Journal of the Operations Research
Society of Japan
2006, Vol. 49, No. 1, 66-82

EXPLANATORY RULE EXTRACTION BASED ON THE TRAINED
NEURAL NETWORK AND THE GENETIC PROGRAMMING

Jianjun Lu Shozo Tokinaga Yoshikazu Ikeda
Kyushu University Kyushu University Shinshu University

(Received January 17, 2005; Revised August 15, 2005)

Abstract This paper deals with the use of neural network rule extraction techniques based on the Ge-
netic Programming (GP) to build intelligent and explanatory evaluation systems. Recent development in
algorithms that extract rules from trained neural networks enable us to generate classification rules in spite
of their intrinsically black-box nature. However, in the original decompositional method looking at the
internal structure of the networks, the comprehensive methods combining the output to the inputs using
parameters are complicated. Then, in our paper, we utilized the GP to automatize the rule extraction pro-
cess in the trained neural networks where the statements changed into a binary classification. Even though
the production (classification) rule generation based on the GP alone are applicable straightforward to the
underlying problems for decision making, but in the original GP method production rules include many
statements described by arithmetic expressions as well as basic logical expressions, and it makes the rule
generation process very complicated. Therefore, we utilize the neural network and binary classification to
obtain simple and relevant classification rules in real applications by avoiding straightforward applications
of the GP procedure to the arithmetic expressions. At first, the pruning process of weight among neurons
is applied to obtain simple but substantial binary expressions which are used as statements is classification
rules. Then, the GP is applied to generate ultimate rules. As applications, we generate rules to predic-
tion of bankruptcy and creditworthiness for binary classifications, and the apply the method to multi-level
classification of corporate bonds (rating) by using the financial indicators.

Keywords: Algorithm, rule extraction, neural networks, genetic programming, predic-
tion of bankruptcy, bond rating

1. Introduction

Numerous methods have been proposed in the literature to develop decision making and
decision tables models. These models include traditional statistical methods such as multi-
variate discriminant function, logistic regression and even neural network techniques [5][21].
There are also methods categorized to classification tree such as the entropy-based decision
tree and statistical procedure to generate linguistic if-then rules (inductive learning) [3].

However, most of these studies focus primarily on developing classification models with
high perspective accuracy without any attention to explaining how the classifications are
being made [3]. The explanation rather than classification accuracy plays a pivotal role in
many fields such as financial applications where the evaluator may be required to give a
justification for a certain credit application that is approved or rejected.

This paper deals with the use of neural network rule extraction techniques based on the
Genetic Programming (GP) to build intelligent and explanatory evaluation systems [1][13]
[20]. Though neural networks have their universal approximation property that seems to be
attractive at first sight, their intrinsically black-box nature prevent them being successfully
applied in various field. Fortunately, recent development in algorithms that extract rules

66

Rule Extraction by Neural Network and GP 67

from trained neural networks enable us to generate classification rules [4][8][19]. However,
the comprehensive mathematical method which relate the output to the inputs using the
set of weight, bias and nonlinear activation functions are hard for human to trace. Then,
in our paper, we utilized the GP to automatize the rule extraction process in the trained
neural networks where the decision basically boils down to a binary classification problems.

In previous papers, we have successfully applied the GP to approximate the chaotic
dynamics, where the approximated expression of dynamics is also utilized to control chaotic
behavior [9]-[11][24]. We have also applied the GP to emulate the agents’ behavior in
artificial markets where agents use learning based on the production rules generated by the
GP [6][7][12].

Among recent developments in algorithms that extract rules from trained neural net-
works, popular techniques such as Neurorule, Trepan and Nefclass are known [4][8][19]. Even
though Neurorule is looking at the internal structure of networks, the process for extracting
the rules is complicated. Techniques using fuzzy inference and fuzzy sets prevent us to rep-
resent rules in ordinary usable forms like decision tables. Then, we focus on the capability
of trained neural networks for the discretization and decomposition of input variables to re-
duce simplified rules. The processes to combine the input and output units are carried out
by using the GP. After training neural networks using the discretized input variables, the
pruning process of weight among neurons is applied to obtain simple but substantial binary
expressions which are used as statements is classification rules. Then, the GP is applied to
generate ultimate rules. As applications, we generate rules to predict bankruptcy, to as-
sess personal loans, and classify corporate bonds (rating) by using the financial indicators.
The result shows that the rule generation proposed in the paper provide us a comparable
performance for the decision making as the conventional results, and presents linguistically
understandable expressions for human experts.

In the followings, in Section 2, we describe the relation between the production rule and
the GP. Section 3 shows the algorithm for applying the GP to rule generations. In Section
4, we show the application of the method of the paper to the rule induction for bankruptcy
prediction, personal loans, and bond rating.

2. Neural Networks and Rule Extraction
2.1. Rule extraction methods based on neural networks

Among recent developments in algorithms that extract rules from trained neural networks,
three popular techniques are contrasted, namely, Neurorule, Trepan and Nefclass [4][8][19].

Nefclass has the architecture of a three-layered fuzzy perecptron, whereby the weights
now represent fuzzy sets and the activation functions are now fuzzy set operators, different
from classical multilayer perceptron [19]. The technique is often referred to as neurofuzzy
systems [23]. Obviously, the above procedure will result in a large number of hidden neurons
and fuzzy rules. Then, we need to specify maximum number of hidden neurons and best
k rules before tuning neural networks to improve the classification accuracy. Even though
Nefclass enforces all connections in representing the same linguistic label associated with
the fuzzy sets, but it is hard to represents rules in ordinary usable forms like decision tables.

Trepan uses a pedagogical algorithm to extract decision trees from trained neural net-
works based on conventional symbolic learning [8]. At each step, a queue of leaves is further
expanded into subtrees until stopping criterion is met. Different form conventional deci-
sion tree reduction algorithms where the number of available training observation becomes
fewer and fewer along the split of tree, relabelled trained dataset is used to initiate the tree-

(© Operations Research Society of Japan JORSJ (2006) 49-1

68 J. Lu, S Tokinaga & Y. Ikeda

growing process. Furthermore, Trepan also enrich the training data with additional training
instances relabelled by the neural networks. Then, Trepan allows splits with at least M-of
N type of tests to generating (Cy and Cy) or (C} and C3) type rules. However, these M-of-N
splits are constructed by using the heuristic search procedure. In the search procedure, we
look at appropriate addition of new conditions and new threshold for variables.Evenmore,
Trepan tries to simplify the rules by investigating whether M can be reduced without sig-
nificantly degrading the information gain. These heuristic and twofold approach lead us to
complicated algorithm.

Neurorule utilizes the decomposition approach by extracting rules at the level of the
individual hidden and output units by analyzing the activation values, weight and biases
[4]. At first, the input data represented in continuous numerical data and nominal data are
discretized by adjusting threshold values for discretization. Then neural networks are trained
to improve the classification accuracy by using the discretized input. Since the number of
connections among neurons are large, redundant connections are removed while maintaining
the accuracy of the networks. After pruning the redundant connections among units, the
level of hidden layers is also discretized. Then, the relation between the input variables which
are already discretized and the activation levels in hidden layers are formalized as rules. In
a similar manner, the relation between the activation levels and the output variables are
written as rules. Finally, these two sets of rules are summarized as a comprehensive set
of rules. Indeed, Neurorule is looking at the internal structure of networks, the process
for extracting the rules is complicated, and indirect with respect to the discretizartion and
logical propositions. Even more, the obtainable rules are restricted to forms combined with
logical operators “AND”, and no extension for more general cases is expected.

2.2. Algorithm of neural networks

Neural networks are mathematical representations inspired by the functioning of the human
brain [5][21]. Especially, the multilayer neural network is typically composed of an input
layer, one or more hidden layers, and an output layer, each consisting of several neurons.
Each neuron processes its input and generates one output value which is transmitted to
the neurons in the subsequent layer. All neurons and layers are arranged in a feedforward
manner, and no feedback connections are allowed. The output of the neuron ¢ is computed
by processing the weighted inputs and its bias term as follows.

In the formula, the w;’ 3"71 denotes the weight connecting the j th unit in layer n with
the ¢ th unit in layer n — 1. The value z}“l is the output of jth unit in layer n — 1. Then,
the input to ¢ th neuron in layer n is obtained by

W =Sl)

The output of neurons is calculated by using the transfer function emulating threshold logic
which is called sigmoid function.

4 = fuf = hy) (2)
where A is the threshold value for the neuron. Usually, we use the sigmoid function for the
function f(.).

fly) = 1/(1 + exp(a — y)) (3)
The weight w;’ ;n_l and bias A} are the critical parameters of a neural networks and need to

be estimated during a training process which is usually based on gradient descent learning
to minimize some kind of error function over a set of training observations.

(© Operations Research Society of Japan JORSJ (2006) 49-1

Rule Extraction by Neural Network and GP 69

The signal which is backpropagated from ¢ th neuron in output layer N is obtained by
using the difference between the output of output layer N and the prescribed observation
dY as follows.

6 = (dY =z)g(ul), 9(y) = W)L — f(y)) (4)

Similarly, the signal backpropagated from the ¢ th neuron in layer n to neurons in layer
n — 1 is given as

57 = df (ul) /duy_ op " (5)
k

In summary, the update for the weight and the threshold value is given as follows where
t,t 4+ 1 are the time step in the update.

Awi N (t) = nopay eAw T (E - 1) (6)
wi N+ 1) = Wl) + Awf ())
ARt) = no) + aAhMt — 1) 8)

Rt + 1) = hM(t) + AR (t) 9)

where 7, @ are constants to confirm the convergence.
2.3. Neural network rule extraction

As universal approximators, neural networks can achieve significantly better predictive ac-
curacy compared to models that are linear in the input variables. However, their complex
mathematical internal workings prevent them from being used as effective management tools
in real-life situations where besides having accurate models, explanation of the predictions
being made is essential.

In the literature, the problem of explaining the neural network predictions has been
tackled by techniques that extract symbolic rules from the trained networks. These neu-
ral network rule extraction techniques attempt to open the neural network black box and
generate symbolic rules ith the same predictive power as the neural network itself.

In the decomposition algorithm such as the Neurorule, we start to extract rules at the
level of the individual hidden and output units by analyzing the activation values, weights,
and biases. Decompositional approaches then typically treat the hidden units as threshold
units.

For example, the algorithm of the Neurorule is summarized as follows [4].

Step 1. Train a neural network to meet the prespecified accuracy requirement.

step 2. Remove the redundant connections in the network by pruning while maintaining its
accuracy.

Step 3. Discretize the hidden unit activation values of the pruned network by clustering.
Step 4. Extract rules that describe the discretized hidden unit activation values in terms of
the networks inputs.

Step 5. Generate rules describe the discretized hidden unit activation values in terms of the
network inputs.

Step 6. Merge the two sets of rules generated in Step4 and 5 to obtain a set of rules that
relates the inputs and outputs of the network.

Neurorule assumes the data are discretized and represented as binary inputs using the
thermometer encoding for ordinary variables and dummy encoding for nominal variables.

(© Operations Research Society of Japan JORSJ (2006) 49-1

70 J. Lu, S Tokinaga & Y. Ikeda

2.4. Neural network rule extraction based on the GP

Even though the decompositional approachs such as Neurorule play a role to assess the
relevant rules using the hidden layer on the basis of activation values, the procedure included
in Step 5 through 6 is not straight forward.

In Neurorule, we must at first discretize the level of signal in hidden layers, and then
also examine the relation between the input signal and discretized level in hidden layers.
Even more, in the extraction process of rules in Trepan, we must employ the conventional
method presented by Quinlann in a multiplicative way. The overall algorithm become to be
complicated to obtain the expression for rules.

If the rule extraction after discretizing the signal is automatized, then it is expected that
we can easily obtain relevant rules on the basis of routine works.

Therefore, we introduce the GP procedure in place of Step 4 through Step 6 in Neurorule
algorithm.

In the following, we use the GP procedure to rule extraction in the Neurorule algo-
rithm. We follow the basic procedure of Neurorule to discretize the input signal into binary
representation, but we replace complicated steps to reduce the rules in Neurorule by the
GP. Then, we need no steps for examining the relation between the input signal and the
activation values in the hidden layers.

The overview of the GP procedure for generating rules is summarized as follows. Fig.1
shows the overview of the system.
Step 1. Discretize input variables
Similar to Neurorule, the input variables are descretized by using threshold variables and
are represented in binary forms (inputs).
Step 2. Train a neural network using the discretized input variables to meet the prespecified
accuracy requirement.
step 3. Remove the redundant connections in the network by pruning while maintaining its
accuracy. Then, we obtain substantially important statements represented in binary forms.
Step 4. Generate rules based on the GP using the binary representation as the terminal
variables (statements) in the logical expression.

Discretized Pruned

Inputs Weights

Category

Category

Figure 1: Overview of systems

(© Operations Research Society of Japan JORSJ (2006) 49-1

Rule Extraction by Neural Network and GP 71

2.5. Comparison of computational complexity

Even though we use the same discretization process for input variables as Neurorule, we find
several advantages in the rule generation algorithm based on the GP used in the paper. Most
of the computation time for rule generation is used for finding the discretized input variables,
however, the time necessary for successive procedure Neurorule to estimate production rules
is also not negligible form the aspect of computational complexity in the generation of
tentative rules and combining these rules.

In the design of multi-layer neural networks, we start from an oversized networks, and
then gradually remove the irrelevant connections. When all connections to a hidden neuron
have been pruned, this neuron can be removed from the network. The selection of for pruning
is achieved by inspecting the magnitude of their weights. A connection with sufficiently
small weigh can be pruned from the network without affecting the network’s classification
accuracy. It is known that the optimization of parameters such as weights and threshold
values in neural network by using the BP is very time consuming.

In Neurorule, once a trained and pruned network has been obtained, the activation
values of all hidden neurons are clustered to simplify the rule extraction process. In the case
of hyperbolic tangent hidden neurons, the activation values lie in interval [-1,1]. A greedy
clustering algorithm then starts by sorting all these hidden activation values in increasing
order. Adjacent values are then merged into a unique discretized value as long as the
class labels of corresponding observations do not conflict. The merging process hereby first
considers the pair of hidden activation values with the shortest distance in between. An
equivalent process using the y-square test statistics to merge the hidden activation values.

In Neurorule, the rule extraction process is three-hold, and is very complicated. At first,
we obtain activation values of hidden unit by clustering (Step 3), and then describe tentative
rules by using the activation values and outputs (Step 4). Even more, we must also generate
tentative rules to describe the relation between activation values and inputs (Step 5). Then,
finally we merge two corresponding rules obtained in Step 4 and 5 to generate the relations
between inputs and outputs to get ultimate production rules.

We find two important drawbacks in the algorithm of Neurorules compared with the
method proposed in the paper. Firstly, in the process for generating tentative rules instep
4 and 5, we can use conventional method to reduce induction rules based on the entropy.
However, it is pointed out that conventional decision tree induction algorithms typically
suffer from having fewer and fewer training observations available at lower levels of the tree.
Neurorule utilizes similar tree induction algorithm to generate tentative rules in Step 4 and
5.

Secondly, the reduction process is mainly based on finding the relations between activa-
tion values and inputs as well as outputs. After clustering (merging) the values of hidden
layer units, we must combine the inputs and outputs by considering the tentative rules which
are only discriminated by the activation levels. Then, we can have no statistical measure
to assess the relevancy of combinations. In contrast to these drawbacks, the GP procedure
provides us a simple and comprehensive algorithm for generating rules. Once we obtain
discretized inputs, we can generate production rules in a simple way using the GP which
improves the fitness of rules based on the genetic operations. Even more, the relevancy
of generated rules is directly obtained by observing the maximum fitness of individuals.
Comparing the time necessary to optimize these parameters in neural networks, the time to
execute GP procedure is very small.

Table 1 shows an example of computational complexity of Neurorule and GP method

(© Operations Research Society of Japan JORSJ (2006) 49-1

72 J. Lu, S Tokinaga & Y. Ikeda

proposed in the paper in the execution time and steps of programs. The compilation and
execution of programs are done on FUJITSU VPP5000/64 UXP/V (System V) system. We
also show the computational complexity of Trepan system which is worse than Neurorule,
and only the performance is listed in Table 1 without explaining the details of algorithm.
Then, we can compare the. capability of three systems. In the example, we assume that
rules combining one logical output having six different values is approximated by using input
variables which are already discretized (eight variables), and activation values (ten units in
the hidden layer) are already given. We also assume that the initial population of 1000
individuals in the GP procedure is given. The program for Neurole includes the method for
finding relevant clustering and combining tentative rules without human interactions, The
program of the GP procedure includes initialization phase.

As is seen from Table 1. the GP method of the paper is better than Neurorule both in
the complexity and computation time to obtain production rules.

Table 1: Comparison of computational complexity
Neurorule Trepan ~ GP method
Program size 1865 steps 3270 steps 385 steps
Execution Time 300 780 90

3. Production Rules and the GP
3.1. Tree representation of production rules

For simplicity, we start with the GP operations on the arithmetic expressions. The GP
is an extension of the conventional GA (Genetic Algorithm) in which each individual in
the population (pool of individuals) is a computer program composed of the arithmetic
operations, standard mathematical expressions and variables [6][7]][9]-[12][15]-[17][24].

There are several way to represent the mathematical expressions in the GP, and among
them the prefix representation is approved due to the simplicity for GP operations.

The prefix representation is equivalent to the tree representation where the external
points(leaves) of the tree is labeled with terminals (i.e., constants and variables), and the
root of the tree is labeled with the primitive function such as binomial operation +, —, X, /,
and the operation taking the square root of variable. For example, we have the next prefix
representation.

The prefix representation is also called as “polish notation” which is familimar to us in
the design of compilers for processing programming languages. The prefix representations
used in the GP procedur are called as individuals.

The equation represented by using the prefix are interpreted based upon the stack op-
eration.

We must ensure that after initialization, crossover operation and mutation, we have
a valid representation of a tree. For this purpose, the so-called stack count (denoted as
SteckCount is useful [24]. The StackCount is the number of arguments it places on minus
the number of arguments it takes off the stack. The cumulative StackCount never becomes
positive until we reach the end at which point the overall sum still needs to be 1.

In the initialization phase, we generate pool of individuals used for GP operations by
using the random numbers from which we define the terminal symbols and operators in

(© Operations Research Society of Japan JORSJ (2006) 49-1

Rule Extraction by Neural Network and GP 73

the prefix representations. Then, we can examine the syntactical validity of each individual
by checking the StackCount. If the overall sum of the StackCount of generated prefix
representation is not one, then the individual is not included in the pool of individuals. Even
though we use such kind of cut and try method for initialization phase, the computation
time for the generation of individuals is small enough.

By using the stackCount already mentioned, we can know the terminal of the subtree
which is the candidate for the crossover operation. The basic rule is that any two loci on
the two parents genomes can serve as crossover points as long as the ongoing StackCount
just before those points is the same. The crossover operation creates new offsprings by
exchanging sub-trees between two parents.

Before applying the genetic operation, we must evaluate the ability of each individual
(tree structure). The ability is called as the fitness, and is calculated based upon the
comparison between the predicted value by the individual and the observed value. We
assume that we have a set of input variables x1, s, ..., x, and output value y for multiple
observations, say 100 observations. Then, we approximate the function F'(zq,zs,...,x,) SO
that the value of function F'(.) becomes close to y for each observation. In the GP method,
the approximation of function is represented in prefix representation corresponding to an
individual. Then, we have the root mean square error (rmse) between F'(xq,x, ..., z,) and
y for each individual. If the rmse obtained by a individual is small, then the ability of the
individual to approximate the input-output pair is seemed to be high. Therefore, we define
the ability (called as fitness) of each individual as the inverse of rmse. In the GP procedure,
the individual having higher fitness can get higher probability used for generating offsprings
(children) , and can survive keeping the effect longer in the pool of individuals.

We iteratively perform the following steps until the termination criterion has been sat-
isfied.

(Step 1)

Generate an initial population of random composition of the functions and the terminals
of the problem (constants and variables).
(Step 2)

Execute each program (evaluation of system equation) in the population and assign it a
fitness value using the fitness measure. Then, sort the individuals according to the fitness
S;.

(Step 3)

Create a new population of computer programs by applying the following two primary
operations. The operations are applied to the individuals chosen with a probability p;based
on the fitness. The probability p; is defined for ith individual as follows.

N
pi= (S — Smin)/Z(Si — Shmin) (11)
i=1
where S, is the minimum value of S;, and N is the population size.

Create new individuals (offsprings) from two existing ones by genetically recombining
randomly chosen parts of two existing individuals using the crossover operation applied at
a randomly chosen crossover point.

(Step 5)

If the result designation is obtained by the GP (the maximum value of the fitness become
larger than the prescribed value), then terminate the algorithm, otherwise go to Step 2.

We apply the mutation operations defined as follows at a probability py;. Even though
the crossover operation can generate various kinds of offsprings, but sometime we find cases

(© Operations Research Society of Japan JORSJ (2006) 49-1

74 J. Lu, S Tokinaga & Y. Ikeda

where very similar individuals occupy the whole members of the pool. Then, the crossover
operation is not usable any more to generate different kinds of individuals. Then, we apply
the mutation operations in the GP procedure.

The goal of the mutation operation is the reintroduction of some diversity in an popula-
tion of individuals. Two types of mutation operation in GP is utilized to replace a part of
the tree by another element. We select a individual I, at random from the pool. In the first
type of mutation (called global mutation), we apply the crossover operation to I for which
we use dummy individual as the pair of crossover operation. Then, the overall structure of
I, is changed. In the second type of mutation (called as local mutation), we replace only
a part of I, at random, then the individual I, is slightly changed. The overview of these
mutation operations are also shown in Figure 2.

(Global mutation)

Generate a individual [, and select a subtree which satisfies the consistency of prefix
representation. Then, select at random a leaf in the individual to which the mutation is
applied, and replace the leaf by the subtree of the individual I.

(Local mutation)

Select at random a leaf in the individual to which the mutation is applied, namely, we

replace the parameter in the leaf by another value (a primitive function or a variable).

crosspoint

|+>K+){1){2>K){3){4+){5){6|

|+ Hoom KT KB KB |4+ K X100 XK1 oK }(13){14|

l generating offsprings

|+ Koo+ X1 X2 Ok K3 X4 o+ K X100 X11 X }(13){14|

|+>K>K){?){8){9+){5){6|

(a) crossover operater

|+>K+){1){2>K){3){4+){5}(6|

|+ oK X7 KB KB |+ Kk OXKI0 K1 K }(13){14|

l generating offsprings

|+ ®oo+ X1 XZ K K3 X4 4+ K X101 X }(13){14|

(b) Global Mutation for primitive function

|+>K+){1){2>K){3){4+){5){6|

|

|+>K+){1){2+){3){4+){5){6|

|+>K+){1){2>K){3){4+){5){6|

|

|+>K+){1){?>K){3){4+){5){6|

(¢) Local Mutation for certain variable

Figure 2: Overview of GP operations

(© Operations Research Society of Japan JORSJ (2006) 49-1

Rule Extraction by Neural Network and GP 75

3.2. Applying the GP to rule generation

We can define the condition part of a rule as a logical expression (formula) which is rep-
resented as a connection of propositions with logical operators including AND, OR for
example we have

if vl > (0.2 *xv2+2.0 *v3) AND (v4 <0.4) then class=A (12)

where vy, v9, ... are input variables for the systems. A proposition can be defined as a
connection of two arithmetic expressions (equations) with operators, including >, >, <, <
, =, #. Originally, the arithmetic expressions in propositions should be generated by the GP
procedure used for the arithmetic expressions. However, the straightforward application of
GP to the generation of proposition is very complicated. Then, the rule extraction using
the neural networks helps us to avoid the proposition generation.

As previously described, in our system based on the neural networks, the input variables
are discretized by using threshold values. Even more, by pruning the connections (weights)
in neural networks, we have finally several binary expressions used for the input to the
simplified neural networks. Then, these binary expressions are used as the propositions
included in the logical expressions in the GP. For example, we define new logical variables
x; represented by input variable v; such as

Y, — {True, if v; = 7;
¥i 7\ False, otherwise

where a; is a constant reduced from selecting of threshold values.

Then, we find that the logical expressions included in the production rules are the same
as the arithmetic expression using prefix representation by replacing the operands by the
propositions, and the arithmetic operators by the logical operators. For example,
numerical variables z; — logical variables x;
arithmetic operators +, x — OR, AND

We also define the fitness of individuals as the accuracy of rule generated by the rule
corresponds to the underlying individual. To improve the fitness of individuals, we apply
the GP operations to the logical expressions.

The fitness of individuals is evaluated as follows.

(1)calculation of arithmetic expressions.

By substituting the value of input variables v;, we can evaluate the binary arithmetic
expressions included in propositions such as equation (10). For example, a set of specific
values for vy, v, ..., v, are used to obtain numerical values.

(2)interpretation of propositions.

Since we know the values of arithmetic expressions, the logical value of logical variables
x; are obtained by combining the propositions and comparative operators such as equation
(13).

(3)interpretation of logical formula.

Finally, we can know the logical value of the whole logical formula (individual) by apply-
ing the logical operations among propositions. As already mentioned, the value is compared
with the prescribed observation r to calculate the fitness.

(13)

4. Applications
4.1. Prediction of bankruptcy

There have been a fair number of previous studies for predicting corporate failure (bankruptcy)
using probabilistic estimate such as logit model, multi-variate discriminant analysis (MDA),

(© Operations Research Society of Japan JORSJ (2006) 49-1

76 J. Lu, S Tokinaga & Y. Ikeda

and neural networks. Among them, the MDA and similar approaches have been the most
popular for bankruptcy studies based on the vector of financial ratios reflecting financial
status of firms [10][11].

In this section, we apply the neural network rule extraction based on the GP method
proposed in the paper to derive the linguistic rules to predict the bankruptcy.

The collection of data for bankruptcy firms requires a definition of failure and specifi-
cation of firms. The definition of bankruptcy in this section is defined as the occurrence
of defaults. The population are restricted by (i) the period from 1970 to 1986 in Japanese
industries, (ii)the equity of the company had to have been traded on some stock market to
exclude small firms, (iii) the company must be classified as an industrial firm.

These procedure are used to generate a list of failed firms satisfying the inclusion criteria.

At the next step, we must also gather the data for non-bankruptcy (sound) firms to
specify the binary sample space as well as in ordinary MDA. Our two samples of firms
consist of 26 bankrupt firms and matched samples of 26 non-bankruptcy entities. The latter
are matched to the failed group by industry and year of the data. The selection of non-
bankruptcy firm must reflect the binary feature, then we select a pair of failed and sound
firm in the same industry and are resemble in size of firms. The pair of firms should exist
in the fiscal year just before the bankruptcy. Among 29 firms, 19 firms in each group are
selected as learning samples, and the rest firms are used for testing.

The next phase is one of actually collecting financial data for the bankruptcy firms. Each
report has to include the balance sheet, income statement, fund statement. We have at first
prepared 62 financial ratios (vector of input variables) for the prediction of bankruptcy.
However, it is noted that a number of variables obey very deformed distribution among
firms, and are seemed to be irrelevant for statistical inference. Then, these variable are
removed from the pool of input variables based on the T-test and Wilcoxson’s rank test for
normal distribution.

Then, we have 13 variables to predict the bankruptcy, but the number is relatively large
to derive concise prediction rule in an linguistic manner. Therefore, we applied the principal
component analysis to these 13 variables, and determined 5 variables for prediction.

In the preprocessing by the neural network to discretize the input variables, we use four
threshold value for each financial ratios (variables). Then, we apply the binary prediction
for learning using the backpropagation to derive the meaningful propositions included in the
production rules. Then, we find that according to the pruning algorithm, 13 binary input
are pruned, leaving only 5 binary inputs in the neural network. This corresponds to 5 of
the original inputs.

The conditions for simulation studies are summarized as follows.

Number of layers of neural network:three

Number of units in hidden layer:10

Number of output units:two

Maximum size of array in individuals (denoted as My)=10
Population of individuals:1000

GP generations for learning:100

Definitions for input variables ultimately used for classifications are as follows.

xl:return on capital employed, x2:turnover ratio of fixed assets, x3:ordinary ratio of
profit to net sales, x4:current ratio, x5:debt ratio.

In Table 2, we show the result for classification by using four individuals included in the
pool with respect to the values of fitness. In Table 2, we also show the result obtained by
MDA (Multivariate Discriminate Analysis) and P-NN(Pruned Neural Network). Different

(© Operations Research Society of Japan JORSJ (2006) 49-1

Rule Extraction by Neural Network and GP 77

from the direct tree growing method such as C4.5, the GP method provides us various tree
structures corresponding to individuals, then we use several important rules preserved in
the pool by considering the value of fitness.

Table 3 summarizes the explanatory (linguistic) rules to predict the bankruptcy. In
Table 3, we show top four individuals included in the pool with respect to the values of
fitness. These four individuals can cover all of the explanatory classification for failed firms.
As is seen from the table, the explanation included in rules is understandable for user to
recognize the reason of bankruptcy, while the maximum size of array in individuals is limited
to a small value (maximum size M, = 10). If we increase the maximum size to larger value
such as M, = 20, then the true classification becomes to be very close to 100 %, even though
the simplicity of explanation is lost (details are omitted here).

Table 2: Prediction of bankruptcy(true classification rate %)
category GP method P-NN MDA
failed 86 83 82
sound 88 81 78

Table 3: Examples of generated rules
Or And X3 X1 Or X5 X4
Or X4 Or Or X1 X4 And X5 X4
Or X1 Or X4 Or X2 X4
Or X5 Or X4 And X3 X4

4.2. Applications to German credit data

The experiment on real-life credit-risk evaluation is carried out using the German credit data
by showing comparative study with Neurorule. The German credit data is obtainable from
the website(URL: http://www.liacc.up.pt/ML/statlog/datasets/german/german.doc.html).
The data consist of 1000 records of personal loan, and the input variables for one record
include 7 numerical data and 13 categorical data.

By using the discretization to numerical and categorical data, and then we split at
random the data into then use two-third training data set and one-third test set. When
representing all discretized inputs using the thermometers and dummy encoding, we ended
up with 45 binary inputs. Note that according to the pruning algorithm, 37 binary input
are pruned, leaving only 8 binary inputs in the neural network. This corresponds to 6 of
the original inputs.

Because our main purpose is to develop intelligent credit-risk evaluation system that are
both comprehensive and user friendly, it is obvious that simple, concise rule sets are to be
preffered. Hence, we will also take into account the complexity of the generated rules or
trees as the performance measure.

The complexity will be quantified by looking at the number of nodes including terminal
nodes and intermediate nodes.

As in shown in reference [1], for the German credit data set, Neurorule yielded a highest
test set classification accuracy than C4.5 rules and extracted only 4 propositional rules. The
number of rules is very compact compared to C4.5 and Trepan systems.

The conditions for simulation studies are summarized as follows.

Number of layers of neural network:three

(© Operations Research Society of Japan JORSJ (2006) 49-1

78 J. Lu, S Tokinaga & Y. Ikeda

Number of units in hidden layer:55

Number of output units:two

Maximum size of array in individuals:M; = 10 and 20

Population of individuals:1000

GP generations for learning:100 (for M, = 10) and 200 (for M, = 20)

Definitions for input variables ultimately used for classifications are as follows.

x1:checking accout(4 nominal), x2:duration in month(numerical), x3:credit history(5
nominal),x4:purpose(11 nominal), x5:saving accout(5 nominal),x6:other parties(3 nominal).

These results cited from Reference [4] and our result for simulation studies are summa-
rized in Table 4 and Table 5. Table 4 shows the comparison of mean true classification rate,
and Table 5 describes the comparison of complexity of rules for each system. In these tables,
P-NN means the method using pruned neural networks, and GP-1 means the GP method
of our paper where the maximum size of array is M, = 10, and GP-2 means the cases for
M, = 20. In our method, we show the result for classification by using four individuals
included in the pool with respect to the values of fitness.

In Table 6, we show top four individuals included in the pool with respect to the values
of fitness in cases for My = 10. These four individuals can cover all of the explanatory
classification for bad (denied) applicant classification.

As is seen from Table 4, true classification rate of our system is comparable to Neurorule
in the mean, if we select the maximum size of array to be My = 10. If we increase the
maximum size to larger value such as My = 20, then the true classification becomes to be
better, even though the complexity of explanation increases as shown in Table 5.

The result in Table 5 suggests us that the explanation included in rules is understand-
able for user to recognize the reason of bad applicant while the maximum size of array in
individuals is limited to a small value (M, = 10).

Table 4: Result of inference (mean true classification rate in %)
C4.5 P-NN Neurorule Trepan Nefclass GP-1 GP-2
74.25 T77.84 77.25 73.95 73.65 77.23 79.98

Table 5: Comparison of rule complexity
methods complexity

C4.5 17 propositional rules

P-NN 6 inputs

Neurorule 4 propositional rules

Trepan 11 leaves, 21 nodes

Nefclass 14 fuzzy rules

GP-1 4 propositional rules(4 leaves,3 nodes)
GP-2 4 propositional rules(8 leaves,7 nodes)

4.3. Application to bond rating

Industrial corporate bonds have been assigned quality rating since the early 1990s. Each
year private organizations such as Moody’s and Standard & Poors assign to a portion
of new bond issues that year to provide investors with a simple system of guarantee for
relative investment qualities. Bond ratings attempt to provide a simple measure of the

(© Operations Research Society of Japan JORSJ (2006) 49-1

Rule Extraction by Neural Network and GP 79

Table 6: Examples of generated rules
Or And X4 X1 Or X6 X4
Or X5 Or Or X1 X4 And X6 X4
Or X1 Or X4 Or X3 X5
Or X6 Or X5 And X4 X2

relative investment quality of these securities. A rating simply helps investors determine
the relative likelihood they might lose money on a given fixed income investment. Under
present commercial bank regulations only bonds rated in four classification are eligible such
as Aa, A, Ba Ba or B.

A number of previous studies on bond rating attempt to predict corporate bond ratings
based on the financial characteristics for firms issuing the bonds. The MDA is also used for
the rating where several (four or five) financial ratios are used for the discriminant variables.

Then, the neural network rule extraction based on the GP proposed in the paper is
applied to derive linguistic rules so that the inference using the input variables is available
to discuss the credit worthiness of firms.

At first, we select three groups of Japanese companies. The information of rating for
the companies are obtained from the published data of Moodys’ Japan in 2000. Even
though, the range of rating varies from AAA to CCC, usually it is very rare to categorize
the company to the lower ranks such as C or CC. The Japanese companies treated here
are relatively good, and the range of rating is included in AAA through CCC. The output
(rating) is categorized into these three categories.

1)30 companies ranging from Aaal through A3 in Moody’s rating are merged into a single
category (category A)

2)32 companies ranging from Baal through B3 in Moody’s rating are merged into a single
category (category B)

3)27 ranging from Caal through C3 in Moody’s rating are merged into a single category
(category C)

We select these companies from three industries so that we can prove the robustness of
the rule. It is observed that the distribution of the financial ratio between another industries
are usually different. Each dataset is randomly split into two-third training data set and
one-third test set in each category.

We use ordinary financial ratios (real numbers calculated by using the financial statement
yearly published by the Japanese companies) as the input variables to the rules.

Before utilizing these financial ratios, we must examine the statistical proportions of
the financial ratios. If the distribution of a financial ratio is far apart from the normal
distribution, then the financial ratio is removed from the candidate of the input variables
for the system.

Furthermore, by using the distribution of financial ratio, we remove insignificant sample
of financial ratio from the pool which is located outside of the 5 ¢ of the distribution.
Finally, we obtain 24 input variables for original neural network inputs.

Then, we apply the discretization for input variables to make binary inputs. After
discretization, we use the procedure to prune the weight of the neural networks. Note that
according to the pruning algorithm, 24 binary input are pruned, leaving only 9 binary inputs
in the neural network. This corresponds to 9 of the original inputs.

In the following, we evaluated the inference by the rules generated by the GP. The ability
of a rule is calculated by the number of samples where the rating given by the system and

(© Operations Research Society of Japan JORSJ (2006) 49-1

80 J. Lu, S Tokinaga & Y. Ikeda

the rating by the rating agency are the same (the same interpretation).

The conditions for simulation studies are summarized as follows.
Number of layers of neural network:three
Number of units in hidden layer:35
Number of output units:three
Maximum size of array in individuals: M = 12
Population of individuals:1000
GP generations for learning:100

Definitions for input variables ultimately used for classifications are as follows.

x1:operating profit ratio of equity capital, x2:return on equity capital(on after-tax ba-
sis), x3:turnover ratio of fixed asset, x4:return on capital employed, x5:increased receipts
ratio, x6:rate of equity capital growth, x7:liabilities ratio of operating cash flow, x8:current
liabilities ratio of operating cash flow, x9:return on stockholder’s equity.

Table 4 shows the comparison of mean true classification rate, and Table 5 describes
the comparison of complexity of rules for each system. In these tables, P-NN means the
method using pruned neural networks, and GP means the GP method of our paper where
the maximum size of array is M, = 20.

Table 7: Prediction of bond rating(mean true classification rate in %)

category | GP method NN MDA
A 83.33 86.66 76.66
B 81.18 84.84 72.72
C 81.48 85.18 70.37

Table 8: Examples of generated rules

Or X8 Or Or X2 Or X6 X2 X3

A | Or Or X3 Or X2 Or And X5 Or X9 X2 X6 X1
Or Or X5 X2 Or Or X7 And X4 X9

Or Or Or X4 X6 Or X6 X2 And And X9 X5 X3
Or Or X5 X2 Or Or X7 And X4 X9

B | Or X8 Or Or X2 Or X6 X2 X3

Or Or Or X4 X6 Or X6 X2 And And X9 X5 X3
Or Or X3 Or X2 Or And X5 Or X9 X2 X6 X1
Or Or X6 And And X8 X6 X5 Or X7

C | Or X8 Or Or X2 Or X6 X2 X3

Or Or X5 X2 Or Or X7 And X4 X9 X7

Or Or X1 Or X5 X4 Or X4 X7

Table 7 describes the mean true classification rate for each category compared to the
result obtained by neural network methods and MDA. We show the result for classification
of our method by using four individuals included in the pool with respect to the values of
fitness. In Table 8, we show individuals included in the pool having highest fitness. Including
other three individuals, these individuals can cover all of the explanatory classification for
bad (denied) applicant classification.

As is seen from Table 7, true classification rate of our system is placed between NN and
MDA in the mean, if we select the maximum size of array to be M, = 20. Since the category
for explanatory clasification is three, and the number of substantial input variable necessary

(© Operations Research Society of Japan JORSJ (2006) 49-1

Rule Extraction by Neural Network and GP 81

for classification is relatively large compared to previous two applications, explanatory rules
becomes to be slightly complicated.

5. Conclusion

This paper treated the use of neural network rule extraction techniques based on the Genetic
Programming (GP). We used the neural network and binary classification to obtain simple
and relevant classification rules by pruning weight among neurons to obtain simple but
substantial binary expressions which are used as statements is classification rules generated
by the GP. The method was applied to extract rules to prediction of bankruptcy and the
classification of corporate bonds (rating) by using the financial indicators.

For further works, there exist the extension of the method to various rule extraction
problems and to slightly complicated functional forms rather than fundamental arithmetic.
Further works will be done by the authors.

References

[1] F. Allen and R. Karjalainen: Using genetic programming to find technical trading rules.
Technical Report (Wharton School, University of Pennsylvania, 1993).

[2] E.I. Altman: Corporate Bankruptcy in America (D. C. Health and Company, 1971).

[3] R. Andrews, J. Diederich, and A.B. Tickle: A survey and critique of techniques for
extracting rules from trained neural networks. Knowledge Based Systems, 8-6 (1995),
373-389.

[4] B. Baesens, R. Setiono, C. Mues, and J. Vanthienen: Using neural network rule extrac-
tion and decision tables for credit-risk evaluation. Management Science, 49-3 (2003),
313-329.

[5] C.M. Bishop: Neural Networks for Pattern Recognition (Oxford University Press, U.K.,
1995).

[6] X.Chen and S. Tokinaga: Approximation of chaotic dynamics for input pricing at service
facilities based on the GP and the control of chaos. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E85-A-9 (2002), 2107-2117.

[7] X. Chen and S. Tokinaga: Synthesis of multi-agent systems based on the co-evolutionary
genetic Programming and its applications to the analysis of artificial markets. IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences
(Japanese Edition) , E86-A-10 (2003), 1038-1048.

[8] M.W. Craven and J.W. Shavlik: Extracting tree-structured representations of trained
networks. In D. Touretzky, M. Mozer, and M. Ha- sselmo (eds.): Advances in Neural
Information Processing Systems (NIPS) (MIT Press, Cambridge, MA), 8, 24-30.

9] Y. Ikeda: Estimation of the chaotic ordinary differential equations by co-evolutionary
genetic programming. [FICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, E85-A-4 (2002), 424-433.

[10] Y. Ikeda and S. Tokinaga: Approximation of chaotic dynamics by using smaller number
of data based upon the genetic programming. IEICE Transactions on Fundamentals of
FElectronics, Communications and Computer Sciences, E83-A-8 (2000), 1599-1607.

[11] Y. Tkeda and S. Tokinaga: Controlling the chaotic dynamics by using approximated
system equations obtained by the Genetic Programming. IFICE Transactions on Fun-

damentals of Electronics, Communications and Computer Sciences, E84-A-9 (2001),
2118-2127.

(© Operations Research Society of Japan JORSJ (2006) 49-1

82 J. Lu, S Tokinaga & Y. Ikeda

[12] Y. Ikeda and S. Tokinaga: Chaoticity and fractality analysis of an artificial stock market
by the multi-agent systems based on the co-evolutionary Genetic Programming. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
E87-A-9 (2004), 2387-2394.

[13] Y. Ikeda, S. Tokinaga, and J. Lu: Neural network rule extraction using Genetic Pro-
gramming and its applications. Proceedings of 2004 International Symposium on Non-
linear Theory and its Applications (2004), 485-488.

[14] M.J. Keith and M.C. Martin: Genetic programming in C++: Implementation issues.
In K.E. Kinnerar, Jr. (eds.): Advance in Genetic Programming (MIT Press, 1994).

[15] J.R. Koza: Genetic programming: A paradigm for genetically breeding populations of
computer programs to solve problems. Report No.STAN-CS-90-1531/ (Dept.of.Computer
Science Stanford University, 1990).

[16] J.R. Koza: Evalution and subsumption using genetic programming. Proceedings of the
First European Conference on Artificial Life (MIT Press, 1991).

[17] J.R. Koza: Genetic Programming (MIT Press, 1992).

[18] B. Lev: Financial Stament Analysis (Prentice-Hall, 1974).

[19] N. Nauck: Data analysis with neuro-fuzzy methods. Habilitation Thesis (University of
Magdeburg, 2000).

[20] M. Oussaidene, B. Chopard, O.V. Pictet, and M. Tomassini: Parallel genetic program-
ming and its application to trading model induction. Parallel Computing, 23 (1997),
1183-1198.

[21] Y.H. Pao: Adaptive Pattern Recognition and Neural Networks (Addison-Wesley Pub-
lishing Co., Inc., 1989).

[22] J.R. Quinlan: C4.5 Programs for Machine Learning (Morgan Kafumann, Chambery,
France, 1993).

[23] K. Tan and S. Tokinaga: The design of multi-stage multi-stage fuzzy inference system
with smaller number of rules based upon the optimization of rules by using the GA.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E82-A-9 (1999), 1865-1873.

[24] M. Yababe and S. Tokinaga: Applying the genetic Programming to modeling of dif-
fusion processes by using the CNN and its applications to the synchronization. IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences
(Japanese Edition), J85-A-5 (2002), 548-559.

Shozo Tokinaga

Graduate School of Economics

Kyushu University

6-19-1 Hakozaki, Higashi-ku

Fukuoka 812-8581, Japan

E-mail: tokinaga®@en.kyushu-u.ac.jp

(© Operations Research Society of Japan JORSJ (2006) 49-1

