relation between
the limited search time and the optimal investigating plan. Kisi [5] also studied both cases
of the time restriction. But he studied them under the condition that the source of contacts
was true target or noise. In the case of limitless search time, he assumed that there is a
single target in a search area and the searcher gets many contacts of noise. He derived an
optimal investigating plan to minimize the expected time by the detection of the target.
In the case of limited time, he assumed that several targets are in the search area and he
found an optimal search plan to maximize the expected number of the targets detected
during the time period. Iida et al. [2] studied the time duration between the moment of
the contact had happened and the beginning of the investigation. They made an optimal
investigating plan so as to minimize the expected time until the searcher detects the target
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without time restriction. Iida [3] expanded the model and considered the positional error
and the multi-classes of the contact. Iida et al. [4] also studied the two-stage search in
which noise contacts possibly happen. They showed the necessary and sufficient conditions
for the optimal investigating plan. They made the optimal investigating plans so as to
maximize the detection probability under the time restriction. These studies treat one of
the false-target type contact or the noise type but none of both. However it often happens
that both of them would take place in real operations. We will consider the models that
contain those target types simultaneously.

In the next section, we describe the investigating search problem more precisely and
present some assumptions of the model. We also explain variables used in our model. In
Section 3, we make the investigating model. We adopt the dynamic programming procedure
to formulate the search process. In Section 4, the properties of the optimal investigating
search are elucidated. We show some numerical examples in Section 5.

2. Assumptions and Notation

We define the problem mentioned above and make some assumptions for our model.

Investigating Search Problem : When a searcher is taking place a broad search for
a movable target, he gets a contact classified as the i-th class at time t left. How long
should he investigate it? We will decide the optimal investigating time τi(t) so as to
maximize the detection probability of the target until the end of the search operation.

[Assumptions ]

1. Total operational time is T . The time is consumed continuously and is counted in the
reverse order. Time t means that t is left until the end of the search operation.

2. A searcher searches a target within a limited area A. The target is sinking in water. So
the target is assumed to distribute uniformly in the area. The searcher starts from the
broad search in the random search manner; he searches the area for a target randomly
with speed v and by a sensor with sweep width W . The search pattern is random
in the sense that the path can be thought of as having its different portions placed
independently and randomly of one another in A. By these assumptions, the searcher
gets a contact with a Poisson rate λ0 = vW/A [4]. Parameter λ0 is composed by Poisson
arrival of signals from a true target and false objects. The searcher also gets system noise
randomly. That process is also regarded as Poisson arrival process and we suppose the
rate is λn. By the reproductivity, a contact originated from those three entities happens
with Poisson rate λ = λ0 + λn.

3. When the searcher gets a contact, it is classified into one of m classes according to the
characteristic of the signal or certainty of being true. The probability that the contact
belongs to the i-th class is pCi

,
∑m

i=1 pCi
= 1, pCi

≥ 0 for all i = 1, . . . ,m. The searcher
knows the distribution of pCi

from the past, accumulated data.
4. In the i-th contact class , the ratio that source of a gotten contact originated from a

true target, false objects or noise is also known to the searcher by the previous data.
From now on, we call the contact caused by a true target true contact. We also call false
contact and noise contact in the same way. The ratios that the contact belongs to each
source, each class are pT i, pFi and pNi respectively and they satisfy 0 ≤ pT i, pFi, pNi ≤ 1
and pT i + pFi + pNi = 1 for each class i.

5. We suppose that the searcher can determine the upper limit of an investigating time
τi(t) (; t ∈ [0, T ], 0 ≤ τi(t) ≤ t) as soon as he gets a contact at time t and belongs to the
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class i. At the same time, he can also start the investigating search if he decides that
he should do it. There is no time lag among these actions.

6. The time consumed for the investigation is a random variable. If the contact belongs to
the i-th class, it depends on the probability density functions hT i(τ) for the true contact
and hFi(τ) for the false contact. We assume that both density functions are continuous.
The cumulative density functions of them are denoted by HT i(τ) and HFi(τ).

7. If the searcher cannot judge a contact within τi(t), he must return to the broad search
immediately and search for a new contact. We assume that the searcher cannot get any
other contact during the investigating phase.

8. When the searcher can give judgment on a contact, the sequential search process
branches into some cases. The details are depicted in Figure 2.
(a) When the searcher gets a true contact and judges it as ‘true’, the investigation will

finish successfully and he moves on the next step action such as chasing and/or
ready for attack. In the case that he misjudges the contact as ‘false’, he makes the
error of the first kind and he returns to the broad search. The probability that he
makes the mistake is denoted by aT . We assumed that this value is constant through
the operational period and independent of the contact class i and t.

(b) When the searcher gets a false contact and he judges it as ‘false’, he returns to the
broad search. But if he makes a mistake and judges it as ‘true’, he steps into the
next phase. He starts tracking of the target or preparing for attack. The probability
that he makes the mistake is aF . This value has the same properties of aT . When
the searcher is engaged himself in the next phase action, he cannot search for a
true target and wastes the operational time. We call the period penalty time x.
The penalty time x is a random variable depending on some continuous probability
density function g(x) (; x ∈ [0, max(t−τi(t), t−tAi )]). The variable tAi denotes actual
investigating time, 0 ≤ tAi ≤ τi(t) . Just after the time x, the searcher realizes that
he is chasing an imaginary object and he comes back to the broad search.

(c) If the searcher gets a noise contact, he may not be able to get any evidence of the
target through τi(t), and after that period, he returns to the broad search.
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Figure 2: The sequential actions after a
judgment
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Figure 3: The procedure in the case of
the error of the 2nd kind

3. Formulation and Algorithm

In this section, we formulate the two-stage search problem. We define two probabilities here.
Gi(t, τi(t)) denotes the conditional detection probability of the true target given that a class
i of contact happens at t and the searcher investigates according to the decisions τi(t) . P (t)
is the detection probability of the true target when the search is conducted according to the
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134 T. Komiya, K. Iida & R. Hohzaki

optimal investigating plan {τ ∗
i (t)} after time t. τ ∗

i (t) is the optimal investigating time and
should be decided by the searcher at t, that maximizes the conditional detection probability
Gi(t, τi(t)), i.e.,

Gi(t, τ
∗
i (t)) = max

0≤τi(t)≤t
Gi(t, τi(t)). (3.1)

During fractional time period [t, t+∆t], the searcher may get a contact with probability
λ∆t. Therefore we can estimate P (t + ∆t) as follows.

P (t + ∆t) = {1 − λ∆t}P (t) + λ∆t
m∑

i=1

pCiGi(t, τ
∗
i (t)). (3.2)

In the right-hand side of Eq.(3.2), the first term is a product of the probabilities between the
probability that no contact occurs during the fractional time and the detection probability
after then. The second term indicates the probability that the contact does happen during
[t, t + ∆t] and the searcher detects a true target by optimal search plans after then.

Gi(t, τi(t)) consists of three parts; originates from a true contact, a false contact and a
noise contact as follows.

Gi(t, τi(t))

= pT i

[∫ τi(t)

0
hT i(u)

{
(1 − aT ) + aT P (t − u)

}
du+

{
1 − HT i(τi(t))

}
P (t − τi(t))

]

+ pFi

[∫ τi(t)

0
hFi(u)

{
(1 − aF )P (t − u) + aF

∫ t−u

0
g(x)P (t − u − x) dx

}
du

+
{
1 − HFi(τi(t))

}
P (t − τi(t))

]
+ pNiP (t − τi(t)) (3.3)

= pT i

∫ τi(t)

0
hT i(u)

{
(1 − aT ) + aT P (t − u)

}
du + pFi(1 − aF )

∫ τi(t)

0
hFi(u)P (t − u)du

+pFiaF

∫ τi(t)

0
hFi(u)

{∫ t−u

0
g(x)P (t − u − x)dx

}
du

+
{
1−pT iHT i(τi(t)) − pFiHFi(τi(t))

}
P (t−τi(t)). (3.4)

The first term of Eq.(3.3), starting with pTi
, can be still divided into two parts. The former

integral part means that the investigating search ends up to τi(t). At time u , the searcher
finishes the investigation and makes a right judgment with probability 1 − aT . If he makes
a mistake with probability aT , he returns to the broad search but he has operational time
t− u left in hand. The latter part indicates the detection probability that the investigation
does not finish by τi(t) and the searcher starts the broad search again. The second term is
also divided into some pieces and each piece can be interpreted in the same manner as the
first term. If the searcher makes the error of the second kind with probability aF at time u,
he moves into the next penalty phase action. He must be kept in the penalty phase for x.
The penalty time could last for t − u long at most. The third term indicates the case of a
noise contact. The searcher investigates the contact in vain for τi(t) to return to the broad
search finally.

We can derive the following differential equation from Eq.(3.2).

dP (t)

dt
= lim

∆t→0

P (t + ∆t) − P (t)

∆t
= λ

{
m∑

i=1

pCiGi(t, τ
∗
i (t)) − P (t)

}
. (3.5)
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An Optimal Investigation with Recognition Errors 135

The initial conditions of Eq.(3.5) are as follows.

P (0) = Gi(0, 0) = 0 (i = 1, . . . ,m). (3.6)

We will obtain the detection probability P (t) at every operational time t ∈ [0, T ]. To do
this, beginning with conditions (3.6), we first calculate Gi(t, τi(t)) for some t by changing
τi(t) within [0, t] and get the maximal value Gi(t, τ

∗
i (t)) for each i. Then we substitute those

Gi(t, τ
∗
i (t))s into Eq.(3.5) and calculate the increment dP (t), or dP (t)/dt × dt. Finally we

can get the extended value P (t + dt) by adding the increment to P (t).
When t ≤ 0, we define P (t) = 0. While there is no time to search, the searcher

cannot increase the detection probability so the definition is natural. And we assume that
there exists a P (t) for any t within [0, T ]. Then Gi(t, τi(t)) are continuous and dP (t)/dt,
convex combination of them, is also continuous. As a result, the detection probability P (t) is
continuous on [0, T ] and differentiable on [0, T ). Gi(t, τi(t)) are defined on [0, t] and bounded
from above, there exist at least one maximal value Gi(t, τ

∗
i (t)) and the optimal investigating

time τ ∗
i (t) in every class i.

To get the maximal values of Gi(t, τi(t)), we have to solve Eq.(3.4) optimally with respect
to τi(t) but as shown in Eq.(3.4), Gi(t, τi(t)) is so complicated that it is hard to solve and
to get the optimal values of Gi(t, τ

∗
i (t)). From now on, we will adopt a discrete algorithm to

get a numerical solution. By following the algorithm, we can get the maximized detection
probability P (T ) and the optimal investigating plans {τ ∗

i (t)} (i = 1, . . . , m) for every t ∈
{0, ∆, 2∆, . . . , r∆(= T )} .

In the discrete algorithm, we divide the whole operational time [0, T ] into r fractional
parts equally at first. We redefine functions P (t), Gi(t, τi(t)) at instant t = l∆ of the
discretized search time, where ∆ = T/r and modify other notation as follows.

τi,l = τi(l∆), Pl = P (l∆), Gi,l(τi,l) = Gi(l∆, τi(l∆)), l = 0, 1, ..., r.

Equation (3.5) is rewritten in the following difference equation.

Pl+1 − Pl = λ

{
m∑

i=1

pCiG
∗
i,l − Pl

}
∆, where G∗

i,l = max
τi,l∈{0,∆,...,l∆}

Gi,l(τi,l). (3.7)

Gi,l(τi,l) of Eq.(3.4) is also replaced by the following difference equation.

Gi,l(τi,l) = pT i

{ τi,l∑
k=0

hT i(k∆){(1 − aT ) + aT Pl−k}
}

∆ + pFi

{ τi,l∑
k=0

hFi(k∆)(1 − aF )Pl−k

}
∆

+pFi aF




τi,l∑
k=0

hFi(k∆)
l−k∑
j=0

g(j∆)Pl−k−j


 ∆2+

{
1 − pT iHT i(τi,l) − pFiHFi(τi,l)

}
Pl−τi,l

. (3.8)

From Eq.(3.7), we get the following relation.

Pl+1 = Pl + λ

{
m∑

i=1

pCiG
∗
i,l − Pl

}
∆ (l = 0, ..., r.). (3.9)

To obtain G∗
i,l, we evaluate Gi,l(τi,l) with changing τi,l for 0, ∆ . . . , l∆, using Eq.(3.8). By

Eq.(3.9), the iterative calculation proceeds in the following manner from initial conditions
P0 = G∗

i,0 = 0.

P0 → G∗
i,0→P1→G∗

i,1→ . . .→Pl→G∗
i,l→Pl+1→ . . .→G∗

i,r→Pr.

Finally, we summarize the discrete algorithm described above.
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1 Initialize P0 = 0, G∗
i,0 = 0, i = 1, ...,m.

2 Set iteration index l = 0 . Start with class index i = 1 .
3 Set τi,l = 0, G∗

i,l = Gi,l(0) = Pl, τ ∗
i,l = 0 .

4 Calculate Gi,l(τi,l) by Eq.(3.8). If Gi,l(τi,l) > G∗
i,l then G∗

i,l = Gi,l(τi,l), τ ∗
i,l = τi,l .

5 If τi,l < l∆, then τi,l = τi,l + ∆ and return 4 .
6 If i < m then i = i + 1 and return 3 .

Else if i = m, substitute G∗
i,l and Pl into Eq.(3.9), calculate Pl+1 .

7 If l < r, then let l = l + 1, i = 1 and return 3 .
Else if l = r, output {τ ∗

i,l} and quit.

Note that the optimal investigating plans {τ ∗
i,l}, calculated by the above procedure, are

not optimal ones in exact sense. In each class i, there exists some difference between the
exact solution τ ∗

i (t) in continuous case and τ ∗
i,l as much as |τ ∗

i (t) − τ ∗
i,l| ≤ ∆. But if we

calculate along with the above algorithm and divide the time period [0, T ] as much as
possible, it means that ∆ → 0, the differences tend to zero and the numerical solutions will
converge to the solutions in continuous case.

4. Conditions for Optimal Investigation

We analyze Gi(t, τi(t)) here to get some knowledge of the optimal stopping time of the
investigating search. We partially differentiate Eq.(3.4) with respect to τi(t).

∂Gi(t, τi(t))

∂τi(t)
= (1−aT )pT ihT i(τi(t))

{
1−P (t−τi(t))

}

− aF pFihFi(τi(t))
{
P (t − τi(t)) −

∫ t−τi(t)

0
g(x)P (t − τi(t) − x)dx

}
− P ′(t−τi(t))

{
1−pT iHT i(τi(t))−pFiHFi(τi(t))

}
. (4.1)

When τi(t) = 0, Eq.(4.1) is rewritten as follows.

[∂Gi(t, τi(t))

∂τi(t)

]
τi(t)=0

= (1 − aT )pT ihT i(0)
{
1 − P (t)

}

− aF pFihFi(0)
{
P (t) −

∫ t

0
g(x)P (t − x)dx

}
− P ′(t). (4.2)

Theorem 4.1 The necessary condition that the searcher should start the investigating
search is the following inequality.

(1 − aT )pT ihT i(0) >
P ′(t) + aF pFi

hFi(0){P (t) − ∫ t
0g(x)P (t − x)dx}

1 − P (t)
. (4.3)

Proof If the sign of Eq.(4.2) is positive, Gi(t, τi(t)) has a positive derivative at τi(t) = 0.
Form Eq.(3.4), Gi(t, 0) = P (t). Substitute them into Eq.(3.5), it is clear that dP (t)/dt is
an increasing function of τi(t). �

Theorem 4.2 When the searcher takes place the investigation for some time, the
optimal investigating time τ 0

i (t) must satisfy the following relation.

(1 − aT )pT ihT i(τ
0
i (t))

1 − pT iHT i(τ 0
i (t)) − pFiHFi(τ 0

i (t))
=

P ′(t − τ 0
i (t))

1 − P (t − τ 0
i (t))

+
aF pFihFi(τ

0
i (t))

1−pT iHT i(τ 0
i (t))−pFiHFi(τ 0

i (t))
×P (t−τ 0

i (t))−∫ t−τ0
i (t)

0 g(x)P (t−τ 0
i (t)−x)dx

1 − P (t − τ 0
i (t))

. (4.4)
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Proof Eq.(4.4) is given by setting Eq.(4.1) equals zero. �

Note that the uniqueness of τ 0
i (t) is unproved, so there may be some solutions satisfying

Eq.(4.4). In such a case, we will adopt a minimal solution as τ 0
i (t) for the economy of search.

The left-hand side of Eq.(4.4) indicates the marginal detection probability that a true
contact is judged properly as a true target under the conditions that the investigation has
not finished until τ 0

i (t). The searcher finishes the investigation of the true contact just at
τ 0
i (t). On the right-hand side, the first term is the increasing rate of the detection probability

at time t − τ 0
i (t) under the condition that the search cannot detect the true target after

t − τ 0
i (t) and he does not get any contact at that time. The second term indicates the

detection probability of a ‘quasi-true’ target. The searcher mistakes the false contact as
if it were true with probability aF . In the numerator, P (t − τ 0

i (t)) is subtracted by the
detection probability in the penalty state for x time period. At every moment, τ 0

i (t) must
be determined with balancing the short-term marginal detection probability (left-hand side)
and the future detection probability, regarding the loss of the detection probability during
the penalty time, until the end of the search operation. As we have mentioned in the
previous section, we will adopt the discrete algorithm and get numerical solutions.

5. Numerical Examples

In this section, we show some numerical examples. We will set the values of each parameter
as follows. TU stands for a time unit.
• Total operational time period: T = 160 [TUs]

• Time increment: ∆ = 1 [TU]

• Contact ratio： λ = 0.05 [times/ TU] (= 8 [times/ total operational time])

• Probabilities that the searcher makes the error of the 1st and 2nd kind：
aT = aF = 0.4

• Number of the contact classes： m = 4
The penalty time changes depending on the exponential distribution with mean 1/µ or

it is set a constant.
• The case of the exponential distribution ：µ = 1/60

• The case of constant penalty time ：tL = 60 TUs
The mean of both cases are same value. We will compare the optimal investigating plans
for both cases. When the searcher executes the investigation, it takes the exponential
investigating time hTi

(τ) = αTi
exp(−αTi

τ) and hFi
(τ) = αFi

exp(−αFi
τ).

In each of the four contact classes, probabilities pTi
, pFi

, pNi
, the investigating parameters

αTi
, αFi
，and the probabilities that the contact belongs to the class i, pCi

are set as shown
in Table 1. We assume that pNi

is independent of the class number i because we want to
make up the same situation for noise environment. As the class number i increases, the
certainty that the true contact is actually true becomes higher.

Table 1: Set of parameter values

Class (pTi
, pFi

, pNi
) (αTi

, αFi
) pCi

1 (0.1, 0.4, 0.5)
2 (0.2, 0.3, 0.5) (0.05, 0.05) 1/4
3 (0.3, 0.2, 0.5)
4 (0.4, 0.1, 0.5)
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5.1. The relation between contact class and optimal investigating plan

We will investigate the relation between the certainty of the contact pTi
and the optimal in-

vestigating plan. Here we consider only the case of the exponential penalty time, i.e. g(x) =
µe−µx. By the discrete algorithm explained in Section 3, the curves of G1(t, τ1(t)) for Class
1 are shown in Figure 4. These curves are illustrated for t = 20, 40, 60, 80, 100, 120, 140, 160.
Each curve has a negative gradient at τ1(t) = 0. But the sign of its gradient changes positive
near the terminal points τ1(t) = t. In the case of t = 20, G1(t, t) is larger than G1(t, 0). In
this situation, the optimal investigating time τ ∗

1 (t) is not zero and the searcher should take
place the investigation for all residual time t. On the other hand, for larger t, the values
at τ1(t) = 0 are much larger than the values at the terminal points τ1(t) = t. In those
situations, the searcher should not execute investigating search, i.e. τ ∗

1 (t) = 0.

The curves of G2(t, τ2(t))s are increasing around τ2(t) = 0 as shown in Figure 5. Optimal
investigation time τ ∗

2 (t) becomes terminal point in case of t = 20, 40, whereas the inner points
in another cases. The curves of Gi(t, τi(t)) (i = 3, 4) have similar properties of Class 2.
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Figure 4: G1(t, τ1(t))
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Figure 5: G2(t, τ2(t))

The optimal investigating plans {τ ∗
i (t)} are shown in Figure 6. From the figure, we can

conclude that the searcher should spend all the time on the investigation for small residual
time t. It means that when t is small, there is little chance to get a new contact and
the searcher should spend all t on the investigation. On the other hand, for larger time
t, the optimal investigating times are almost constant because of the maximal points of
G2(t, τ2(t)), also in the Class 3 and the Class 4, are almost constant when t is large. This
phase transition of τ ∗

i (t) occurs drastically but those properties have already seen in the
former studies [4, 5]. As the certainty of the true contact becomes bigger, the searcher must
use much time to the investigation, whereas the contact belongs to the Class 1, that class
contains much uncertainty, the searcher should not investigate until the end stage of the
operation. Figure 7 shows the curves of Gi(t, τi(t)) for each Class i at t = 100. The peak
of each curve moves from left to right as the Class number increases. When the searcher
executes a search operation according to the optimal investigating plans shown in Figure
6, the detection probability of the true target P (t) is maximized time by time as shown in
Figure 8.

5.2. The effect of the distribution of penalty time

We will consider here the effect of the penalty time. The penalty time tends to be influenced
by the operation of the investigation. Here we consider the case of constant penalty time
in addition to the exponential case. When the penalty time is constant tL, we modify the
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Figure 6: {τ ∗
i (t)}
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Figure 7: Gi(100, τi(100))
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Figure 8: P (t)

third term of Eq.(3.4) by substituting g(x) = δ(x− tL), where δ(·) is Dirac’s delta function.

pFiaF

∫ τi(t)

0
hFi(u)

{∫ t−u

0
g(x)P (t−u−x)dx

}
du =




pFiaF

∫ τi(t)

0
hFi(u)P (t − u − tL)du

(t > tL) (5.1)

0 (t ≤ tL) (5.2)

Resultant G2(t, τ2(t))s are shown in Figure 9. The curves are almost same as Figure 5.
These similarities are also seen for other classes. When we compare G2(t, τ2(t))s between
the two cases of penalty time for the same time t, the values in the constant penalty case
are slightly smaller than the exponential case. The main reason of this difference can be
explained as follows. In the constant penalty case, the searcher must be in the penalty
state for exact tL and he cannot increase the detection probability within the period. On
the other hand, in the exponential case, the searcher always has a chance to come back the
broad search phase when he is in the penalty state and the detection probability can be
stored even within tL.

But the difference of Gi(t, τi(t)) is so little that it does not affect {τ ∗
i (t)} and P (t). The

detection probability P (t) in the constant penalty case is exhibited in Figure 10. Compare
it with Figure 8, the difference is not seen clearly. For the discrete algorithm, the case
of the exponential penalty time requires more calculations than the case of constant time.
So it is better to use the constant case as a substitution of the exponential case if precise
computation is not required. From the next section, we will consider only the constant
penalty case.
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Figure 9: G2(t, τ2(t)) (Constant penalty
case)
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Figure 10: P (t) (Constant penalty case)

5.3. The effect of source of a contact

In Section 5.1. and Section 5.2., we assumed that a contact could be caused by three
types of sources. Here we will omit one of false or noise contact and make it clear that
the relationship between the sources of contact and the optimal investigating time in the
case of constant penalty time. We will suppose the following two environments in which
a contact is caused by only two sources. One is False-Type environment and the other is
Noise-Type. In the False-Type environment, a contact is caused by only a true target or
false objects. In the Noise-Type one, a contact is caused by a true target or noise. We set
up parameters for the two type environments as in Table 2. Figure 11 shows G4(t, τ4(t))s of
the two environments. The left figure is for False-Type and the right is for Noise-Type.

The curves of False-Type tend to flatten as t becomes larger. On the other hand, they
tend to bend downward greatly in the Noise-Type case. These phenomena can be explained
by Eq.(3.4). In the False case, Eq.(3.4) is written as the same, while in the Noise case, it is
rewritten as follows.

Gi(t, τi(t))=pT i

∫ τi(t)

0
hT i(u)

{
(1−aT ) + aT P (t−u)

}
du +

{
1−pT iHT i(τi(t))

}
P (t−τi(t)). (5.3)

Table 2: Set of parameter values in False-Type and Noise-Type environments

Type False-Type Noise-Type
probabilities (pT i, pFi) (pT i, pNi) pci

Class 1 (0.1, 0.9) (0.1, 0.9)
Class 2 (0.2, 0.8) (0.2, 0.8) 1/4
Class 3 (0.3, 0.7) (0.3, 0.7)
Class 4 (0.4, 0.6) (0.4, 0.6)

Compare it with Eq.(3.4), the second and the third terms of it vanish because of the
value of pFi

= 0. In Eq.(3.4), those terms are positive definite and are increasing functions
of τi(t). By lack of those terms, the curves of Gi(t, τi(t)) of the Noise-Type case bend greatly
when τi(t) becomes large.

In the False case, Gi(t, τi(t)) is written as same as Eq.(3.4), but the probability of each
class pFis are bigger than those in Table 1, the second and the third term of Eq.(3.4) cause
pushing up Gi(t, τi(t))s and the curves of them become flat compare to Figure 5.
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Figure 11: G4(t, τ4(t)) (left : False-Type right : Noise-Type)

The optimal investigating plans, {τ ∗
i (t)}, for the each contact type and each contact

class are depicted in Figure 12. As the curves of Gi(t, τi(t)) increase even if t is big enough
in the False-Type case, they take the maximal values at the terminal points. In this case,
there is no probability that the contact is caused by noise so the searcher tends to keep
investigation until the source of the contact becomes clear. The optimal investigating time
τ ∗
i (t) are proportional to t in the classes where pT are large. It is concluded that if the

searcher has high performance sensors, they make contact signals rarely from noise sources
and the optimal investigating period tends to be long.

Contrarily, in the Noise case, Gi(t, τi(t))s become maximal at an inner point for large
residual time. The optimal investigating plans {τ ∗

i (t)} have the same properties as depicted
in Figure 6. We can conclude that if noise is mixed in contact signals, it is better to finish
the investigation early without inspecting it too much.
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Figure 12: Optimal investigating plans {τ ∗
i (t)} (left: False-Type right: Noise-Type)

5.4. The effect of contact ratio λ

We will study here the effect of the contact ratio λ on τ ∗
i (t). We keep the same parameters as

in Section 5.1. but change λ from 0.05 to 0.1, 0.025 or 0.0125. It means that the expectation
of contact is changed from 8 times to 16,4 times or twice during the whole operational time.
Under those conditions we will assume that the penalty time is constant and the contact is
caused by three different sources.

The results are shown in Figure 13. The left figure is the optimal investigating plans
for Class 1 and the right is for Class 4. When λ is small, it is difficult to get a contact
so the investigating time for a gained contact tends to be long. When the contact ratio λ
becomes large, it is better to finish the investigation early and to return to the broad search
to get a new contact. Especially for the Class 1 and λ = 0.1, 0.05, the searcher should not
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investigate a contact at all until the final stage of the operation.
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Figure 13: λ dependency of τ ∗
1 (t) (left) and τ ∗

4 (t) (right)

6. Conclusions

In this paper, we consider a two-stage sequential search operation which consists of a broad
search and an investigation. We propose a method for the optimal investigating plans so as
to maximize the detection probability until the end of the operation. The method takes into
account the errors of two kinds that may happen when the judgment is given on a contact.
Three possible entities are also considered in the method. By numerical examples, we show
some properties of the optimal investigating plans and make sure that they are reasonable
comparing with real operation. When the searcher misjudges a false target as a true one,
he must be in the penalty state for a while. We assumed that the penalty period obeys two
different distributions. By the numerical experiment, it becomes clear that the difference of
them affects very little on the optimal investigating plans. So it is worth to use constant
penalty case in practice.

As future studies, we would like to apply this model to the real world. The real oper-
ational field is thought to be composed of many heterogeneous regions. Some parameters
such as λ or penalty time are different in each region. We must modify this model and apply
it to the multi-area circumstances.

There are some preceding studies that treat the two-stage search problem with an-
other criteria such as the minimization of the expected time until a searcher detects a true
target[1, 3]. They considered only two possible contacts but don’t consider the errors of two
kinds. It is also a future study that we make a new model with this criterion incorporating
the concept of three possible entities and the errors of two kinds.
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