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Abstract This paper considers one-machine sequencing situations with linear costs in which the urgency
of players is private information. To study strategic behavior of players based on neighbor switches we
associate with such a situation a Bayesian game where the utility functions are based on gain split rules
and study whether the truth-telling strategy profile is an equilibrium of the game. The existence of such
truth-telling equilibria turns out to be exceptional.
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1. Introduction

This paper deals with one-machine sequencing situations with linear costs under incomplete
information. In such sequencing situations some players in need for specific service are stand-
ing in a queue in front of a server in the order of their arrival and have costs proportionally
with the time spent in the queue. A basic question addressed in the sequencing literature is
that of reordering the queue such that the aggregate cost savings are maximized. To cope
with this question one needs to know the relevant characteristics of players, specifically the
individual cost per unit of time and the processing (or service) time. The ratio between the
individual cost per unit of time and the processing time, called the player’s urgency, plays
a key role. It is often assumed that these parameters are deterministic and common knowl-
edge. For deterministic sequencing situations Smith [12] proved that ordering the players
according to the decreasing order of their urgency, results in maximum (total) cost savings.
A natural way to reach the optimal order according to Smith is via neighbor switches. To
make such switches are attractive, transfer payoffs and division of neighbor gains between
players are tackled via various division rules. The class of (neighbor) gain split rules where
each switch of positions for neighbors is coupled with a split of the gain generated by the
neighbor switch has received much attention in the (deterministic) sequencing situations
literature. Curiel et al. [1] consider interaction in sequencing situations based on the equal
gain split rule (EGS-rule) where the gain generated by each neighbor switch is divided
equally between the two switching players. To motivate their interest in the EGS-rule they
have constructed a cooperative game related with a deterministic sequencing situation and
proved that the EGS-rule leads to a core element of the corresponding sequencing game.
Hamers et al. [7] have considered gain split rules where the gain generated by each neigh-
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bor switch is divided between the switching players according to a quota and this splitting
fraction may be different in each neighbor switch. Such split rules generate the split core
of a related cooperative sequencing game. In our paper we consider gain split rules where
the splitting fraction ε is the same for all neighbor switches, which we refer to as GSε-rules.
Such rules are appealing for players in a sequencing situation because no player loses from
any neighbor switch made, and, consequently, all players are (weakly) better off. For other
sharing rules for sequencing situations with complete information we refer the reader to Fer-
nandez et al. [5]. Some other properties of players in sequencing situations with complete
information, like due dates and ready times, have been considered by Hamers et al. [6].

Sequencing situations under incomplete information have been also studied in the Op-
erations Research literature and in the Game Theory literature. In such situations, each
player’s characteristics are private information and have to be reported by the players. In
most literature on sequencing situations under incomplete information, dominant strategy
incentive compatibility has been investigated. We refer here to the papers by Suijs [13],
Mitra [9][10] dealing with public decision problems arising from one-machine sequencing sit-
uations with linear costs under incomplete information. Suijs [13] has shown that the only
incentive compatible payoff transfer schemes for such a public decision problem are budget
balanced Groves schemes which are not individually rational. Mitra [9] has proved that
it is possible to find dominant strategy incentive mechanisms satisfying efficiency, budget
balancedness and individual rationality. A more detailed comparison between our model
and those of Suijs and Mitra can be found at the end of Section 5. Looking for mechanisms
that will also imply an incentive for the individual players to participate taking into ac-
count their rights due to their initial place in the queue, we relate in our paper a sequencing
situation under incomplete information with a Bayesian game where switches and transfer
payoffs between players are based on the class of GSε-rules, and investigate under which
GSε-rules the truth-telling strategy profile is an equilibrium, i.e. a truth-telling equilibrium
exists. We mainly deal with queueing situations, which are special sequencing situations
where the time of service is fixed and equal for all players. For such situations we find that
with two possible types regarding the cost per unit of time, a truth-telling equilibrium of
the related Bayesian game exists under any GSε-rule. Further, with three possible types,
the subclass of GSε-rules for which a truth-telling equilibrium exists is characterized. For
queueing situations with more than three types and for any sequencing situation where each
player’s processing time is private information, we show that no GSε-rule exists that assures
the existence of a truth-telling equilibrium for the related Bayesian game.

The paper is organized as follows. In Section 2 the sequencing situation where the
players’ characteristics are private information is formalized, a related Bayesian game whose
transfer payment functions are based on the class of GSε-rules is introduced and the notion
of truth-telling equilibrium is defined. Special attention is paid to Bayesian games arising
from queueing situations and their truth-telling equilibria. Section 3 presents our possibility
results on the existence of truth-telling equilibria of Bayesian games arising from queueing
situations. In Section 4 we present our impossibility results on the existence of truth-telling
equilibria under GSε-rules. The concluding Section 5 is followed by an Appendix dealing
with a graphical representation of the domain of GSε-rules for the case of three possible
types from Section 3.
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2. Models of Discrete Sequencing Situations

We consider one-machine sequencing situations with linear costs and n players where each
player’s relevant characteristics, namely the cost per unit of time and the processing (or
service) time, are private information. It is common knowledge that all players are risk-
neutral and their relevant characteristics are independently drawn from general populations
C and S of possible values (or types) where C = {c1, c2, . . . , ck} is the finite set of all
possible values for the cost-per-unit-of-time parameter, and S = {s1, s2, . . . , sm} is the finite
set of all possible values for the service-time parameter. The probability distributions of
possible values across each population, which we denote here by pC ∈ �|C|

+ and pS ∈ �|S|
+

with
∑
c∈C

pC(c) = 1 ,
∑
s∈S

pS(s) = 1 respectively, are commonly known by all players. We

assume that these distributions are independent and the same for all players. A sequencing
situation under incomplete information can be formalized as a tuple 〈N, T, p〉 where:

• N is the finite set of players of the form N = {1, 2, . . . , n}, with a player i ∈ N having
the i-th position in the (initial) queue;

• T = C × S is the finite set describing all the possible values of the players’ relevant
characteristics;

• p is a probability distribution on T such that p(c, s) = pC(c)pS(s) for each (c, s) ∈ T .

We suppose that players have the possibility to switch positions with their neighbors,
and payoff transfers according to a commonly agreed upon rule are allowed. The payoff
transferred between players may depend on their announced urgencies. Recall that the ur-
gency of a player is the ratio between his cost per unit of time and the service time, and
efficiency of a queue can be achieved by rearranging the players via neighbor switches in
a decreasing order of their urgencies. Efficiency of the queue means here minimizing the
expected aggregate costs of time spent in the system. Each player is asked independently
and simultaneously to announce his relevant characteristics and each player’s objective is
to maximize his expected payoff. Given a rule under which payoff transfers are made, the
question is whether it can be advantageous for a player to misrepresent his true character-
istics, and, consequently, his true urgency. Specifically, we want to find out whether there
are sequencing situations under incomplete information and rules such that truth-telling is
an equilibrium in the sense that unilateral deviation from truth-telling does not pay. We
would like the rules under consideration to have the property that players’ participation is
voluntary (their participation cannot decrease their expected payoff).

To approach these questions we focus on the class of gain split rules GSε with ε ∈ [0, 1].
We say that a group applies a GSε-rule if for each neighbor switch the follower (completely)
compensates the predecessor for the position’s loss and additionally gives the predecessor
the fraction ε of the net gain generated by the switch.

One can easily see that (in case of truth-telling) each switching player is weakly better
off since the follower reduces his costs by (switching and) getting a better position, and
keeps the fraction (1 − ε) of the achieved gain, whereas the predecessor earns the splitting
fraction ε of the achieved gain.

With each sequencing situation under incomplete information 〈N, T, p〉 and each GSε-
rule we associate a Bayesian game (cf. Myerson [11]), which we denote by Gε, of the form
〈N, Ω, p, (Ai, ui)i∈N , ε〉 where:

• N is the set of players waiting for service in the initial queue;
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• Ω = T N is the set of possible ”states of nature”, each of which is a description of all the
players’ relevant characteristics; the profile of the players’ types is noted by t ∈ Ω with
t = (t1, t2, . . . , tn), and where each player’s type is of the form ti = (tC

i , tS
i ) with tC

i ∈ C
and tS

i ∈ S; hereafter, we also use the notation t−i = (t1, t2, . . . , ti−1, ti+1, . . . , tn);

• p is the probability distribution on T as described above;

• ε here specifies a GSε-rule as described above;

and for each i in N :

• Ai = T is the action set for i; we denote by A the set
∏
i∈N

Ai; the profile of the players’

announced types (or actions) is denoted by a ∈ A with a = (a1, a2, . . . , an), and where
each player’s announced type is of the form ai = (aC

i , aS
i ) with aC

i ∈ C and aS
i ∈ S;

• ui is the payoff function for player i, ui:A × Ω → �.

Let (a, t) be a realized play of the game Gε, with a ∈ A and t ∈ Ω. Then ui(a, t)
is the payoff of i. We denote by ui(t, t) i’s payoff in case all players report their true
characteristics and by ui((t−i, ai), t) i’s payoff if player i unilaterally deviates from truth-
telling by announcing ai �= ti.

Each agent i follows a strategy function of the form χi : T → T , χi(ti) = ai. We denote
by χt

i the truth-telling strategy for player i and by χt the truth-telling strategy profile for
all players; then (χt

−i, ai) represents a strategy profile where player i chooses to announce
ai �= ti while all other players follow their truth-telling strategy.

Given his own realized type and some assumption about other players’ strategies, player
i can consider his expected payoff Ui((χ−i, ai), ti). In this paper we do not try to find
all Bayesian equilibria, but rather check whether the truth-telling strategy profile is an
equilibrium of the game Gε. We therefore concentrate on the expected payoff Ui((χ

t
−i, ai), ti)

where a player i assumes that all the other players follow their truth-telling strategy.

The truth-telling strategy profile is an equilibrium of the game Gε, which we call in
the following a truth-telling equilibrium (TT-equilibrium), if for each i ∈ N and for any
realization t, it holds that

Ui((χ
t
−i, ti), ti) ≥ Ui((χ

t
−i, ai), ti) for all ai ∈ T, ai �= ti. (1)

The notions of a Bayesian game and a Bayesian equilibrium were introduced by Harsanyi
[8]; see also Myerson [11].

In the following we concentrate on GSε-rules and give explicit expressions for the payoff
functions and the expected payoffs of players. Each player i, i ∈ N with true type ti =
(tC

i , tS
i ) has to announce a type ai = (aC

i , aS
i ). A neighbor switch will happen for two players

i and j such that i < j if and only if aC
i /aS

i < aC
j /aS

j (i.e. player j’s urgency is higher than
player i’s urgency). In such a case, player j will move in front of player i, and the payment
made by j to i will be aC

i ·aS
j + ε(aC

j ·aS
i −aC

i ·aS
j ) where the first part is a compensation for

the reported loss due to i’s move back, and the second part is the share ε of the net gain
according to the reported values.

Consequently, for each i ∈ N , i’s payoff function is given by

ui(a, t) =
∑
j<i

(sgn(aC
i /aS

i − aC
j /aS

j )) · f j,i
i (a, t) +

∑
j>i

(sgn(aC
j /aS

j − aC
i /aS

i )) · f i,j
i (a, t). (2)
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where the function sgn, defined by:

sgn(x) =

{
1 x > 0

0 otherwise
, (3)

is used to indicate whether a switch of i with a player j occurs; f j,i
i (a, t) is the payoff for i

generated by a switch with a predecessor j(in case i > j, aC
i · aS

j > aC
j · aS

i ), and f i,j
i (a, t) is

the payoff for i generated by a switch with a follower j (in case i < j, aC
i · aS

j < aC
j · aS

i ) as
follows:

f j,i
i (a, t) = tC

i · tS
j − aC

j · aS
i − ε(aC

i · aS
j − aC

j · aS
i ); (4)

f i,j
i (a, t) = −tC

i · tS
j + aC

i · aS
j + ε(aC

j · aS
i − aC

i · aS
j ). (5)

Specifically, in case of truth-telling, the payoff and the expected payoff are given by:

ui(t, t) =
∑
j<i

(sgn(tC
i · tS

j − tC
j · tS

i )) · (tC
i · tS

j − tC
j · tS

i )(1 − ε)

+
∑
j>i

(sgn(tC
j · tS

i − tC
i · tS

j )) · ε(tC
j · tS

i − tC
i · tS

j ); (6)

Ui((χ
t
−i, ti), ti) = (i − 1)

∑
(cr ,sl)| cr

sl
<

tC
i

tS
i

pC(cr)p
S(sl) · (tC

i · sl − cr · tS
i )(1 − ε)

+ (n − i)
∑

(cr,sl)| cr
sl

>
tCi
tSi

pC(cr)p
S(sl) · ε(cr · tS

i − tC
i · sl); (7)

where (cr, sl) ∈ T is any possible type for any player j ∈ N \ {i}.
When player i deviates unilaterally from truth-telling, we have:

ui((t−i, ai), t) =
∑
j<i

(sgn(aC
i · tS

j − tC
j · aS

i )) · 
tC
i · tS

j − tC
j · aS

i − ε(aC
i · tS

j − tC
j · aS

i )�

+
∑
j>i

(sgn(tC
j · aS

i − aC
i · tS

j )) · 
−tC
i · tS

j + aC
i · tS

j + ε(tC
j · aS

i − aC
i · tS

j )�; (8)

Ui((χ
t
−i, ai), ti) = (i − 1)

∑
(cr ,sl)| cr

sl
<

aC
i

aS
i

pC(cr)p
S(sl) · 
tC

i · sl − cr · aS
i − ε(aC

i · sl − cr · aS
i )�

+ (n − i)
∑

(cr ,sl)| cr
sl

>
aC

i
aS

i

pC(cr)p
S(sl) · 
−tC

i · sl + aC
i · sl + ε(cr · aS

i − aC
i · sl)�. (9)

Special attention is paid in the following sections to queueing situations with linear costs,
i.e. sequencing situations with linear costs where all players have the same service time, say
one unit of time, and this is common knowledge. When referring to queueing situations we
hereafter simply replace tS

i , aS
i , sl by 1, and use ti, ai ∈ C instead of tC

i , aC
i to denote player

i’s cost per unit of time and his announced value of this parameter, respectively.
A queueing situation under incomplete information is a tuple 〈N, C, p〉, where C is the

finite set of all possible values for the cost per unit of time for players in N , and p = pC is
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a probability distribution on C . Each player’s cost per unit of time is private information,
while C and p are common knowledge.

The Bayesian game arising from such a queueing situation where a GSε-rule is used for
payoff transfers is a simplified version of Gε. Agents are asked to announce a value: ai.
When a GSε-rule is used, then a switch will happen for two players such that i < j and
ai < aj. In such a case, the payment made by j to i will be ai + ε(aj − ai).

For each i ∈ N , the payoff function is given by

ui(a, t) =
∑
j<i

(sgn(ai − aj)) · f j,i
i (a, t) +

∑
j>i

(sgn(aj − ai)) · f i,j
i (a, t) (10)

where the function sgn is as before, and where f j,i
i (a, t) refers to a switch of i with a

predecessor j (in case i > j, ai > aj), and f i,j
i (a, t) refers to a switch of i with a follower j

(in case i < j, ai < aj) as follows:

f j,i
i (a, t) = ti − aj − ε(ai − aj) i > j, ai > aj; (11)

f i,j
i (a, t) = −ti + ai + ε(aj − ai) i < j, ai < aj. (12)

Specifically, in case of truth-telling, the payoff and the expected payoff are given by:

ui(t, t) =
∑
j<i

(sgn(ti − tj) · (ti − tj)(1 − ε) +
∑
j>i

(sgn(tj − ti)) · ε(tj − ti); (13)

Ui((χ
t
−i, ti), ti) = (i − 1)

∑
cr<ti

p(cr) · (ti − cr)(1 − ε) + (n − i)
∑

cr>ti

p(cr) · ε(cr − ti). (14)

When player i deviates unilaterally from truth-telling, we have:

ui((t−i, ai), t) =
∑
j<i

(sgn(ai − tj)) · 
ti − tj − ε(ai − tj)�

+
∑
j>i

(sgn(tj − ai)) · 
−ti + ai + ε(tj − ai)�; (15)

Ui((χ
t
−i, ai), ti) = (i − 1)

∑
cr<ai

p(cr) · [ti − cr − ε(ai − cr)]

+ (n − i)
∑

cr>ai

p(cr) · [−ti + ai + ε(cr − ai). (16)

This model of a queueing situation under incomplete information is considered in Sections
3,4 and in Appendix 1 for the cases |C| = 2, |C| = 3 and |C| > 3 to analyze the existence
of a truth-telling equilibrium in Gε with respect to the cost per unit of time.

3. Existence of a Truth-Telling Equilibrium

In this section we consider the model 〈N, C, p〉 of queueing situations with incomplete in-
formation where |C| ≤ 3.

We first analyze the case with only two possible values for cost per unit of time and
prove that for any GSε-rule with ε ∈ [0, 1] supports a TT-equilibrium of Gε.

Theorem 3.1 Let 〈N, C, p〉 be a queueing situation with |C| = 2, and let Gε be the corre-
sponding Bayesian game. Then for each ε ∈ [0, 1] the GSε-rule assures the existence of a
truth-telling equilibrium of the game Gε.

c© Operations Research Society of Japan JORSJ (2006) 49-1
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proof We show that for each ε ∈ [0, 1] and for each i ∈ N we have Ui((χ
t
−i, c1), c1) ≥

Ui((χ
t
−i, c2), c1) and Ui((χ

t
−i, c2), c2) ≥ Ui((χ

t
−i, c1), c2). Take ε ∈ [0, 1] and i ∈ N , and

suppose that all players in N \ {i} reveal their true type. We consider two cases:
(i) Let i be of type c1. If i reveals his true type c1 then there are no switches of i with

his i − 1 predecessors. Further, switches with followers of i of type c2 take place. The
expected number of followers of type c2 is (n− i)p(c2) and i gains a payoff of ε(c2 − c1)
from each of these switches. We obtain that the expected payoff for player i if he reveals
his true type c1 is given by

Ui((χ
t
−i, c1), c1) = (i− 1) · 0 + (n − i)p(c2)ε(c2 − c1) ≥ 0. (17)

If player i announces c2 as his type then there are only switches with predecessors of
type c1. The expected number of predecessors of type c1 is (i − 1)p(c1). Each of these
switches will lead to a loss of ε(c2 − c1), since player i will pay the switching player
c1 + ε(c2 − c1), but he will only gain c1 from moving forward. We obtain that

Ui((χ
t
−i, c2), c1) = (n − i) · 0 − (i − 1)p(c1)ε(c2 − c1) ≤ 0. (18)

Hence, we find that Ui((χ
t
−i, c1), c1) ≥ Ui((χ

t
−i, c2), c1).

(ii) Let i be of type c2. We follow similar considerations as above. Specifically, note that if
i chooses to misrepresent his type by announcing c1, then he will make switches with
followers of type c2 from whom he will receive a payoff of c1 +ε(c2−c1). This payoff will
not be sufficient to compensate for the loss of the amount c2 from moving backward.
So, we have Ui((χ

t
−i, c2), c2) ≥ Ui((χ

t
−i, c1), c2), because

Ui((χ
t
−i, c2), c2) = (i − 1)p(c1)(1 − ε)(c2 − c1) ≥ 0 (19)

Ui((χ
t
−i, c1), c2) = −(n − i)p(c2)(1 − ε)(c2 − c1) ≤ 0. ¨ (20)

Remark 3.1 : The existence of TT-equilibria of a Bayesian game arising from a queueing
situation with linear costs is also guaranteed for each gain split rule in case there are only two
types - the same for all players - on which the players may have different a priori probability
distributions.

We now focus on queueing situations 〈N, C, p〉 with |C| = 3 and characterize a subclass
of queueing situations for which the truth-telling strategy profile is an equilibrium of the
game Gε. We denote by E(p) the set of GSε-rules for which a TT-equilibrium exists, given
the probability distribution p.

Theorem 3.2 Let 〈N, C, p〉 be a queueing situation with |C| = 3, and let Gε be the cor-
responding Bayesian game. In case p > 0, E(p) is nonempty if and only if the probability dis-

tribution p is such that p(c2) ≥
√

p(c1) · p(c3); specifically, for each ε ∈
[

p(c3)
p(c3)+p(c2)

, p(c2)
p(c1)+p(c2)

]
the GSε-rule assures the existence of a truth-telling equilibrium of the game Gε. In case
p(c1) = 1, E(p) = {GS0-rule}, and in case p(c3) = 1, E(p) = {GS1-rule}.
proof We consider player i ∈ N and, assuming that all other players report their true
types, analyze if it is a best strategy for player i to report his true type or not. We look for
necessary and sufficient conditions for ε and p such that inequality (1) holds for each i ∈ N ,
ti, ai ∈ T .
(i) Suppose first that player i is of type c1.

If all players, including i are truthfully reporting their cost per unit of time in the
system, then i will change places with all followers of type c2 or c3, and will be paid by them
according to a GSε-rule.

c© Operations Research Society of Japan JORSJ (2006) 49-1



26 A. Veltman, S. Tijs & R. Branzei

• If player i decides to report c3 instead of c1, then he gains nothing and loses the possible
gains associated with the switches with followers of type c2 and c3 that will not take
place due to his false report. In addition, he will make switches with predecessors of
type c1 and c2, and pay them more than these switches are worth for him.

• If player i decides to report c2 instead of c1, then he loses the gains associated with the
switches with followers of type c2; he will switch with predecessors of type c1 paying
them more than such a switch is worth for him. However, there will be an increase in
the payment player i will receive from followers of type c3. Therefore

Ui((χ
t
−i, c2), c1) − Ui((χ

t
−i, c1), c1) = (n − i) · p(c3)[c2 + ε(c3 − c2) − c1 − ε(c3 − c1)]

− (n − i) · p(c2)[c1 + ε(c2 − c1) − c1] − (i − 1) · p(c1)[c1 + ε(c2 − c1) − c1]

= (n − i) · [p(c3) · (c2 − c1)(1 − ε)− p(c2) · ε(c2 − c1)] − (i− 1) · p(c1) · ε(c2 − c1) (21)

(ii) Suppose now that player i is of type c2.
For a player i of type c2, assuming that all other players are truthfully reporting their

urgency types, there is no incentive to deviate from TT-equilibrium, as we show in the
following:
• If player i reports c3 instead of c2, then he will lose his chance to gain from switching

with followers of type c3. On the other hand, he will have to pay more to predecessors
of type c1 with whom he switches, and he will have to make additional switches with
predecessors of type c2, paying them more than he gains from the switches.

• Similarly, player i will lose from reporting c1 instead of c2 since he will have to switch with
followers of type c2 (who will not pay enough for compensating him); he will still switch
with followers of type c3, but he will receive smaller payments from them (relative to the
payments if he announced c2); and he will lose the gains from switches with predecessors
of type c1.

(iii) Finally, suppose that player i is of type c3.
• If player i reports c1 instead of c3, he will lose the gains from switches with predecessors

of type c1 and c2. In addition he will lose from switches he will make with followers of
type c2 and c3 (as he will not be paid sufficiently).

• If player i reports c2 instead of c3, he will lose the gains from switches with predecessors of
type c2, and will also lose from switches he will make with followers of type c3. However,
he will gain from switches with predecessors of type c1, to whom he will have to pay less.
Hence,

Ui((χ
t
−i, c2), c3) − Ui((χ

t
−i, c3), c3) = (i − 1) · p(c1)[c1 + ε(c3 − c1) − c1 − ε(c2 − c1)]

− (i − 1) · p(c2)[c3 − c2 − ε(c3 − c2)] − (n − i) · p(c3)[c3 − c2 − ε(c3 − c2)]

= (i − 1) · [p(c1) · ε(c3 − c2) − p(c2) · (c3 − c2)(1 − ε)] − (n − i) · p(c3)(c3 − c2)(1 − ε)
(22)

Following the above analysis, all the conditions come down to two effective conditions
that need to be satisfied for every player i to ensure the existence of the TT-equilibrium in
Gε, which are

Ui((χ
t
−i, c2), c1) − Ui((χ

t
−i, c1), c1) ≤ 0 and Ui((χ

t
−i, c2), c3) − Ui((χ

t
−i, c3), c3) ≤ 0. (23)

Now, consider (21), and notice that for player 1 we have

U1((χ
t
−1, c2), c1)−U1((χ

t
−1, c1), c1) = (n−1)[p(c3)·(c2−c1)(1−ε)−p(c2)·ε(c2−c1)] ≤ 0, (24)
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implying that
p(c3) · (a2 − a1)(1 − ε) − p(c2) · ε(a2 − a1) ≤ 0. (25)

One can easily verify that when (25) holds, then Ui((χ
t
−i, c2), c1) − Ui((χ

t
−i, c1), c1) ≤ 0

for each i ∈ N , since the last term in (21) is always non-positive.
Similarly, for Ui((χ

t
−i, c2), c3) − Ui((χ

t
−i, c3), c3) ≤ 0 to hold for each i ∈ N , we can find

from (22) (by considering player n) that it is necessary and sufficient that

p(c1) · ε(c3 − c2) − p(c2) · (c3 − c2)(1 − ε) ≤ 0. (26)

In case p(c1) �= 1 and p(c3) �= 1, one obtains from (25) and (26) .

ε ≥ p(c3)
p(c3)+p(c2)

and ε ≤ p(c2)
p(c1)+p(c2)

, respectively, and it is easy to further verify that these

conditions may only hold if p(c2) ≥
√

p(c1) · p(c3).
Now, to analyze the case p(c1) = 1, and the case p(c3) = 1, we use straightforwardly

inequalities (25) and (26). We obtain that E(p) = {GS0-rule} in case p(c1) = 1, and
E(p) = {GS1-rule} in case p(c3) = 1. ¨

See Appendix 1 for a graphical representation of the subclass of distributions described
in this section.

4. Impossibility Results

First, we consider queueing situations 〈N, C, p〉 with |C| > 3 and p > 0.

Theorem 4.1 Let 〈N, C, p〉 be a queueing situation with |C| > 3 and p > 0, and let Gε be
the corresponding Bayesian game. Then E(p) = φ.

proof For a TT-equilibrium to hold in the case of more than three urgency types there
are many non-trivial conditions to be satisfied (e.g. when |C| = 4, for each player there
are six inequalities instead of two). However, to prove the above statement, it is enough to
look at two conditions. Specifically, we consider U1((χ

t
−i, c2), c1) − U1((χ

t
−i, c1), c1) ≤ 0 and

Un((χt
−i, ck−1), ck) − Un((χt

−i, ck), ck) ≤ 0.
For a TT-equilibrium of Gε to exist, a GSε-rule needs to satisfy (among other conditions):

U1((χ
t
−i, c2), c1) − U1((χ

t
−i, c1), c1) =

[(1 − ε)(c2 − c1) ·
k∑

r=3

p(cr) − p(c2) · ε(c2 − c1)](n− 1) ≤ 0, (27)

Un((χ
t
−i, ck−1), ck) − Un((χt

−i, ck), ck) =

[ε(ck − ck−1) ·
k−2∑
r=1

p(cr) − p(ck−1) · (1 − ε)(ck − ck−1)](n− 1) ≤ 0. (28)

Since p > 0, from (27) and (28) we obtain ε ≥

k∑
r=3

p(cr)

k∑
r=2

p(cr)

and ε ≤ p(ck−1)
k−1∑
r=1

p(cr)

.

Hence, for such a GSε-rule to exist, we need

k∑
r=3

p(cr)

k∑
r=2

p(cr)

≤ p(ck−1)
k−1∑
r=1

p(cr)

to hold or, equivalently,

k−2∑
r=1

p(cr) ·
k∑

r=3

p(cr) ≤ p(c2) · p(ck−1). (29)
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For |C| ≥ 4 and p > 0 one can verify that
k−2∑
r=1

p(cr) ·
k∑

r=3

p(cr) > p(c2) · p(ck−1). Hence,

we can conclude that for queueing situations 〈N, C, p〉 with |C| > 3 and p > 0 there is no
GSε-rule for which a TT-equilibrium of the Bayesian game Gε exists. ¨
Remark 4.1 : Note that in case |C| = 3 inequality (29) holds for a subclass of queueing
situations and we obtain again the condition p(c2) ≥

√
p(c1) · p(c3) that we have established

before in Section 3.
Remark 4.2 : For queueing situations 〈N, C, p〉 with |C| > 3 and a degenerate probability
distribution p, there may still exist GSε-rules leading to truth-telling. For example, if
|C| = 4 in case p(c1) = 1, E(p) = {GS0}, while E(p) = {GS1} in case p(c4) = 1.
Remark 4.3 : At least partial efficiency and TT-equilibrium can be reached in some
queueing situations 〈N, C, p〉 with |C| > 3 and p > 0 by clustering the possible values for
cost-per-unit-of-time parameter as to obtain three type-ranges: a low-cost group, a middle-
cost group consisting of a single value, and a high-cost group. A representative value for
each type-range is defined (which serves for calculating the payments according to a GSε-
rule), and players are asked to report to which type-range they belong. If the representative
value is defined as the highest value in the low-cost group , the lowest value for the high-cost
group, and the unique value for the middle-cost group, then a truth-telling equilibrium can
be achieved under a condition similar to that given in Theorem 4.1.

Until now we have considered queueing situations with incomplete information 〈N, C, p〉,
where players face a revelation problem only with respect to their cost per unit of time. In
the following we focus on the model 〈N, T, p〉 with |S| ≥ 2. We show that for such situations
there is no GSε-rule such that a TT-equilibrium of the related game Gε exists if players are
asked to report their processing time (either in addition to reporting the cost per unit of
time, or in the case all players have the same cost per unit of time).

Theorem 4.2 Let 〈N, T, p〉 be a sequencing situation with incomplete information, with
|S| ≥ 2 and p > 0, and let Gε be the corresponding Bayesian game. Then E(p) = φ.

proof We look at player 1, and assume that his true type is t1 = (ck, s1). Assume also that
all other players are reporting their true types. If player 1 reports his true type, then his
urgency (ck/s1) is the highest possible, and he will not change places with any other player.

We now consider the situation where player 1 deviates from truth-telling by reporting
a1 = (ck, sm). Then, with positive probability, there will be followers i of player 1 whose

type is ti = (tC
i , tS

i ), such that
tCi
tSi

> ck

sm
, with whom he will switch places (assuming they

announce their true value). As a result of each such switch player 1 will lose ck · tS
i due to

moving back, but he will receive from player i the amount ck · tS
i + ε(tC

i · sm − ck · tS
i ). This

shows that for any ε > 0 player 1 is (strictly) better off by deviating from the truth-telling
strategy and reporting a1 = (ck, sm).

To complete the proof, we need only to consider the case ε = 0. Consider that player n
is of type tn = (c1, sm). It can be easily checked that for every ε < 1, it is strictly profitable
for player n to deviate from the truth-telling strategy by reporting an = (c1, s1). ¨

5. Concluding Remarks

This paper deals with sequencing situations with incomplete information where the cost per
unit of time and/or processing time of players are private information. Interaction among
players to rearrange the queue optimally (i.e., in decreasing order of their urgencies) is only
possible if players announce their characteristics. The question we address here is: Can we
expect the truthful revelation of players’ private information?
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To analyze players’ incentives to misreport their characteristics we use here sharing rules
of type GSε and characterize those GSε-rules for which the related Bayesian game has a
truth-telling equilibrium. While seeking efficiency of the queue (i.e., minimizing the expected
aggregate costs of time spent in the system) , one would like to consider the rights of the
players, granted by their original place in the queue. When devising rules for reordering
the queue, we would like the players to have an incentive to willingly participate in the
process. This leads us to considering only rules that lead to core elements of cooperative
sequencing games related to sequencing situations with complete information. The class of
GSε-rules has such a property, and has received much attention in the analysis of cooperative
sequencing games arising from sequencing situations with complete information. Intuition
might suggest that using other rules that lead to core elements of the cooperative sequencing
game will not generate qualitatively different results for the existence of TT-equilibrium of
the corresponding Bayesian games. Future research, however, might try to locate other
rules for which a TT-equilibrium exists for the case of 4 or more possible values for the
cost-per-unit-of-time parameter.

We have shown that in the case with only two possible values for cost per unit of time
and processing time 1, for each ε ∈ [0, 1] the corresponding GSε-rule supports a truth-telling
equilibrium. No player has any incentive to deviate from truth-telling strategy. Indeed, it
is not difficult to verify, that for this model, truth-telling is actually a weakly dominant
strategy for any GSε-rule with ε ∈ [0, 1]. The incentives for deviating from the truth-telling
strategy come into life when there are at least three possible values for the cost per unit
of time. For sequencing situations with three possible values for cost per unit of time and
processing time 1 we find and characterize a subclass of GSε-rules that support truthful
revelation of private information for a subclass of probability distributions. Notice that this
subclass of GSε-rules does not depend on the differences in the valuation of the parameter
cost per unit of time, but only on the probabilities with which these values may occur.
Specifically, the EGS-rule is the only rule that supports the truth-telling equilibrium when
the probabilities for the three different urgency types are the same, and it also supports
truth-telling in the widest range of sequencing situations with incomplete information.

However, for nondegenerate probability distributions beyond the class characterized in
Theorem 3.2, no GSε-rule which supports a truth-telling mechanism can be found. So,
we can conclude that there is no ”magic rule” of type GSε that supports truth-telling in
all queueing situations 〈N, C, p〉 with |C| = 3. Moreover, we show that for nondegenerate
queueing situations 〈N, C, p〉 with |C| > 3, as well as for sequencing situations where players
have to announce their processing time, there is no GSε-rule which supports a truth-telling
equilibrium of the related Bayesian game.

We end this section by comparing our work on incentive compatibility in the framework of
one-machine sequencing situations with linear costs under incomplete information with the
models by Suijs [13] and Mitra [9][10]. First, we note that in our model such situations are
considered as completely decentralized decision making problems whereas Suijs and Mitra
consider them as (examples of centralized) public decision making problems. As a result,
based on the announced types by the individual players, in the models by Suijs and Mitra the
social decision maker has to create a queue for service, while in our model the initial queue
has to be rearranged by (the decentralized pairwise interaction of) the players themselves.
Secondly, the study of incentive compatibility in Suijs and Mitra focuses on Groves schemes
whereas we base our study on gain split rules which consider explicitly players’ original
rights in the queue. Thirdly, Suijs and Mitra deal with the first best implementability of a
sequencing (queueing) problem, whereas we deal with the existence of TT-equilibria for the

c© Operations Research Society of Japan JORSJ (2006) 49-1



30 A. Veltman, S. Tijs & R. Branzei

related Bayesian game. Specifically, in the models by Suijs and Mitra, the social decision
maker aims to design a mechanism (whose transfers are based on Groves schemes) that
satisfies efficiency (i.e. minimizes the total cost), budget balancedness (i.e. the sum of all
transfers equals zero) and dominant strategy incentive compatibility (i.e. announcing the
true type is always weakly better for any agent whatever the other agents announce). We
remark that in their possibility and impossibility results for dominant strategy incentive
compatibility, the number of agents plays a role. Specifically, an impossibility result for the
first best implementability is obtained for the case of two agents (see Theorem 4.1 in Suijs
[13]) and a basic possibility result is proved by Mitra if and only if there are at least three
agents (see Theorem 3.1 in Mitra [10]). In our model, the pairwise interaction among agents
via gain split rules corresponds to a mechanism (implicitly designed by the whole group
of agents) based on binary transfers in neighbor switches. This mechanism also satisfies
efficiency and budget balancedness. In our possibility and impossibility results concerning
the existence of TT-equilibria, the number of types of the players plays a role, while the
number of players is unrestricted. We obtain a possibility result for the case of two types,
find conditions to be satisfied by the common a priori probability distribution of players
on the set of types for the case of three types to assure the existence of TT-equilibria, and
obtain impossibility results otherwise. Finally, both Suijs and Mitra address the question
of individual rationality of a Groves mechanism (i.e. individual incentives for agents to
participate in the process) and answer it either negatively for sequencing situations (see
Suijs [13]) or show that if the benefit derived for each player from the service is sufficiently
high, then a first best implementable queueing problem satisfies individual rationality (see
Section 6 in Mitra [9]). In our model individual rationality is satisfied always, even in a
Bayesian Equilibrium which is not a TT-equilibrium.

The above comparative study leads us to the conclusion that our work and that of Suijs
and Mitra on sequencing (queueing) situations with linear costs and incomplete information
could be considered rather complementary.

Appendix 1: Regions of Feasible Probability Vectors

In the following, we visualize graphically the region(s) in the 3-type probability space for
which a truth-telling equilibrium may be achieved.

Let Δ = {(x1, x2, x3) ∈ �3
+|x1 + x2 + x3 = 1} be the probability simplex. Clearly

(p(c1), p(c2), p(c3)) ∈ Δ.
Then, for each ε ∈ [0, 1], R(ε) = {x ∈ Δ|(1 − ε)x3 − ε · x2 ≤ 0, (1 − ε)x2 − ε · x1 ≥ 0}

is the region of probability vectors for which TT-equilibrium exists for Gε if a GSε-rule is
used. The region R(ε) for ε = 0.25 is depicted in Figure 1.

Figure 1: R(ε)

Note that for every ε ∈ (0, 1), R(ε) is a quadrangle with extreme points M = (0, 1, 0),
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(0, 1 − ε, ε), P (ε) = (1 − ε + ε2)−1(1 − 2ε + ε2, ε − ε2, ε2), (1 − ε, ε, 0). R(0) is the line
segment with L and M as endpoints; R(1) is the line segment with H and M as end-
points. For ε = 0.5, P (ε) coincides with the barycenter B = (1/3, 1/3, 1/3) of the triangle
〈L, M, H〉. So, TT-equilibrium exists for p = (1/3, 1/3, 1/3) if the EGS-rule is consid-
ered. It is not difficult to see that for p = (1/3, 1/3, 1/3) no other GSε-rule supports
TT-equilibrium. Note further that for each ε ∈ [0, 1], the vector M = (0, 1, 0) ∈ R(ε). In-
teresting is the region R = ∪{R(ε)|ε ∈ [0, 1]} since it contains the points with the property
that there exists at least one ε ∈ [0, 1] that satisfies the conditions for the existence of a
truth-telling equilibrium. The region R whose shape is shown in Figure 2, is bounded by
the segment lines LM, MH and the curve LBH, where B is the barycenter of the triangle
〈L, M, H〉. The region Δ \ R is convex. The smooth curve LBH consists of the points
(x1, x2, x3) ∈ Δ with x2

2 = x1 · x3. The points on the segment curve LB are of the form(
1
2
(1 − x2) + 1

2

√
1 − 2x2 − 3x2

2, x2,
1
2
(1 − x2) − 1

2

√
1 − 2x2 − 3x2

2

)
where x2 ∈ [

0, 1
3

]
, and

the points on the segment curve BH are of the form(
1
2
(1 − x2) − 1

2

√
1 − 2x2 − 3x2

2, x2,
1
2
(1 − x2) + 1

2

√
1 − 2x2 − 3x2

2

)
where x2 ∈

[
0, 1

3

]
.

Figure 2: R = ∪{R(ε)|ε ∈ [0, 1]}
For each x2 ∈

[
0, 1

3

]
the above points are the unique points with x2

2 = x1 · x3. Note that

f :
[
0, 1

3

] → � with f(x2) = 1
2
(1 − x2) + 1

2

√
1 − 2x2 − 3x2

2 is a concave function.
We next show that the surface of R(ε) is directly proportional to z2, the distance of

P (ε) from LH (see Figure 3). We look at the triangle D(ε) = 〈L, M, P (ε)〉. Its area equals
the area of R(ε) since the triangles 〈L, M, (0, 1 − ε, ε)〉 and 〈H, L, (1 − ε, ε, 0)〉 are similar
and both contain the smaller triangle 〈L, P (ε), (1 − ε, ε, 0)〉. Since the area of R(ε) grows
as z2 grows, it is maximized when ε = 0.5, and P (ε) = B. Then the triangle D(0.5)
coincides with 〈L, H, B〉, and its area is exactly 1/3 of the area of Δ. This means that the
EGS rule supports truth-telling equilibria for the widest range of possible discrete 3-point
distributions, specifically, 1/3 of the possible distributions of this type.

Figure 3: Surface of R(ε)
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