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Abstract This note examines the inventory model with service level constraint in which the lead time, the
reordered point and order quantity are treated as decision variables. The previous researchers believed that
the objective function is concave in the lead time such that the minimum must occur on the boundary points
of each sub-domain. In this note, we will show that their belief contains questionable results. In a recent
paper in Journal of the Operations Research Society of Japan, Ouyang and Chuang studied this problem.
However, their algorithm might not find the optimal solution due to flaws in their solution procedure. We
developed some lemmas to reveal the parameter effects and then presented the complete procedures for
finding the optimal solution for the inventory model in which the lead time demand is unknown and for
solving by the Gallego’s minimax distribution free procedure. The savings are illustrated by solving the same
examples from Ouyang and Chuang’s paper to demonstrate a 30% improvement by our revised algorithm.
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1. Introduction

In the traditional inventory model, the lead time is considered as a predetermined constant
or a stochastic variable as in Silver and Peterson [14] such that lead time is not controllable.
Liao and Shyu [5] and Ben-Daya and Raouf [1] decomposed the lead time into several com-
ponents, each having a different piecewise linear crash cost function for lead time reduction;
therefore, the lead time becomes a new decision variable. Gallego [3] created a wonderful
two point distribution to serve as the most unfavorable case among the distributions with
the same mean and variance to estimate the expected cost of the lost sales such that the
minmax distribution free approach of Scarf [13] can apply to the stochastic inventory mod-
els. Moon and Gallego [7] extended the minmax distribution free approach for stochastic
inventory model with backorders and lost sales. Ouyang et al. [11] generalized Ben-Daya
and Raouf’s [1] assumption allowing shortages. Moon and Choi [6] and Lan et al. [4] pointed
out the problem in Ouyang et al’s. method [11]. Ouyang and Wu [10] extended the Ouyang
et al. [11] article to apply the minimax distribution free procedure. Ouyang and Chuang [8]
studied stochastic inventory models with service level constraint which are solving by the
minimax distribution free procedure. Wu and Tsai [15] studied inventory models with a
mixed normal distribution from different customers. Pan and Hsiao [12] developed the
model with backorder discount to ensure that customers would be willing to wait for back-
orders. Ouyang and Wu [9] extended to inventory model with service level constraint. Chu,
et al. [2] improved the results of Ouyang and Wu [9] first for lead time demand following a
normal distribution and then extended the minmax distribution free procedure to solve the
problem.

For the inventory models with crashable lead time, there are many generalized extensions
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to apply for more realistic inventory models. However, there is a disputable result that
deserves more detailed discussion. Ouyang et al. [11] proved that the expected annual
cost is a concave down function in lead time such that the minimum value will occur on
the boundary points of each sub-domain. It is an excellent discovery that dramatically
simplifies the solution procedure. To clearly indicate this property, we denoted it as follows:
the minimum values for concave down functions degenerate to the boundary points on the
sub-domain of the crash cost.

However, Ouyang et al. [11] considered the inventory model without service level con-
straint. The researchers who followed them believed that this property also holds with the
service level constraint.

In this note, we will point out that the degeneracy to the boundary points for the concave
down function requires more detailed examination. We will construct a correct and efficient
algorithm to find the optimal order quantity, reorder point and lead time, develop lemmas to
reveal the parameter effects and illustrate our improvement by solving the same numerical
example in Ouyang and Chuang [8] to indicate that sometimes their algorithm does not find
the optimal solution.

2. Notation and Assumptions

We used the same notation and assumptions as Ouyang and Chuang [8] and several new
notations to simplify the expression.

Notation:
A = Ordering cost per order.
D = Expected demand per year.
h = Holding cost per unit per year.
L = Length of lead time.
Q = Order quantity.
X = The lead time demand which has a distribution function F with finite mean μL

and standard derivation σ
√

L(> 0).
x+ = Maximum value of x and 0, i.e. x+ = max{x, 0}.
α = Proportion of demands that are not met from stock so 1 − α is the service level.
β = Fraction of the demand during the stock-out period that will be backordered.
Mβ = Expected value of β.
C(L) = Lead time crashing cost.
L(Q, k) = The boundary points of lead time that satisfies the service level constraint.
EAC(Q, k, L) = Total expected annual cost.
MID(x, y, z) = The middle term in x, y and z.

ki(Q) = σ2Li−4Q2α2

4Qασ
√

Li
, for 0 < 2Qα < σ

√
Li, the least value of safety factor that satisfies

the service level constraint.

Assumptions:

(1) The reorder point r = expected demand during lead time + safety stock (SS), and
SS = kσ

√
L, that is, r = μL + kσ

√
L where k is the safety factor and satisfies P (X >

r) = q, q representing the allowable stock-out probability during L.

(2) B(r) = E[X − r]+ is the expected demand shortage at the end of cycle. Hence, βB(r)
are the backordered quantities and (1 − β)B(r) are the lost sales. Therefore, the total
demand during lead time period equals μL− (1−β)B(r) and the expected net inventory
level just before the order arrives is r − (μL − (1 − β)B(r)). Moreover, the expected
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Inventory with Service Level Constraint 119

net inventory level at the beginning of the cycle is Q + r − (μL − (1 − β)B(r)), so the
expected holding cost per cycle is

Q

D

[
Q

2
+ kσ

√
L + (1 − β)B(r)

]
.

(3) Inventory is continuously reviewed. Replenishments are made whenever the inventory
level falls to the reorder point r.

(4) The lead time L has n mutually independent components. The ith component has a
minimum duration ai, and normal duration bi, and a crash cost per unit time ci. Further,
we assume that c1 ≤ c2 ≤ ... ≤ cn.

(5) The lead time components are crashed one at a time starting with the least ci component
and so on.

(6) If we let L0 =
n∑

j=1
bj and Li the length of lead time with components 1, 2, ..., i crash to

their minimum durations, then Li =
n∑

j=i+1
bj +

i∑
j=1

aj. The lead time crash cost C(L) per

cycle for a given L ∈ [Li, Li−1], is given by C(L) = ci(Li−1 − L) +
i−1∑
j=1

cj(bj − aj).

(7) For technical reasons, we assume that both h
2
+hα(1−Mβ)−4ci

Dα2

σ2 > 0 and h− 4ciDα
σ2 > 0

are valid. This is confirmed by the numerical examples in Ouyang and Chuang [8].

3. Review of Previous Results

We studied the inventory model of Ouyang and Chuang [8] such that the order quantity,
Q, length of lead time, L, and reorder point, r, are decision variables. Their objective is to
minimize the expected annual cost, subject to a constraint on service level as follows

Min EAC(Q, k, L) =
D

Q
[A + C(L)] +

hQ

2
+ h

[
r − μL + (1 − Mβ)E(X − r)+

]
(1)

subject to
E(x − r)+ ≤ Qα (2)

for Li ≤ L ≤ Li−1 with C(L) = ci(Li−1 − L) +
i−1∑
j=1

cj(bj − aj).

Since the distribution of lead time demand is unknown, researchers could not find the
exact value of E(x − r)+. Hence, they used the minimax distribution free procedure of
Gallego and Moon [6] to find a tight upper bound for E(x − r)+ and use the safety factor,
k, as the new variable to replace the reorder point, r, then the problem is reduced to

Min EAC(Q, k, L) =
D[A + C(L)]

Q
+

hQ

2
+ hσ

√
L
[
k +

1 − Mβ

2
(
√

1 + k2 − k)
]

(3)

subject to
σ
√

L(
√

1 + k2 − k) ≤ 2Qα. (4)

Ouyang and Chuang [8] used a nonnegative slack variable, S2 to convert the inequality in
constraint into equality such that they considered

EAC(Q, k, L, λ, S) =
D[A + C(L)]

Q
+

hQ

2
+ hσ

√
L
[
k +

1

2
(1 − Mβ)(

√
1 + k2 − k)

]

+ λ
[
σ
√

L(
√

1 + k2 − k) + S2 − 2Qα
]
. (5)
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They derived that

∂2

∂L2
EAC(Q, k, L, λ, S) =

−hσ

4
√

L3

[
k +

1 −Mβ

2(
√

1 + k2 + k)

]
− λσ

4
√

L3
(
√

1 + k2 − k) < 0. (6)

From ∂2

∂L2EAC(Q, k, L, λ, S) < 0, they implied that EAC(Q, k, L, λ, S) is a concave down
function in variable L for Li ≤ L ≤ Li−1 so they directly assume that the minimum value
will occur at the boundary points L = Li and L = Li−1.

They claimed that they could further prove that, for any given L ∈ [Li, Li−1], EAC(Q, k,
L, λ, S) satisfies the Kuhn-Tucker necessary conditions for minimization problem and it
obtains the slack variable S2 = 0. Hence, with the variable S = 0, for a given L =
Li, they considered the partial derivatives with respect to Q, k, and λ, to derive that
∂

∂Q
EAC(Q, k, Li, λ, S) = 0, ∂

∂k
EAC(Q, k, Li, λ, S) = 0, and ∂

∂λ
EAC(Q, k, Li, λ, S) = 0, so

they found the solution for the partial derivative system, say Qi, ki and λi, respectively for
L = Li as follows

Qi =

[
2D(A + C(Li))

h − 4λiα

] 1
2

(7)

λi = h

⎡
⎣

√
1 + k2

i√
1 + k2

i − ki

− 1 − Mβ

2

⎤
⎦ (8)

and

σ
√

Li

(√
1 + k2

i − ki

)
= 2Qiα. (9)

They sophisticatedly combined Equations (7), (8) and (9) to obtain Qi as

Qi =

[
4Dα(A + C(Li)) + hσ2Li

2hα(1 − 2Mβα)

] 1
2

. (10)

Plugging Qi into Equations (9) and (8), they had ki and λi, respectively. They compared
EAC(Qi, ki, Li, λi) for i = 0, 1, . . . , n, to locate the minimum value. Here, we wish to
point out that Ouyang and Chuang [8] did not explain why ki is nonnegative, when Qi is
plugged into Equation (9). In the next section, we will offer an alternative method to solve
the minimum problem and indicate that the solution procedure of Ouyang and Chuang [8]
contains debatable results.

4. Our Improvement

In the beginning, the domain for (Q, k, L) is Q > 0, k ≥ 0 and Ln ≤ L ≤ L0. However,
the cost for crashed lead time is defined for each interval L ∈ [Li, Li−1], i = 1, ..., n, respec-
tively. Hence, we need to consider EAC(Q, k, L) for L ∈ [Li, Li−1], i = 1, ..., n, respectively.
However, we will only consider L ∈ [L1, L0] for the time being. The generalization from
L ∈ [L1, L0] to L ∈ [Li, Li−1] is an easy task that will be discussed at the end of Section
4. We try to solve the minimum problem for stochastic inventory model with service level
constraint by the minimax distribution free procedure of Gallego and Moon [6]

Min EAC(Q, k, L) =
D[A + C(L)]

Q
+

hQ

2
+ hσ

√
L
[
k +

1 − Mβ

2
(
√

1 + k2 − k)
]

(11)

subject to σ
√

L(
√

1 + k2 − k) ≤ 2Qα, 0 < Q, 0 ≤ k and L1 ≤ L ≤ L0.
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Similar to Equation (6), we still have

∂2

∂L2
EAC(Q, k, L) =

−hσ

4
√

L3

[
k +

1 − β

2(
√

1 + k2 + k)

]
< 0. (12)

Our solution procedure is explained as follows. First, we will fix (Q, k) for the moment, and
find the possible domain of L such that the service level constraint σ

√
L(

√
1 + k2−k) ≤ 2Qα

is satisfied. Second, depending on partition on the domain of Q, we will reduce the domain
of k from 0 ≤ k < ∞ to a single point. Third, for a restricted domain, we will face the
problem in one variable of Q to prove that it is a convex function in Q. Fourth, we will check
the minimum solution in the third step whether or not it satisfies the restricted domain of
Q to find the minimum solution that satisfies the condition of the restricted sub-domain of
Q. Fifth, we will combine all local minimum solutions in each case to derive the minimum
solution for L ∈ [L1, L0]. We will generalize it to the general case for L ∈ [Li, Li−1]. Finally,
we will compare the minimum solution for L ∈ [Li, Li−1] with i = 1, 2, ..., n to find the
optimal solution.

We may rewrite the service level constraint as

σ
√

L ≤ 2Qα
(√

1 + k2 + k
)
. (14)

Motivated by Equation (14), we will partition {(Q, K) : 0 < Q, 0 ≤ k < ∞} into the fol-
lowing three regions:

(1) R1 is defined as
{
(Q, k) : 0 < Q, 0 ≤ k < ∞, 2Qα(k +

√
1 + k2) < σ

√
L1

}
.

(2) R2 is defined as
{
(Q, k) : 0 < Q, 0 ≤ k < ∞, σ

√
L1 ≤ 2Qα(k +

√
1 + k2) ≤ σ

√
L0

}
.

(3) R3 is defined as
{
(Q, k) : 0 < Q, 0 ≤ k < ∞, σ

√
L0 < 2Qα(k +

√
1 + k2)

}
.

For those points (Q, k) in R1, for any L with L1 ≤ L ≤ L0 we know that (Q, k, L) cannot
satisfy the service σ

√
L ≤ 2Qα(

√
1 + k2 + k) so there is no possible local minimum solution

in R1. On the other hand for those points (Q, k) in R3, for any L with L1 ≤ L ≤ L0 we
will show that (Q, k, L) always satisfies the service σ

√
L ≤ 2Qα(

√
1 + k2 + k), then from

the concave down property for EAC(Q, k, L) in variable L of Equation (12), we will obtain
that the minimum value will happen on the two boundary points at L = L1 or L = L0, so
we will derive the next lemma.

Lemma 1 Given a point in R3, such as (Qa, ka), the minimum value of {(Qa, Ka, L) : L1 ≤
L ≤ L0} is equal to the minimum value of {(Qa, Ka, L) : L = L1, or L = L0}.

Next, we consider a point, such as (Qb, kb) in R2. For those values of L with σ
√

L ≤
2Qbα(

√
1 + k2

b +kb), (Qb, kb, L) can be treated as a possible candidate for the local minimum

solution. For those values of L with σ
√

L > 2Qbα(
√

1 + k2
b + kb), (Qb, kb, L) cannot be

treated as a possible candidate for the local minimum solution. Hence by the concave down
property for EAC(Q, k, L) in variable L of Equation (12), we derived the second lemma.

Lemma 2 From (Qb, kb) in R2, the minimum value of {EAC(Qb, kb, L) : L1 ≤ L ≤ L0} is

equal to the minimum value of
{
EAC (Qb, kb, L) : L =

4Q2
b
α2

σ2

(
kb +

√
1 + k2

b

)2
, or L = L1

}
.

Based on Lemmas 1 and 2, we know that we can simplify the domain of lead time, L,
from an interval, [L1, L0] to reduce it to a single point. To be more specific, we indicated
the single point as L(Q, k). Hence, we will solve the minimum problem of

{EAC(Q, k, L(Q, k)) : 0 < Q, 0 ≤ k < ∞}
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for four different cases as follows.
Case (a): For (Q, k) in R2, with L(Q, k) = L1,

Case (b): For (Q, k) in R2, with L(Q, k) = 4α2

σ2 Q2
(√

1 + k2 + k
)2

,

Case (c): For (Q, k) in R3, with L(Q, k) = L1,
Case (d): For (Q, k) in R3, with L(Q, k) = L0.

4.1. For Case (a), (Q, k) in R2, with L(Q, k) = L1

To discuss Case (a), we will begin by pointing out that from (Q, k) in R2 the domain of Q

must be changed from 0 < Q into 0 < Q ≤ σ
√

L0

2α
.

Lemma 3 From (Q, k) in R2, the domain of Q becomes 0 < Q ≤ σ
√

L0

2α
.

Proof. Since
√

1 + k2 + k increases in k, if the value of Q is as big as σ
√

L0 < 2Qα,
then we have that 4α2

σ2 Q2(
√

1 + k2 + k)2 ≥ 4α2

σ2 Q2 > L0 which means (Q, k) in R3. This
contradicts the assumption of (Q, k) in R2. Hence, the domain of Q is reduced from 0 < Q

to 0 < Q ≤ σ
√

L0

2α
.

Based on Lemma 3, we rewrite Case (a) as the following problem: to find the minimum
for EAC(Q, k, L1) under the conditions

(Q, k) in R2, 0 < Q ≤ σ
√

L0

2α
, and 0 ≤ k < ∞. (15)

Here, we will begin our next simplification process to divide the domain of Q into two sub-
domains such that we can reduce the domain of k from an interval, 0 ≤ k < ∞, to a single
point.

We know that 0 ≤ Mβ ≤ 1, −1 ≤ k√
1+k2 − 1 < 0 and −1

2
≤ 1−Mβ

2

(
k√

1+k2 − 1
)

< 0, hence

∂

∂k
EAC(Q, k, L1) = hσ

√
L1

[
1 +

1

2
(1 − Mβ)

(
k√

1 + k2
− 1

)]
≥ hσ

√
L1

2
> 0. (16)

By Equation (16), when Q is fixed for the moment, the minimum will occur at the minimum
value of k that satisfies the conditions in Equation (15). Hence, we will further divide

Case (a) into two sub-cases to assume that Case (a1) σ
√

L1

2α
≤ Q ≤ σ

√
L0

2α
and Case (a2)

0 < Q < σ
√

L1

2α
.

Case (a1) yields that σ
√

L1 ≤ 2Qα ≤ σ
√

L0, so we imply that

4α2

σ2
Q2

(√
1 + k2 + k

)2 ≥ 4α2

σ2
Q2

(√
1 + 02 + 0

)2
=

4α2

σ2
Q2 ≥ L1. (17)

Equation (17) means that when Q is in Case (a1), then (Q, k = 0) is in Case (a1). Therefore,
to take the minimum value of k with k = 0. Here, we face the following minimum problem:

EAC(Q, 0, L1) =
a

Q
+ bQ + c, (19)

with a = D(A + C(L1)), b = h
2

and c = h
2
(1 − Mβ)σ

√
L1, for σ

√
L1

2α
≤ Q ≤ σ

√
L0

2α
.

We may rewrite Equation (19) as

EAC(Q, 0, L1) =

(√
a

Q
−
√

bQ

)2

+
√

2ab + c. (20)
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From Equation (20), we obtained that without considering the condition σ
√

L1 ≤ 2Qα ≤
σ
√

L0, the minimum solution is

Q =

√
a

b
=

√
2D(A + C(L1))

h
. (21)

However, we must consider the condition σ
√

L1 ≤ 2Qα ≤ σ
√

L0. To simplify the expression,
we defined a new operator, MID(x, y, z) such that MID(x, y, z) is the middle term in x, y
and z. For example, MID(2, 6, 5) = 5, MID(5, 8,∞) = 8 and MID(6, 2, 2) = 2. Since

EAC(Q, 0, L1) is a convex function in Q, we have three cases, namely, Case (a11)
√

a
b
≤ σ

√
L1

2α
,

Case (a12) σ
√

L1

2α
≤
√

a
b
≤ σ

√
L0

2α
, and Case (a13) σ

√
L0

2α
≤
√

a
b
.

For Case (a11), EAC(Q, 0, L1) increases on σ
√

L1

2α
≤ Q ≤ σ

√
L0

2α
so the minimum occurs

at σ
√

L1

2α
. For Case (a12), the minimum solution for the unrestricting problem still is the

minimum solution for the restricting problem. For Case (a13) EAC(Q, 0, L1) decreases on
σ
√

L1

2α
≤ Q ≤ σ

√
L0

2α
so the minimum occurs at σ

√
L0

2α
. If we observe these three cases (a11),

(a12) and (a13), then the minimum solution always occurs at MID
(

σ
√

L1

2α
, σ

√
L0

2α
,
√

a
b

)
. Hence,

we summarized the results in the next lemma.

Lemma 4 For Case (a1), the minimum solution for the order quantity is MID
(

σ
√

L1

2α
, σ

√
L0

2α
,√

a
b

)
with a = D(A +C(L1)) and b = h

2
, and the safety factor k = 0 for the expected annual

cost EAC(Q, 0, L1).

We considered Case (a2) for 0 < Q < σ
√

L1

2α
. By equation (16), we know that EAC(Q, k, L1)

is an increasing function of k so we will make k as small as possible while satisfying the
service level constraint. If we still take k = 0, then

4α2

σ2
Q2

(√
1 + k2 + k

)2
=

4α2

σ2
Q2

(√
1 + 02 + 0

)2
=

4α2

σ2
Q2 < L1.

This means the service level constraint is not satisfied, so k = 0 is not acceptable. We need
to find the least value of k such that 4α2

σ2 Q2(
√

1 + k2 + k)2 ≥ L1 which implies that if we

solve σ
√

L1 = 2Qα(
√

1 + k2 + k) for variable k then we will obtain the least value of k.

Since 1 = (
√

1 + k2 − k)(
√

1 + k2 + k) then σ
√

L1

2Qα
=

√
1 + k2 + k and 2Qα

σ
√

L1
=

√
1 + k2 − k,

so k = σ2L1−4Q2α2

4Qασ
√

L1
. To clearly indicate this relation, we assume a new expression, say k1(Q)

such that

k1(Q) =
σ2L1 − 4Q2α2

4Qασ
√

L1

. (22)

Here, for 0 < 2Qα < σ
√

L1, we face the following minimum problem

EAC(Q, k1(Q), L1) =
d

Q
+ eQ, (23)

with d = D[A + C(L1)] + h
4α

σ2L1 and e = 1
2
(1 − 2αMβ)h.

We may rewrite Equation (23) as

EAC(Q, k1(Q), L1) =

(√
d

Q
−
√

eQ

)2

+
√

2de. (24)
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From Equation (24), we obtain that without considering the condition 0 < 2Qα < σ
√

L1,
then the minimum solution is

Q =

√
d

e
=

√√√√4αD[A + C(L1)] + hσ2L1

2αh(1 − 2αMβ)
. (25)

However, we must consider the condition 0 < 2Qα < σ
√

L1. Since EAC(Q, k1(Q), L1)

is a convex function in Q, we have two cases, Case (a21) σ
√

L1

2α
≤
√

d
e
, and Case (a22)

0 <
√

d
e
≤ σ

√
L1

2α
.

For Case (a21), EAC(Q, k(Q), L1) decreases for 0 < Q < σ
√

L1

2α
so the minimum occurs

at σ
√

L1

2α
. For Case (a22), the minimum solution for the unrestricting problem still is the

minimum solution for the restricting problem. If we observe these two cases (a21), (a22),

then the minimum solution always occurs at MID
(
0, σ

√
L1

2α
,
√

d
e

)
. Hence, we summarize the

results in the next Lemma.

Lemma 5 For Case (a2), the minimum solution for the order quantity is Q = MID
(
0, σ

√
L1

2α
,√

d
e

)
with d = D[A + C(L1)] + h

4α
σ2L1, e = 1

2
(1 − 2αMβ)h and the safety factor is

k1(Q) = σ2L1−4Q2α2

4Qασ
√

L1
for the expected annual cost EAC(Q, k1(Q), L1).

4.2. For Case (b), (Q, k) in R2, with L(Q, k) = 4α2

σ2 Q2(
√

1 + k2 + k)2

From L(Q, k) = 4α2

σ2 Q2(
√

1 + k2 + k)2, we imply that (Q, k, L(Q, k)) satisfies the following

relation σ
√

L(Q, k) = 2Qα(
√

1 + k2 + k) such that the service level constraint is satisfied.

According to Lemma 3, we will solve the following problem to minimize EAC(Q, k, L(Q, k))
where (Q, k) in R2, 0 < 2Qα ≤ σ

√
L0, 0 ≤ k < ∞ and L(Q, k) = 4α2

σ2 Q2(
√

1 + k2 + k)2.
Here, we begin our next simplification process to divide the domain of Q into two sub-
domains such that we can reduce the domain of k from an interval, 0 ≤ k < ∞, to a single
point. We know that

EAC(Q, k, L(Q, k)) =
D[A + c1L0]

Q

+

[
h

2
+ 2hkα

(√
1 + k2 + k

)
+ hα(1 − Mβ) − 4c1

Dα2

σ2

(√
1 + k2 + k

)2
]
Q. (26)

We find that

∂

∂k
EAC(Q, k, L(Q, k)) =

2Qα
(√

1 + k2 + k
)2

√
1 + k2

[
h − 4c1Dα

σ2

]
. (27)

Based on Equation (27), we estimate the value of hσ2 − 4ciDα. From the practical point of
view, we will claim that h − 4ciDα

σ2 > 0 and h
2

+ hα(1 −Mβ) − 4ci
Dα2

σ2 > 0.

Observation 6 From the numerical example of Ouyang and Chuang [8], we may claim that
h − 4ciDα

σ2 > 0 and h
2

+ hα(1 − Mβ) − 4ci
Dα2

σ2 > 0.

Explanation for Observation 6. From Ouyang and Chuang [8]. We may give the values
for each parameter as follows: h = 20 c1 = 0.4 c2 = 1.2 c3 = 5 D = 600 α =
0.015 σ = 7 and Mβ = 0.5 such that we may claim that the Observation 6 holds.
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From our Observation 6, we may conclude that in Equation (27), ∂
∂k

EAC(Q, k, L(Q, k)) >
0 such that EAC(Q, k, L(Q, k)) is an increasing function of k so we will make k as small as

possible to find the minimum value. We will divide the domain of Q from 0 < Q ≤ σ
√

L0

2α

into two cases: Case (b1) σ
√

L1

2α
≤ Q ≤ σ

√
L0

2α
and Case (b2) 0 < Q < σ

√
L1

2α
.

For Case (b1), if we take k = 0, then L(Q, 0) = 4Q2α2

σ2 which is inside the interval [L1, L0]
so L(Q, 0) can be considered as a feasible solution for lead time and then we further simplify
the minimum problem to find the minimum for EAC(Q, 0, L(Q, 0)) under the condition

σ
√

L1

2α
≤ Q ≤ σ

√
L0

2α
. (28)

Here, we face the following minimum problem:

EAC

(
Q, k = 0, L =

4Q2α2

σ2

)
=

f

Q
+ gQ (29)

with f = D[A + c1L0] and g = h
2

+ hα(1 −Mβ)− 4c1
Dα2

σ2 . In Observation 6, we have g > 0.
If we compare Equations (19) and (29), work through the similar procedure as Equations
(20) and (21) and divide into three cases similar to Cases (a11), (a12) and (a13), then we
can derive the similar result as Lemma 4 in the following:

Lemma 7 For Case (b1), the minimum solution for the order quantity is MID
(

σ
√

L1

2α
, σ

√
L0

2α
,√

f
g

)
with f = D[A + c1L0] and g = h

2
+ hα(1 − Mβ) − 4c1

Dα2

σ2 , and the safety factor k = 0

for the expected annual cost EAC(Q, 0, L(Q, 0)).

Remark. If we compute L (Q, 0), then L (Q, 0) = MID
(
L1, L0,

4f2α2

g2σ2

)
such that the local

minimum solution for lead time sometimes will not equal to L1 or L0. This indicates that
in Ouyang and Chuang’s [8] claim, that the lead time must reduce to boundary points L1

or L0 is sometimes not true.

Next, for Case (b2), with 0 < Q < σ
√

L1

2α
, by Equation (27) and Observation (6), we

accepted that EAC(Q, k, L(Q, k)) is an increasing function of k so we will make k as small
as possible to find the minimum value. We cannot directly quote the results because the
discussion for Case (a2) in Equation (22) requires a new explanation to show why we will
take the least k in R2 that satisfies the service level constraint and then k = k1(Q) to imply
that

L(Q, k1(Q)) = L1. (30)

If we still take k = 0, then L(Q, 0) = 4α2Q2

σ2 < L1 such that L(Q, 0) is not in [L1, L0] so L(Q, 0)
cannot be accepted as a possible solution for lead time. Hence, for Case (b2), we cannot
take k = 0 and instead we will take the least k such that L(Q, k) = 4α2

σ2 Q2(
√

1 + k2 + k)2

in [L1, L0]. This yields that L(Q, k) = 4α2

σ2 Q2(
√

1 + k2 + k)2 = L1. The discussion before
Equation (22) implies k = k1(Q) and Equation (30). Hence, we face the following minimum
problem:

EAC(Q, k1(Q), L1) =
d

Q
+ eQ, (31)

where d = 4αD[A+C(L1)]+hσ2L1

4α
and e = h

2
(1 − 2αMβ) under the condition

0 < Q <
σ
√

L1

2α
. (32)
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Hence, comparing Equations (23) and (32) and following the same calculation as Lemma 5,
we find the next Lemma.

Lemma 8 For Case (b2), the minimum solution for the order quantity is Q = MID
(
0, σ

√
L1

2α
,√

d
e

)
with d = D[A + C(L1)] + h1

4α
σ2L1, e = 1

2
(1 − 2αMβ)h and the safety factor is

k1(Q) = σ2L1−4Q2α2

4Qασ
√

L1
for the expected annual cost EAC(Q, k1(Q), L1).

4.3. For Case (c), (Q, k) in R3, with L(Q, k) = L1

From (Q, k) in R3, we know that in the beginning the possible range for Q is (0,∞) and

consequently divide the domain of Q into the following two cases: (c1) σ
√

L1

2α
≤ Q < ∞ and

(c2) 0 < Q < σ
√

L1

2α
.

For Case (c1), by the method similar to Case (a1), we derive the next lemma.

Lemma 9 For Case (c1), the minimum solution for the order quantity is MID
(
∞, σ

√
L1

2α
,√

a
b

)
with a = D[A + C(L1)] and b = h

2
, for the expected annual cost EAC(Q, 0, L1).

Next, for Case (c2), we directly quote Lemma 5 to imply the next results.

Lemma 10 For Case (c2), the minimum solution for the order quantity is Q = MID
(
0, σ

√
L1

2α
,√

d
e

)
with d = D[A + C(L1)] + hσ2L1

4α
, e = 1

2
(1 − 2αMβ)h and the safety factor is k1(Q) =

σ2L1−4Q2α2

4Qασ
√

L1
for the expected annual cost EAC(Q, k1(Q), L1).

4.4. 4.4 Case (d), (Q, k) in R3, with L(Q, k) = L0

We divided the domain of Q into the following two cases: (d1) σ
√

L0

2α
≤ Q < ∞ and (d2)

0 < Q < σ
√

L0

2α
. For Case (d1), we know the next Lemma.

Lemma 11 For Case (d1), the minimum solution for the order quantity is MID
(
∞, σ

√
L0

2α
,√

m
b

)
with m = D[A + C(L0)] and b = h

2
, for the expected annual cost EAC(Q, 0, L0).

Next, for Case (d2), by a small modification of Equation (16) to change L1 to L0 we
still have that EAC(Q, k, L0) increases in k. Moreover, we will make a small modification
of Equation (22) so we assume a new notation, say k0(Q), such that

k0(Q) =
σ2L0 − 4Q2α2

4Qασ
√

L0

, (33)

for 0 < Q < σ
√

L0

2α
, and further simplify the minimum problem to find the minimum for

EAC(Q, k0(Q), L0) under the condition for 0 < Q < σ
√

L0

2α
. Similarly to Case (a2), we derive

the next Lemma.

Lemma 12 For Case (d2), the minimum solution for the order quantity is MID
(
0, σ

√
L0

2α
,
√

r
e

)
with r = D[A + C(L0)] +

hσ2

4α
L0, e = h

2
(1− 2αMβ) and the safety factor k0(Q) = σ2L0−4Q2α2

4Qασ
√

L0

for the expected annual cost EAC(Q, k0(Q), L0).

For easy comparison among different cases, we combined our previous results in the following
table 1, with the same expression, except for simplifying the space, then we further assume

that S1 = σ
√

L1

2α
, S0 = σ

√
L0

2α
, U =

√
a
b
, V =

√
d
e
, W =

√
f
g
, X =

√
m
b

and Y =
√

r
e
.
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Table 1: The minimums for different cases when L is restricted with L1 ≤ L ≤ L0.

Case a
(a1) S1 ≤ Q ≤ S0

(a11) U ≤ S1 S1

Min = MID(S1, S0, U)(a12) S1 ≤ U ≤ S0 U
(a13 ) S0 ≤ U S0

(a2 ) 0 < Q < S1
(a21) S ≤ V S1 Min = MID(0, S1, V )
(a22) 0 < V ≤ S0 V

Case b
(b1) S1 ≤ Q ≤ S0

(b11) W ≤ S1 S1

Min = MID(S1, S0, W )(b12) S1 ≤ W ≤ S0 W
(b13) S0 ≤ W S0

(b2) 0 < Q < S1
(b21) S1 ≤ V S1 Min = MID(0, S1, V )
(b22) V ≤ S1 V

Case c
(c1) S1 ≤ Q ≤ ∞ (c11) U ≤ S1 S1 Min = MID(∞, S1, U)

(c12) S1 ≤ U U

(c2) 0 < Q < S1
(c21) V ≤ S1 V

Min = MID(0, S1, V )
(c22) S ≤ V S1

Case d
(d1) S0 ≤ Q < ∞ (d11) X ≤ S0 S0 Min = MID(∞, S0, X)

(d12) S0 ≤ X X

(d2) 0 < Q < S0
(d21) Y ≤ S0 Y

Min = MID(0, S0, Y )
(d22) S0 ≤ Y S0

Now, we combined the previous results for L ∈ [L1, L0] since Lemmas 5, 8 and 10
imply the same result, there are six local minimum solutions for the minimum problem. We
compared the values for these six values to determine the minimum solution for L ∈ [L1, L0].

Here, we discussed how to generalize the results for the interval L ∈ [L1, L0] to the general
case L ∈ [Li, Li−1]. We change L1 to Li, L0 to Li−1, c1 to ci, and k1(Q) for 0 < 2Qα < σ

√
L1

to ki(Q) for 0 < 2Qα < σ
√

Li. Moreover, we modified c1L0 to ciLi−1 +
i−1∑
j=1

cj(bj − aj). All

the previous results can be derived under the new expression.

After we found the minimum solution for L ∈ [Li, Li−1] with i = 1, 2, ..., n, we compared
these local minimum solutions to find the optimal solution.

5. Numerical Example

To illustrate our improvement, we considered the same numerical example as Ouyang and
Chuang [8] with the following data: D = 600 units/years, A = $200 per order, h = $20
/unit/year, μ = 11 units/week, σ = 7 units/week, the service level 1 − α = 0.985, i.e., the
proportion of demand that are not met from stock is at most α = 0.015. The lead time has
three components with c1 = $0.4 /day, a1 = 6 days, b1 = 20 days, c2 = $1.2 /day, a2 = 6
days, b2 = 20 days, c3 = $5.0 /day, a3 = 9 days, b31 = 16 days, the backorder rate β during
the stockout period has a uniform distribution, i.e., the probability density function of β is
g(β) = 1 for 0 ≤ β ≤ 1 and g(β) = 0, otherwise. Hence, the mean of β is Mβ = 0.5.

We computed the local minimum value from Lemmas 4, 5, 7, 9, 11 and 12 and list them
in the following Table 2. We derived that the minimum value occurs at Q∗ = 111.068,
k∗ = 0 and L∗ = L1 = 6 with EAC(Q∗, k∗.L∗) = 2307.08.

Ouyang and Chuang [8] found that Q∗ = 142, k∗ = 1.49 and L∗ = L2 = 4 with
EAC(Q∗, k∗.L∗) = 2798.23. We may say that by our improved method we save $691.15
which means a 29.96% saving.
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Table 2: Local minimum value for each case

L ∈ [L1, L0] L ∈ [L2, L1] L ∈ [L3, L2]
Lemma 4 6017.04 5022.61 4484.21
Lemma 5 2953.03 2798.51 2831.17
Lemma 7 6017.04 5022.61 4484.21
Lemma 9 2307.08 6018.95 5058.23
Lemma 11 2422.19 2396.06 5022.61
Lemma 12 3142.65 2953.23 2798.51

6. Conclusion

In the above discussions we pointed out the questionable results in the paper of Ouyang and
Chuang [8] such that the minimum may not occur at the boundary points. We offered the
corrected algorithm to find the optimal solution. Our refined algorithms are easy to use and
mathematically sound and provide the optimal replenishment solution for decision makers.
From the numerical example, we achieved an excellent saving of 30%.
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