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Abstract In this study, we propose a new solution approach for the Transportation Fleet Maintenance
Scheduling Problem (TFMSP). Before presenting our solution approach, we first review Goyal and Gu-
nasekaran’s [International Journal of Systems Science, 23 (1992) 655-659] mathematical model and their
search procedure for determining the economic maintenance frequency of a transport fleet. To solve the
TFMSP, we conduct a full analysis on the mathematical model. By utilizing our theoretical results, we
propose an efficient search algorithm that finds the optimal solution for the TFMSP within a very short
run time. Based on our experiments using random data, we conclude that the proposed search algorithm
out-performs Goyal and Gunasekaran’s search procedure.
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1. Introduction

In this study, we devote our efforts toward investigating a mathematical model for determin-
ing the economic maintenance frequency of a transportation fleet. We name this problem
the “Transportation Fleet Maintenance Scheduling Problem”, which is abbreviated as the
TFMSP. The mathematical model for the TFMSP was previously proposed by Goyal and
Gunasekaran [3]. We extend their work in two aspects: first, we conduct a full theoretical
analysis on the theoretical properties of the mathematical model, and second, we propose an
efficient search algorithm that solves for the optimal solution in Goyal and Gunasekaran’s
[3] model.

As mentioned in [3], the problem of determining the economic maintenance of a machine
has been dealt with extensively in management science, operations research, and industrial
engineering (see [2], [4], [6], [7], and [8]). But researchers pay limited attention to the
problem of determining the operating and maintenance schedules for a transportation fleet.

For the rest of this section, we review Goyal and Gunasekaran’s [3] mathematical model
for the Transportation Fleet Maintenance Scheduling Problem (TFMSP).

Before presenting the mathematical model, we first introduce the assumptions made and
the notation used later. There are m groups of vehicles, and the number of vehicles in group
i is denoted as ni. In the TFMSP, the decision maker plans the maintenance schedules of the
vehicle groups in some basic period, denoted by T , (e.g., in days, weeks, or bi-weeks, etc.).
The maintenance work on a group of vehicles is carried out at a fixed, equal-time interval
that is called the maintenance cycle for that group of vehicles. The vehicles in the ith group
are sent for maintenance once in ki basic periods where ki is a positive integer. (Therefore,
the maintenance cycle for the vehicles in the ith group is kiT .) We note that the model for
the TFMSP is for planned maintenance, and the model does not consider unplanned fleet
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vehicle failure in the scheduling of fleets.
We consider two categories of costs in the TFMSP, namely, the operating cost and the

maintenance cost. The operating cost of a vehicle depends on the length of the maintenance
cycle, and it is assumed to increase linearly with respect to time since the last maintenance
on the vehicle. Specifically, the operating cost per unit of time at time t after the last
maintenance for a vehicle in group i is given by fi(t) = ai + bit where ai is the fixed cost
and bi indicates the increase in the operating cost per unit of time. For each vehicle in
group i, we also assume that it takes Xi units of time for its maintenance work. And
the utilization factor of a vehicle in the ith group on the road is Yi , where Xi and Yi are
known constants. (One may refer to [10] for further discussions on the utilization factor
of a vehicle.) Therefore, the actual time during which a vehicle can operate is equal to
Yi(kiT − Xi), and the total operating cost for a vehicle in group i is given by∫ Yi(kiT−Xi)

0

fi(t)dt =

∫ Yi(kiT−Xi)

0

(ai + bit)dt

= Yi(ai − biXiYi)kiT + 0.5biY
2
I k2

i T
2 − XiYi(ai − 0.5biXiYi) (1.1)

The fixed cost of starting the maintenance for a vehicle in group i is given by si. On the
other hand, as maintenance work is carried out at intervals of T, a fixed cost, denoted by
S, will be incurred for all vehicle groups scheduled for maintenance in each basic period.

The objective function of the TFMSP is to minimize the average total costs occurred per
unit of time. Therefore, we divide the cost terms of each vehicle by its cycle time respectively
to obtain their corresponding terms in the objective function. By the derivation above, the
mathematical model for the TFMSP can be expressed as problem (P0).

(P0) min Z((k1, k2, . . . , km), T ) =
S

T
+

m∑
i=1

Φi(ki, T ) + u (1.2)

where Φi(ki, T ) = niC1i

kiT
+ niC2ikiT, C1i = si −XiYi(ai − 0.5biXiYi) and C2i = 0.5biY

2
i . Also,

u =
m∑

i=1

niYi(ai − biXiYi) is a constant since all the parameters are given in its expression.

Then, solving the problem (P0) is equivalent to obtaining the optimal solution for the
problem (P ) as follows.

(P ) Ψ(k1, k2, . . . , km), T ) = inf
T>0

{S

T
+

m∑
i=1

Φi(ki, T )|ki ∈ N
+, i = 1, . . . ,m)}. (1.3)

In the TFMSP, the decision maker needs to determine T (i.e., the basic period) and
(k1, k2, ..., km) (i.e., the frequency of maintenance for vehicles in each group) so as to mini-
mize the total costs incurred per unit of time.

We outline the organization of this paper as follows: We will review the studies in
the literature for the Transportation Fleet Maintenance Scheduling Problem in the second
section. Then, in Section 3, we present a full theoretical analysis on the optimal cost curve
of the problem (P ). Based on our theoretical results, we derive an effective search algorithm
that efficiently solves the TFMSP in Section 4. In the first part of Section 5, we employ a
numerical example to demonstrate the implementation of the proposed algorithm. Then,
we use randomly generated examples to show that the proposed algorithm significantly
outperforms Goyal and Gunasekaran’s search procedure in the second part of Section 5.
Finally, we address our concluding remarks in Section 6.
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Transportation Fleet Maintenance Scheduling 35

2. Literature Review

In this section, we review the studies in the literature for the Transportation Fleet Mainte-
nance Scheduling Problem.

We first review the solution approach proposed in Goyal and Gunasekaran’s [3] paper.
The algorithm is based on two equations that are derived by setting the first derivative of
Z((k1, k2, . . . , km), T ) with respect to the decision variables to zero:

T (k1, k2, . . . , km) =

√√√√√√√
S +

m∑
i=1

niC1i

ki

m∑
i=1

niC2iki

(2.1)

k∗
i (T ) =

√
C1i

C2i

1

T
(2.2)

Goyal & Gunasekaran’s search procedure

1. For the first iteration, assume ki = k
(0)
i = 1 for all i, and obtain the first estimate of

T = T (1) from (2.1). At T = T (1), determine ki = k
(1)
i from (2.2) for all i. If k

(1)
i values

are not integers, then select the nearest non-zero integer.

2. Using ki = k
(1)
i from (2.2) for i = 1, . . . ,m, obtain T = T (2) from (2.1) and then

ki = k
(2)
i from (2.2) using T = T (2). Repeat the process until the rth iteration and stop

when k
(r)
i = k

(r−1)
i for i = 1, . . . ,m. The economic policy is obtained at T ∗ = T (r) and

k∗
i = k

(r)
i .

Later, van Egmond, Dekker & Wildeman [9] discussed Goyal and Gunasekaran’s search
procedure. They indicated that the function Z((k1, k2, . . . , km), T ) is not convex as Goyal
and Gunasekaran assumed in [3]. Since the values of ki need to be integers, the determination
of the global optimization is not as easy as Goyal and Gunasekaran suggested. They also
showed that it is not necessarily the ki minimizing Z when one rounds (2.2) to the nearest
non-zero integer. Finally, they indicated that Goyal and Gunasekaran’s search procedure
often stops after its first iteration without obtaining an optimal solution. These three
problems explain why Goyal and Gunasekaran’s solution does not always obtain an optimal
solution. In fact, it is often stuck in a local optimal solution.

However, van Egmond, Dekker & Wildeman [9] only mentioned that one needs to try
different starting values to find an optimal solution, but without proposing a new solution
approach to solve the TFMSP.

To the best of the authors’ knowledge, there exists no solution approach that can find
an optimal solution for the TFMSP. Therefore, we are motivated to propose a new solution
approach towards this aim in this study.

3. Theoretical Analysis

In this section, we discuss some theoretical analyses that provide insights into the optimal
cost function of Ψ((k1, k2, . . . , km), T ).Our theoretical analyses facilitate the derivation of
the search algorithm presented in Section 3.
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By observing the right-side of (1.3), we learn that the terms are separable. Therefore,
we are motivated to study the properties of Φi(ki, T ) since they will establish the foundation
for further investigation of the function Ψ((k1, k2, . . . , km), T ).
Proposition 3.1. For any given ki ∈ N

+, the function Φi(ki, T ) satisfies the following
properties for T > 0, i ∈ {1, . . . ,m}.
1. Φi(ki, T ) is strictly convex;
2. Φi(ki, T ) has a minimum for T = x∗

i /ki with x∗
i given by

x∗
i =

√
C1i/C2i (3.1)

3. The function Φi(ki, T ) obtains its minimal objective function value by

2ni

√
C1iC2i (3.2)

Proof. We may prove these assertions using simple algebra.

Let us define a new function gi(T ) by taking the optimal value of ki at any value T ′ > 0
for the function Φi(ki, T ) as follows.

gi(T ) := inf
ki∈N+

{Φi(ki, T
′)|T = T ′ ∈ R

+} (3.3)

Consequently, the problem (P ) can be re-written as

(P1) Γ(T ) = inf
T>0

{S

T
+

m∑
i=1

gi(T )} (3.4)

where the function Γ(T ) is the optimal objective function value of problem (P1) with
respect to T .

Before further analyzing problem (P1), we first graphically display the curves of the
Φi(ki, T ) function with ki = (1, 2, 3, 4) in Figure 1. Note that the curve of the gi(T ) function
is actually the lower envelope of the Φi(ki, T ) functions.

Figure 1: The curves of the Φi(ki, T ) function with ki = (1, 2, 3, 4)

Importantly, Figure 1 shows two interesting observations on the gi(T ) function:
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1. The function gi(T ) is piece-wise convex with respect to T .
2. Suppose that k∗(w−) and k∗(w+), respectively, are the optimal multipliers of the left-

side and right-side convex curves with regard to a junction point w in the plot of the
gi(T ) function. Then, k∗(w−) = k∗(w+)+1, where w− = w−ε, w+ = w+ε and ε → 0+.

In the following discussion, we will have further analysis on these two observations and
will formally prove them as the basis for deriving the theoretical properties for problem
(P1).

3.1. The junction point

Next, we define a “junction point” for gi(T ) as a particular value of T where two consecutive
convex curves Φi(ki, T ) and Φi(ki + 1, T ) concatenate. These junction points determine at
“what value of T” where one should change the value of ki so as to obtain the optimal value
for the gi(T ) function.

We first derive a closed-form for the location of the junction points. We define the
difference function ∆i(k, T ) by

∆i(k, T ) = Φi(ki + 1, T ) − Φi(ki, T ) (3.5)

=
niC1i

(k + 1)T
+ niC2i(k + 1)T − niC1i

kT
− niC2ikT

= − niC1i

k(K + 1)T
+ niC2iT

We note that w is the point where two neighboring convex curves Φi(ki + 1, T ) and
Φi(ki, T ) meet. Importantly, such a junction point w provides us with the information on
at “what value of T” where one should change the value of k so as to secure the optimal
value for the gi(T ) function.

By the rationale discussed above, we derive a closed form to locate the junction points
by letting ∆i(k, T ) = 0 as follows.

δi(k) =

√
C1i

C2i(k + 1)k
=

√
2(si − XiYi(ai − 0.5biXiYi)

biY 2
i (k + 1)k

(3.6)

Note that δi(k) indicates the location of the kth junction point of the function gi(T )
(from its right-side). By (3.6), the following inequality (3.7) holds

δi(v) < ... < δi(k + 1) < δi(k) < ... < δi(2) < δi(1) (3.7)

where v is an (unknown) upper bound on the value of k.
Theorem 3.1 is an immediate result from (3.6) and (3.7).

Theorem 3.1. Suppose that k∗(w−) and k∗(w+) are the optimal multipliers of the left-side
and right-side convex curves with regard to a junction point w of the gi(T ) function, then
k∗(w−) = k∗(w+) + 1.

The following corollary is also a by-product of (3.6) and (3.7), and it provides an easier
way to obtain the optimal multiplier: k∗

i (T ) ∈ N
+ for the gi(T ) function for any given T > 0

.
Corollary 3.1. For any given T > 0, an optimal value of k∗

i (T ) ∈ N
+ for the gi(T ) function

is given by

k∗
i (T ) =

⌈
−1

2
+

1

2

√
1 +

4C1i

C2iT 2

⌉
(3.8)

with �·� denoting the upper-entier function.
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Proof. For any given T > 0, an optimal value of k ∈ N
+ for the gi(T ) function is such

that δi(k) ≤ T < δi(k − 1). Equivalently, the value of k must satisfy
√

C1i

C2i(k+1)k
≤ T and

T <
√

C1i

C2i(k−1)k
. Therefore, we have k2 + k − C1i

C2iT 2 � 0 and k2 − k − C1i

C2iT 2 < 0. Since k

must be positive, we have −1
2

+ 1
2

√
1 + 4C1i

C2iT 2 ≤ k < 1
2

+ 1
2

√
1 + 4C1i

C2iT 2 . Thus, we complete

the proof.

3.2. Some insights into the optimal cost function

Utilizing our theoretical analyses on the Φi(ki, T ) and gi(T ) functions one can gain more
insight into the Γ(T ) function.

First, Propositions 3.2 and 3.3 characterize the Γ(T ) function as follows.

Proposition 3.2. The Γ (T ) function is piece-wise convex with respect to T .

Proposition 3.3. All the junction points for each group i, will be inherited by the Γ (T )
function. In other words, if w is a junction point for a group i, w must also show as a
junction point on the piece-wise convex curve of the Γ (T ) function.

To make our notation simpler, we define k = (k1, . . . , km) to represent a set of main-
tenance frequency. Theorem 3.2 is an immediate result of Theorem 3.1 and Proposition
3.3.

Theorem 3.2. Suppose that k (w−) and k (w+) , respectively, are the set of optimal multi-
pliers for the left-side and right-side convex curves with regard to a junction point w in the
plot of the Γ (T ) function. Then, k (w−) is secured from k (w+) by changing at least one of
ki by k∗

i (w−) and k∗
i (w+) .

4. The Proposed Search Algorithm

In this section, we propose a search algorithm that solves the optimal solution for the
problem (P1) in (3.4).

Our theoretical analyses in Section 3 encourage us to solve the problem (P1) by searching
along the T -axis. To design such a search algorithm, we first need to define the search
range by a lower and an upper bound on the T -axis, which are denoted by Tmin and Tmax,
respectively. We note that the bounds Tmin and Tmax are derived by asserting that the
optimal solution in [Tmin, Tmax] must be no worse than any solution outside of [Tmin, Tmax] .
Also, we must utilize our theoretical analyses on the optimality structure, especially, the
properties of the junction points on the Γ (T ) function.

In the following discussions, we first discuss how to find initial lower and upper bounds
of the search range and how to use an iterative procedure to improve the initial lower and
upper bounds. Also, we demonstrate how to use the junction points to proceed with the
search. Then, we propose an approach to further improve the lower bound on the search
range. Finally, we summarize our proposed search algorithm.

4.1. The initial lower and upper bounds of the search range

First, we present an upper bound on the search range by the Common Cycle (CC) approach
in which it requires that ki = 1 for all i, i.e., all the vehicle groups share a common
maintenance cycle. We set

TCC =

√√√√(
S +

∑
i

niC1i

)
/
∑

i

niC2i (4.1)
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where TCC is the optimal maintenance cycle for the CC approach. Next, we will show that
it is appropriate to set Tmax = TCC in the following lemma.

Lemma 4.1. For the Γ (T ) function, there exist no local minima for T > Tcc.

Denote the optimal objective function value of (P1) and the optimal value of the basic
period by Ψ∗and T ∗. Next, we derive an initial lower bound on the search range in the
following lemma.

Lemma 4.2. The value

β1 =
2S

ΨU
(4.2)

serves as a lower bound for T ∗ where ΨU is an upper bound on the optimal objective function
value of the problem (P1).

Proof. For any given set of k, its local minimum T̆ (k) is given by T̆ (k)

=

√(
S +

m∑
i=1

niC1i

ki

)
/

m∑
i=1

niC2iki. Substituting T̆ (k) into the objective function of the prob-

lem (P ) in (1.3), one shall obtain its optimal objective function value by

Ψ (k, T ) = 2

√√√√(
S +

m∑
i=1

niC1i

ki

)(
m∑

i=1

niC2iki

)
. (4.3)

By the expressions of T̆ (k) and (4.3), it follows that Ψ∗T ∗ > 2S, so T ∗ > 2S/Ψ∗. Given ΨU

is an upper bound on the optimal objective function value of the problem (P1), it obviously
holds that T ∗ > 2S/Ψ∗ since ΨU ≥ Ψ∗.
Note that we need an upper bound ΨU to obtain β1 as indicated in eq. (4.2). The
lower the value of ΨU , the tighter the lower bound β1. Here, we have an easy way to
obtain a good value of ΨU . First, we shall locate T0 = mini

√
0.5C1i/C2i. Denote k∗(T ′) ≡

(k∗
1(T

′), k∗
2(T

′), . . . , k∗
m(T ′)) as the set of optimal maintenance frequencies with respect to a

given value of T ′. Then, we obtain the optimal k∗(T0) corresponding to T0 by (3.8). Since
the objective function value of any feasible solution serves as an upper bound on Ψ∗, we
have an upper bound by ΨU = Ψ(k∗(T0), T0) from eq. (4.3). Consequently, an initial lower
bound is obtained by Tmin = 2S/ΨU .

Intuitively, if we may shorten the search range on the T -axis, we may reduce the compu-
tational efforts in the proposed search algorithm. Therefore, we are motivated to improve
the initial lower and upper bounds.

Based on our numerical experiments in our study, we have an interesting observation on
the Γ (T ) function: the Γ (T ) function is monotonically decreasing from Tmin to a value TA,
and monotonically increasing from a value TB to Tmax. Therefore, if we may determine the
values of TA and TB, then we could efficiently confine our search range to [TA, TB]. Before
presenting our iterative procedures to determine the values of TA and TB, we discuss their
theoretical foundations, i.e., Lemma 4.3, Theorem 4.1 and Corollary 4.1, as follows.

Lemma 4.3. Let ka be the set of optimal maintenance frequencies that minimizes Ψ (·, T )
in the range [T a

l , T a
u ] . Let the optimal value of T corresponding to ka be T ∗

a . If T a
l > T a

u ,
then the function is monotonically decreasing in [T a

l , T a
u ].

Next, Theorem 4.1 and Corollary 4.1 lay important foundations for our iterative proce-
dures to improve the bounds of the search range.

c© Operations Research Society of Japan JORSJ (2006) 49-1
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Theorem 4.1. Let ka be the set of optimal maintenance frequencies that minimizes Ψ (·, T )
in the range [T a

l , T a
u ] . Let the optimal value of T corresponding to ka be T ∗

a . If T ∗
a > T a

u ,
then the Γ (T ) function is monotonically decreasing in [T a

l , T ∗
a ].

Proof. From Lemma 4.3, it is clear that when T ∗
a ≥ T a

u , the function Ψ(ka, T ), which is the
same as the Γ (T ) function, is monotonically decreasing in [T a

l , T ∗
a ] . Now, consider those

sub-intervals of T between T a
u and T ∗

a . Within each of them the optimal set of optimal
maintenance frequencies remains unchanged. Let kb be the set of optimal maintenance
frequencies in

[
T b

l , T b
u

]
, where

[
T b

l , T b
u

] ⊆ [T a
l , T ∗

a ] , i.e., T a
u ≤ T b

l < T b
u ≤ T ∗

a , We assert
that there exists at least one group i such that kb

i < ka
i from (3.8) because of T a

u ≤ T b
l .

Let the optimal value of T corresponding to kb be T ∗
b . As kidecreases, the numerator of

T̆ (k) =

√(
S +

m∑
i=1

niC1i

ki

)
/

m∑
i=1

niC2iki increases and the denominator decreases. Therefore,

we have T b
u < T ∗

a ≤ T ∗
b . Therefore, the Γ (T ) function is monotonically decreasing in

[
T b

l , T b
u

]
by Lemma 4.3. We can repeat the same argument for all the convex sub-intervals of T in
[T a

u , T ∗
a ] . Therefore, the Γ (T ) function is monotonically decreasing in [T a

l , T ∗
a ] .

Corollary 4.1. Let ka be the set of optimal maintenance frequencies that minimizes Ψ(·, T )
in the range [T a

l , T a
u ] . Let the optimal value of T corresponding to ka be T ∗

a . If T ∗
a ≤ T a

l ,
then the Γ (T ) function is monotonically increasing in [T ∗

a , T a
u ].

Proof. The proof is similar to that of Theorem 4.1.

The basic idea of our iterative improving procedures is summarized as follows. Let
T̆ 1 (k1) > Tmin be the local minimum for the set of optimal maintenance frequencies
k1. By Theorem 4.1, we assert that the Γ (T ) function is monotonically decreasing in(
Tmin, T̆

1 (k1)
)

. Therefore, one may alternatively find the local minimum T̆ (k) and the

set of optimal maintenance frequencies k iteratively to reach the first local minimum to the
right of Tmin, i.e., the value of TA mentioned above. In a similar fashion, the first local
minimum to the left of Tmax, i.e., TB , can be determined. Once the improved bounds of TA

and TB are determined, we use the procedure presented in the next section to proceed with
the search within the search range.

4.2. Proceed with the search by the junction points

How can one proceed with the search from our initial point TCC to lower values of T? We
do this by obtaining k∗ (TCC) by (3.8) in Corollary 3.1 where k∗ (T ) denotes as the set of
optimal multipliers at given T. Then, by Propositions 3.2 and 3.3, each junction point δi (ki)
provides the information whereby one should change the optimal multiplier of group i from
ki to ki + 1 at δi (ki) to obtain the optimal value for the Γ (T ) function. Therefore, during
the search, we need to keep an m-dimensional array (δ1 (k1) , δ2 (k2) , . . . , δm (km)) in which
each value of δi (ki) indicates the location of the next junction point of group i where the
optimal multiplier of group i should be changed. Since the algorithm searches toward lower
values of T, one should change the multiplier for the particular group i with the largest value
of δi (ki) to correctly update the set of optimal multipliers. Let Tc be the current value of T
where the search algorithm reaches. Denote π as the group index for the group i with the
largest value of δi (ki), i.e.,

π = arg max
i

{δi (ki) < Tc} . (4.4)

c© Operations Research Society of Japan JORSJ (2006) 49-1
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To proceed with the search from Tc, we need to update the set of optimal multipliers at
δi (ki) by

k∗ (δπ (kπ)) ≡ (k∗ (Tc) \ {kπ}) ∪ {kπ + 1} (4.5)

where “\ ” denotes set subtraction.
Note that Theorem 3.2 implies that the set of optimal multipliers k∗ is invariant in

each convex sub-interval (i.e., between a pair of consecutive junction points) on the Γ (T )
function. Hence, this step actually obtains the set of optimal multipliers for all the values
of T ∈ (δπ (kπ) , Tc) . Then, we should check if the local minimum for k∗ (Tc) exists in the
convex sub-interval (δπ (kπ) , Tc) , since such a local minimum could be a candidate for the
optimal solution. For any given set of k, one may obtain its local minimum, T̆ (k) , by first
taking the derivative of the Γ (T ) function with respect to T and then, equating it to zero.
Therefore, T̆ (k) is given by eq. (4.6) as follows.

T̆ (k) =

√√√√(
S +

m∑
i=1

niC1i

ki

)
/

m∑
i=1

niC2iki (4.6)

4.3. Further improvement on the lower bound

On the other hand, we derive another lower bound β2 in Lemma 4.4, which is usually tighter
than van Ejis’ lower bound β1. We note that our lower bound β2 is derived by asserting that

there exists no solution that obtains a lower objective value than Z
(
k
(
T̆
)

, T̆
)

for T < β2.

Lemma 4.4. At a local minimum T̆ , one may secure a lower bound β2 on the search range
by

β2 =
S

S/T̆ +
m∑

i=1

φi

(
k∗

i

(
T̆
)

, T̆
) (4.7)

where φi

(
k∗

i

(
T̆
)

, T̆
)

=

⎧⎨
⎩

niC1i

T̆
+ niC2iT̆ − 2ni

√
C1iC2i, k∗

i

(
T̆
)

= 1

2ni

√
C1iC2i

[(√
(ki + 1) /ki +

√
ki/ (ki + 1)

)
− 1

]
, k∗

i

(
T̆
)

> 1

⎫⎬
⎭ .

Proof. We note that the function φi

(
k∗

i

(
T̆
)

, T̆
)

indicates the maximum magnitude of

decrement in Φ (ki, T ) from T̆ to any value of T < T̆ for group i. Recall that Proposition
3.1 asserts that the function Φ (ki, T ) is bounded from below by 2ni

√
C1iC2i. If the optimal

multiplier for group i is k∗
i

(
T̆
)

= 1, then the maximum magnitude of decrement in gi (ki, T )

from T̆ to any value of T < T̆ is bounded by niC1i/T̆ + niC2iT̆ − 2n
√

C1iC2i. If k∗
i

(
T̆
)

> 1,

then
gi(ki,T̆ ) ≤ max

{
Φi

(
k∗

i (T̆ ) − 1, δi(k
∗
i (T̆ ) − 1)

)
, Φi

(
k∗

i (T̆ ), δi(k
∗
i (T̆ ))

)}
(4.8)

by the piece-wise convexity of the Φi(k
∗
i (T̆ ), T̆ ) function.

Since one can easily prove that Φi

(
k∗

i (T̆ ), δi(k
∗
i (T̆ ))

)
< Φi

(
k∗

i (T̆ ) − 1, δi(k
∗
i (T̆ ) − 1)

)
, it

leads to the fact Φi

(
k∗

i (T̆ ), T̆
)
≤ Φi

(
k∗

i (T̆ ), δi(k
∗
i (T̆ ))

)
. By plugging k∗

i (T̆ ) and δi(k
∗
i (T̆ ))

into the function Φi(ki, T ), we have the following concise expression for Φi

(
k∗

i (T̆ ), δi(k
∗
i (T̆ ))

)
after some simplification.

Φi

(
k∗

i (T̆ ), δi(k
∗
i (T̆ ))

)
= 2ni

√
C1iC2i(

√
(ki + 1)/ki +

√
ki/(ki + 1)) (4.9)
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In other words, if k∗
i (T̆ ) > 1, the maximum magnitude of decrement in gi(ki, T ) from T̆ to

any value of T < T̆ is bounded by 2ni

√
C1iC2i

⌊
(
√

(ki + 1)/ki +
√

ki/(ki + 1)) − 1
⌋

.

On the other hand, the major setup cost would increase from S/T̆ to S/T from T̆ to any
value of T < T̆ .
The lower bound is derived by asserting that for T ≤ β2, the increment in the major
setup cost, i.e., S/T − S/T̆ , must exceed the maximum magnitude of decrement, i.e.,
m∑

i=1

φi

(
k∗

i

(
T̆
)

, T̆
)

; or, S/T −S/T̆ ≥
m∑

i=1

φi

(
k∗

i

(
T̆
)

, T̆
)

, which gives exactly eq. (4.7).

The revision of Tmin at the newly-obtained, best-on-hand, local minimum can be sum-
marized as follows. Denote K∗ and T ∗ as the set of optimal maintenance frequencies and
the optimal value of the basic period obtained by the proposed search algorithm. After
securing a new local minimum T̆ , if Ψ(k∗(T̆ ), T̆ ) < Ψ(K∗, T ∗), then one should try to revise
Tmin = max{Tmin, β1, β2}, where β1 is secured by plugging ΨU = Ψ(k∗(T̆ ), T̆ ) in eq. (4.3)
and β2 is obtained from eq. (4.7), respectively.

4.4. The algorithm

We are now ready to enunciate the proposed search algorithm.

1. Obtain the initial lower and upper bounds of the search range using the following steps:

(a) Find an initial upper bound: Calculate Tmax = TCC by (4.1).
(b) Find an initial lower bound: Compute T0 = mini

√
0.5C1i/C2i , obtain the optimal

k∗(T0) corresponding to T0 by (3.8). Also, we calculate ΨU = Ψ(k∗(T0), T0) by eq.
(4.3). Then, obtain an initial lower bound by Tmin = 2S/ΨU .

(c) Let K∗ = k∗(Tmin), T
∗ = Tmin and Ψ∗ = ΨU .

2. Improve the bounds of the search range by the following iterative procedures:

(a) Improve the upper bound: Set T0 = Tmax and Told = Tmax. Calculate k∗(T0) corre-
sponding to T0 by (3.8). Compute T̆ (k∗(T0)) by eq. (4.6). Set Tmax = T0 (Repeat
the above steps until Told/Tmin = 1.)

(b) Improve the lower bound: Set T0 = Tmin and Told = Tmin Calculate k∗(T0) corre-
sponding to T0 by (3.8). Compute T̆ (k∗(T0)) by eq. (4.6). Set Tmin = T0 (Repeat
the above steps until Tmin/Told = 1.)

3. Set Tc = Tmax. If Tc ≤ Tmin, then go to step 5.
4. Proceed to the next convex sub-interval:

(a) Set π = arg maxi{δi(ki) < Tc}, k∗(δπ(kπ)) ≡ (k∗(Tc)\{kπ}) ∪ {kπ + 1}. Then, let
Tc = δπ(kπ).

(b) Calculate T̆ (k∗(Tc)) by (4.6) and compute Ψ(k∗(Tc), T̆ (k∗(Tc))).
(c) If Ψ∗ ≥ Ψ(k∗(Tc), T̆ (k∗(Tc))), set Ψ∗ = Ψ(k∗(Tc), T̆ (k∗(Tc))), K∗ = k∗(Tc), T ∗ = Tc.

Also, try to revise the lower bound Tmin by β2 in eq. (4.7).
(d) Go to Step 3.

5. The optimal solution is given by (K∗, T ∗) with the corresponding minimal cost Ψ∗.

In many real-world applications, the basic period must take a discrete value; for instance,
a day or a week. Still, we could apply the proposed algorithm for those cases after some
modifications. First, we should locate the lower bound Tmin and the upper bound Tmax

using the first two steps in the proposed algorithm. Next, instead of using Steps 3 and 4 in
the proposed algorithm, for each discrete value of T in the interval [Tmin, Tmax], we obtain
the corresponding vector of optimal maintenance frequencies k(T ) and its optimal objective
function value, i.e., Ψ(k(T ), T ). Then, we could find an optimal solution by picking the
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one with the minimum objective function value. Note that since the objective function
value may significantly change after taking the discrete values of �T ∗
 or �T ∗
+ 1 from the
proposed algorithm directly, we suggest examining the optimal objective function value for
each discrete value of T (in the interval [Tmin, Tmax] ).

5. Numerical Experiments

In the first part of this section, we employ a numerical example to demonstrate the imple-
mentation of the proposed search algorithm. Then, we use randomly generated instances to
show that the proposed search algorithm outperforms Goyal and Gunasekaran’s [3] search
procedure.

5.1. A demonstrative example

In this section, we use the five-group example presented in Goyal and Gunasekaran’s [3]
paper (pp. 658) to demonstrate the implementation of the proposed search algorithm. The
data set of this five-group example is shown in Table 1.

Table 1: The data set of the five-group example
m = 5 S = 50

ni Xi Yi ai bi si

10 0.8 0.90 80 3 198
24 0.6 0.95 50 2 192
30 0.4 0.85 90 1 193
16 0.6 0.95 85 1.5 205
12 0.5 0.94 95 2.5 204

In the first step, we first find the initial bounds by Tmin = 0.051 and Tmax = 14.620.
We note that Tmin is secured by Tmin = 2S/ΨU where ΨU = Ψ(k∗(T0), T0) = $1, 972.43 and
T0 = mini

√
0.5C1i/C2i = 7.622. Let K∗ = k∗(T0), T ∗ = T0 and Ψ∗ = ΨU .

In the second step, we use the iterative procedures to improve the bounds of the search
range. We note that it takes only one iteration to reach the latest updated upper bound
at Tmax = 12.410. On the other hand, the iterative procedure improves the lower bound to
0.071 after the first iteration, and after 50 iterations, we finally obtain the latest updated
lower bound by Tmin = 1.255.

Now we set Tc = Tmax = 12.410. Since Tc > Tmin, we proceed with the search to the next
convex sub-interval by setting π = arg mini{δi(ki) < Tc} = 4. We locate the next junction
point at w1 = δπ(kπ) = 10.762. We calculate the local minimum T̆ (k∗(Tc)) = 12.410 cor-
responding to k∗(Tc) by (4.6). Since T̆ (k∗(Tc)) ∈ (δπ(kπ), Tmax],we obtain the first local mini-
mum. Consequently, we compute the optimal objective function value Ψ(k∗(Tc), T̆ (k∗(Tc))) =
$1, 974.93 (without including the constant term u here) corresponding to this local mini-
mum. Also, by Lemma 4.4, we update the lower bound by Tmin = β2 = 0.1087 using eq.
(4.7).

Now, we move to the junction point by letting Tc = w1 = 10.762 with the set of optimal
maintenance frequency as k∗(δπ(kπ)) ≡ (k∗(Tc)\{k4}) ∪ {k4 + 1} = (1, 1, 2,2

¯
, 1). Again,

since Tc > Tmin, we proceed with the search to the next convex sub-interval by setting π =
arg min ı̄{δı̀(kı̀) < Tc} = 4. Next, we locate the next junction point at w2 = δπ(kπ) = 9.527.
We calculate the local minimum T̆ (k∗(Tc)) = 11.031 corresponding to k∗(Tc) by (4.6). Since
T̆ (k∗(Tc)) = 11.031 /∈ (w2, w1] = (9.527, 10.762), we obtain no local minimum at this convex
sub-interval.
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Next, we move to w2 = 9.527 with k∗(δπ(kπ)) ≡ (k∗(Tc)\{k4})∪{k4 +1} = (1, 1, 2,2
¯
, 1).

We continue the search, but find no local minimum in (w5, w2], either. We note that w3 =
δ3(3) = 8.658, w4 = δ5(2) = 8.501, and w5 = δ1(2) = 7.622. The next local minimum is
secured in the interval (w6, w5] = (6.214, 7.622]. We have k∗(Tc) = (2, 2, 3, 2, 2), T̆ (k∗(Tc)) =
6.650 and Ψ(k∗(Tc), T̆ (k∗(Tc))) = $1, 972.43. Since we obtain a local minimum with an
improved objective function value, we try to revise the lower bound by Lemma 4.4 with
Tmin = β2 = 1.530 using eq. (4.7). Then, we continue our search by moving to the next
junction point again.

In this example, we visit 29 convex sub-intervals in total, and secure 21 local minima
before the search algorithm terminates. When the search algorithm meets the eighth local
minimum at T̆ = 3.634, which is located in (w15, w14], we have the lowest cost $1,971.09.
We tried to revise the lower bound by Lemma 4.4 with Tmin = β2 = 2.174. (We note that
it was the last time we revised the lower bound there.) The search algorithm stops when
it encounters the largest junction point that is less than Tmin, that is w29 = 2.079. The
optimal solution is obtained at T ∗ = 3.634 (i.e., the eighth local minimum) and K∗ is given
by (3, 4, 6, 4, 3). The optimal annual total cost is given by Z∗ = Ψ∗ + u = $8, 409.33.

One might be interested in the effectiveness of employing the lower bound revising tech-
nique in Lemma 4.4 on shortening the range of the search. In this example, the value of
Tmin was revised from 1.255 to 2.174 during the search process, which in turn reduces the
number of the convex sub-intervals to visit from 53 to 29. It helps to save almost half of
the run time by employing the lower bound revising technique.

On other hand, we note that Goyal and Gunasekaran’s [3] search procedure solves this
example with the following solution Z∗ = $8, 451.41, T ∗ = 14.645, and K∗ is given by
(1, 1, 1, 1, 1). Obviously, the proposed search algorithm obtains a better solution than Goyal
and Gunasekaran’s [3] search procedure in this example.

If the basic period must take a discrete value, we should obtain the corresponding vector
of optimal maintenance frequencies k(T ) and its optimal objective function value, i.e.,
Ψ(k(T ), T ) for T ∈ [0.1087, 12.410] and T ∈ N

+. By evaluating the optimal objective
function values of each T ∈ {1, ..., 12}, we obtain the optimal solution by T ∗ = 4, k(T ) =
(3, 3, 5, 4, 3) and Ψ(k(T ), T ) = 1, 971, 693. The optimal objective function value Ψ(k(T ), T )
increases by only 0.03%, which is not significant at all, in this example.

5.2. Random experiments

In this subsection, we present a summary of our random experiments. We designed our
experimental settings by referring to the settings in Table 1 brought by [3]. We selected six
different values for the number of groups of vehicles (m = 3, 5, 7, 10, 25, 50), and seven dif-
ferent values for the fixed cost in each basic period T (S = 10, 50, 100, 200, 500, 750, 1, 000).
This yielded 42 combinations from these parameter settings. Then, for each combination,
we randomly generated 1,000 instances by randomly choosing the values for Xi, Yi, ai, bi and
si by using uniform distribution functions. Table 2 indicates the ranges of these uniformly
distributed random variables.

After randomly generating 42,000 instances in total, we solved each one of them by the
proposed search algorithm as well as Goyal and Gunasekaran’s [3] search procedure on a
Pentium-III PC with a 736M-CPU. Our experimental results for the smaller-size (with m =
3, 5, 7) and larger-size (with m = 10, 25, 50) are summarized in Tables 3 and 4, respectively.

One may observe that the run time of Goyal and Gunasekaran’s [3] search procedure
is extremely short. On the other hand, the proposed search algorithm solves the TFMSP
with an optimal solution very efficiently. (We note that the third and the fourth columns
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Table 2: The settings of the parameters in our random experiments
m 3, 5, 7, 10, 25, 50
S 10, 50, 100, 200, 500, 750, 1000
ni U [10 − 30]
Xi U [0.4 − 0.8]
Yi U [0.9 − 0.95]
ai U [5 − 10]
bi U [1 − 3]
si U [25 − 40]

Table 3: Our experimental results for the smaller-size problems

The proposed algorithm Goyal and Gunasekaran’s [3] search procedure
m S Total Run Avg. no. Total Run Non-optimal Max. Avg.

time of convex time Error Error
(seconds) sub-intervals (seconds) instances (%) (%)

3 10 0.722 280 0.070 457/1000 3.673 0.268
50 0.320 80 0.080 174/1000 2.803 0.114
100 0.260 42 0.060 115/1000 2.138 0.056
200 0.191 23 0.060 65/1000 2.079 0.031
500 0.150 11 0.080 10/1000 0.318 0.014
750 0.130 8 0.060 1/1000 0.247 0.000
1000 0.130 7 0.060 2/1000 0.361 0.000

5 10 1.252 433 0.100 741/1000 2.363 0.366
50 0.571 152 0.091 288/1000 2.735 0.129
100 0.440 112 0.110 212/1000 1.796 0.089
200 0.321 67 0.090 148/1000 1.488 0.043
500 0.260 30 0.100 43/1000 1.244 0.009
750 0.211 18 0.100 20/1000 0.803 0.004
1000 0.190 15 0.100 6/1000 0.373 0.001

7 10 1.903 471 0.131 889/1000 1.862 0.449
50 0.891 295 0.140 470/1000 1.602 0.167
100 0.651 202 0.130 236/1000 1.381 0.070
200 0.491 104 0.150 203/1000 1.405 0.054
500 0.360 56 0.140 84/1000 0.723 0.015
750 0.311 37 0.141 46/1000 0.485 0.006
1000 0.270 28 0.140 32/1000 0.395 0.004
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Table 4: Our experimental results for the larger-size problems

The proposed algorithm Goyal and Gunasekaran’s [3] search procedure
Total Run Avg. no. Total Run time Non-optimal Max. Avg.
time of convex time Error Error

m S (seconds) sub-intervals (seconds) instances (%) (%)
10 10 3.154 960 0.190 979/1000 1.635 0.502

50 1.443 635 0.190 628/1000 1.440 0.193
100 1.041 449 0.191 252/1000 1.063 0.082
200 0.771 224 0.190 288/1000 1.725 0.062
500 0.541 100 0.190 163/1000 0.654 0.024
750 0.471 72 0.190 121/1000 0.850 0.014
1000 0.420 51 0.191 76/1000 0.441 0.009

25 10 11.817 4120 0.470 1000/1000 1.605 0.665
50 5.548 2601 0.511 985/1000 1.067 0.398
100 3.756 1975 0.581 867/1000 0.942 0.229
200 3.074 955 0.471 592/1000 0.700 0.071
500 1.913 539 0.470 461/1000 0.596 0.034
750 1.482 392 0.461 435/1000 0.382 0.030
1000 1.352 310 0.471 355/1000 0.308 0.021

50 10 36.152 15201 0.931 1000/1000 1.247 0.775
50 15.813 9728 0.941 1000/1000 1.152 0.529
100 10.995 7564 0.942 999/1000 0.870 0.391
200 7.782 3521 0.921 958/1000 0.998 0.211
500 5.007 2064 0.941 747/1000 0.387 0.040
750 4.476 1501 0.922 707/1000 0.411 0.033
1000 3.946 1022 0.931 712/1000 0.257 0.030

of Tables 3 and 4 indicate the total run time for all of the 1,000 instances for a particular
parameter setting.) It takes less than 36 seconds for 1,000 instances of larger-size problems
with m = 50. (Or, we could solve each instance within 0.04 seconds on average.) For the
readers’ further information on the run time, we also include the data of the average number
of convex sub-intervals visited by the proposed algorithm in Tables 3 and 4.

On the aspect of solution quality, the proposed search algorithm significantly outperforms
Goyal and Gunasekaran’s search procedure. In the fifth column of Tables 3 and 4, we indicate
the number of instances out of the 1,000 instances in the combination of m and S that Goyal
and Gunasekaran’s search procedure is not able to obtain an optimal solution. The number
of instances that Goyal and Gunasekaran’s search procedure obtains non-optimal solutions
increases as the size of the problem m increases, and it decreases as the value of S increases.
In the last two columns of Tables 3 and 4, we present the maximum error and the average
error of Goyal and Gunasekaran’s search procedure in percentages, respectively. We observe
that the smaller the values of m and S, the larger the maximum error and the average error.
For the same value of S, the maximum error and the average error increase as the value of
m increases. Also, for the same value of m, the average error decreases as the value of S
increases.
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6. Concluding Remarks

In this study, we presented a full analysis on the mathematical model for the Transportation
Fleet Maintenance Scheduling Problem (TFMSP). We showed that the optimal objective
function value of the mathematical model is piece-wise convex with respect to T . By utilizing
our theoretical results, we proposed an efficient search algorithm that solves the optimal so-
lution for the problem (P ) within a very short run time. Based on our random experiments,
we conclude that the proposed search algorithm out-performs Goyal and Gunasekaran’s [3]
search procedure. Therefore, the proposed search algorithm provides the decision makers in
transportation industries an excellent decision-support tool for their planned maintenance
operations.

On the other hand, as one may notice it from our numerical results, the run time of the
proposed algorithm grows significantly when the number of groups of vehicles (i.e., m) is
large and the fixed maintenance cost (i.e., S) is small. The authors are currently devoting
their efforts to improve the efficiency of the proposed algorithm for these cases.
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