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Abstract A stochastic model is developed for describing a market lifecycle expressed in terms of the num-
ber of corporations N in the market. Each corporation independently determines the probability of market
entry if it is not in the market yet or the probability of market retreat if it is already in the market. These
probabilities may depend on time t, the number of corporations in the market at time t and the number of
corporations which have retreated from the market by time t. Of interest is the number of corporations in
the market at time t, thereby enabling one to analyze the market lifecycle in terms of strategic actions of
individual corporations.

Rigorous analysis of this process becomes numerically intractable since the corresponding state space ex-
plodes as N increases. In order to overcome this difficulty, we propose temporally inhomogeneous marginal
processes describing the states of individual corporations. The process of interest is then approximated
as the independent sum of such marginal processes. An algorithmic procedure is developed for computing
the probability distribution of the number of corporations in the market based on spectral analysis of the
temporally inhomogeneous marginal processes combined with a bivariate generating function approach.

Corporations are classified into three groups: RT(Risk-Taking), RN(Risk-Neutral), and RA(Risk-Aversive),
where these groups are characterized by specifying the transition probabilities of the underlying marginal
processes. It is numerically observed that any class alone is not sufficient to form a market and a typical
market lifecycle emerges only through the presence of an appropriate combination of corporations from the
three classes.

Keywords: Marketing, stochastic modeling, market lifecycle

1. Introduction

For understanding the growth and decline of a market, a traditional approach has been to
model a product lifecycle based on analysis of consumer behavior. Bass[1969], for example,
developed a diffusion model by assuming that the conditional probability of a consumer
purchasing a product under consideration at time t given that he/she has not purchased
the product by time t would depend only on the number of consumers who have purchased
the product by time t. Horsky and Simon[1983] extended this model by incorporating the
level of the advertisement expenditure in addition to the number of consumers who have
purchased the product by time t in the dependency structure of the conditional probabili-
ties. Horsky[1990] further strengthened the analysis by introducing the utility structure and
incomes of consumers as well as the price of the product into the model, which enabled one
to combine a decision mechanism of consumers for purchasing the product with the product
lifecycle analysis for the first time.

The diffusion process approach for modeling a product lifecycle through analysis of con-
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sumer behavior can be justified simply because there exist sufficiently many consumers
despite their discrete nature. In order to analyze the growth and decline of a market from
corporate side, however, the diffusion process approach is inappropriate due to the limited
number of corporations which are potentially interested in entering into the market. The
principal tool employed for this type of the market analysis is an econometric approach
where the number of corporations in the market is expressed as a time series governed by
the total product sales in the market, technological progress, etc. Many extended models
have been developed and the reader is referred to Geroski and Mazzucato[2001] for an ex-
tensive summary of the literature.

A major pitfall of the econometric approach above can be found in that it cannot directly
connect strategic policies of individual corporations with the market state. The purpose of
this paper is to fill this gap by modelling individual corporations as temporally inhomoge-
neous descrete time processes and then approximating the market by the independent sum
of such marginal processes. Despite this rather simple model structure, the temporal inho-
mogeneity present makes analysis fairly complicated. We conquer this difficulty via spectral
analysis of the underlying marginal process combined with a bivariate generating function
approach. By capturing sophisticated interactions among individual corporations with dif-
ferent strategic policies, our model will provide an insight into processes of how the market
as a whole would be constructed through separate decisions by individual corporations.

In this paper, the market state is defined in terms of the number of corporations in the
market. In parallel with a product lifecycle, we introduce a market lifecycle consisting of the
following four stages: the introduction stage; the growth stage; the maturity stage, and the
decline stage. Actual data on the automobile industry and the tire industry in the United
States are extracted from Simons[1995] and are depicted in Figures 1 and 2 respectively.

Figure 1: Number of corporations in the US
automobile industry

Figure 2: Number of corporations in the US tire
industry

The model proposed here is limited in that the market lifecycle is captured only through
the number of corporations in the market, ignoring the total sales and other important
market features. For example, the decline of the market in number does not necessarily im-
ply the decline of the sales volume. However, this approach enables one to understand the
structural relationship between strategic policies of individual corporations and the market
lifecycle. For the future research, the numerical tractability of this model opens a new path
toward development of more sophisticated market growth-decline models by incorporating
additional features in the construction of the transition probabilities of the underlying tem-
porally inhomogeneous marginal processes.

In Section 1, an analytical Model is formally introduced, where strategic policies of N
individual corporations are expressed in terms of conditional probabilities of entry into and
retreat from the market. These conditional probabilities may depend on time t, the num-
ber of corporations in the market at time t, X(t), and the number of corporations which
have retreated from the market by time t, Y (t). This interdependence is the key to the
potential usefulness of our model. The state of a corporation is described as a temporally
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inhomogeneous discrete time process involving the conditional probabilities above. Rigorous
analysis of this stochastic process {X(t), Y (t)} requires the joint probability of the states
of all corporations, which soon becomes numerically intractable as N increases since the
size of the corresponding state space explodes as a function of N . In order to overcome
this difficulty, we assume that the state of the whole market can be approximated by the
independent sum of the individual marginal processes. Section 2 is devoted to spectral
analysis of the underlying temporally inhomogeneous marginal process and the transition
probability matrix at time t is derived in a closed form. Based on a bivariate generating
function approach, the joint probabilities of {X(t), Y (t)} at time t are evaluated through
the above approximation procedure. A computational algorithm is summarized in Section 3,
and finally numerical results are presented in Section 4. The set of corporations potentially
interested in entering the market is decomposed into three categories: RT(Risk-Taking) cor-
porations, RN(Risk-Neutral) corporations, and RA(Risk-Aversive) corporations. The three
classes are characterized in terms of transition probabilities of the underlying temporally
inhomogeneous marginal processes. Numerical experiments reveal that any class alone is
not sufficient to form a market and a typical market lifecycle emerges only through the pres-
ence of an appropriate combination of corporations from the three classes. Some concluding
remarks are given in Section 5.

2. Model Description

We consider a situation that N corporations are potentially interested in entering into
a new product market. Of interest is to develop a stochastic model which captures the
market lifecycle consisting of the four stages discussed in Section 1 through analysis of
strategic actions of individual corporations. More specifically, at time t (t = 0, 1, 2, · · ·) any
corporation is in one of the following three states:⎧⎨

⎩
0 The corporation has not entered the market yet.
1 The corporation is in the market.
2 The corporation has retreated from the market.

(2.1)

It is assumed that if any corporation retreats from the market, it never enters the market
again. At time t, each corporation makes an independent decision so as to determine its state
at time t+ 1. However, the decision parameters may be time-dependent or may depend on
the market state at time t involving all other corporations. Consequently each corporation
is modelled to follow a discrete time marginal process on SC = {0, 1, 2} which is temporally
inhomogeneous having state 2 as the absorbing state. Despite this structural simplicity, the
temporal inhomogeneity presents considerable analytical complexity as we will see.

Let CP = {1, · · · , N} be a set of corporations under consideration and let {Ni(t) : t =
0, 1, 2, · · ·} be a stochastic process describing the state of corporation i at time t. We define
two stochastic processes {X(t) : t = 0, 1, 2, · · ·} and {Y (t) : t = 0, 1, 2, · · ·} where

X(t) =
∑

i∈CP
δ{Ni(t)=1}; Y (t) =

∑
i∈CP

δ{Ni(t)=2}. (2.2)

Here δ{P} = 1 if the statement P holds and δ{P} = 0 otherwise. We note that X(t) is the
number of corporations in the market at time t, while Y (t) is the number of corporations
which have retreated from the market by time t. Consequently the bivariate stochastic
process {X(t), Y (t)} represents the state of the whole market at time t. The corresponding
state space SM is then defined as

SM = {(x, y) : 0 ≤ x+ y ≤ N, for any nonnegative integers x, y}. (2.3)
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The corresponding state probabilities and the bivariate generating functions are defined
respectively by

m(t) = [m(x, y, t)](x,y)∈SM
; m(x, y, t) = P [X(t) = x, Y (t) = y] (2.4)

and
ψ(u, v, t) = E[uXvY ] =

∑
(x,y)∈SM

m(x, y, t)uxvy. (2.5)

In order to analyze the market excluding corporation i, we introduce the followings in
parallel with (2.2) through (2.5):

Xi(t) =
∑

j∈CP\{i}
δ{Nj(t)=1}; Yi(t) =

∑
j∈CP\{i}

δ{Nj(t)=2}; (2.6)

SM\{i} = {(x, y) : 0 ≤ x+ y ≤ N − 1, for any nonnegative integers x, y}; (2.7)

m
i
(t) = [mi(x, y, t)](x,y)∈SM\{i}; mi(x, y, t) = P [Xi(t) = x, Yi(t) = y]; (2.8)

and
ψi(u, v, t) = E[uXivYi] =

∑
(x,y)∈SM\{i}

mi(x, y, t)u
xvy. (2.9)

Rigorous analysis of the joint process {X(t), Y (t)} requires the joint probability of the
vector process [N1(t), · · · , NN (t)] defined on SN

C of size 3N . This state space explodes as a
function of N . In what follows, we assume that the sum in (2.2) can be approximated by
the independent sum of the individual marginal processes Ni(t), 1 ≤ i ≤ N . In order to
understand the gap between the exact process and the approximated process, the case of
two corporations (N = 2) is discussed in detail in Appendix, which should be read after
going through the approximation procedure discussed in this section.

Let pT
i
(t) be the state probability vector of {Ni(t) : t = 0, 1, · · ·}, that is,

pT
i
(t) = [pi,0(t), pi,1(t), pi,2(t)]; pi,j(t) = P [Ni(t) = j], 0 ≤ j ≤ 2. (2.10)

The corresponding bivariate generating function is defined by

ϕi(u, v, t) = pi,0(t) + pi,1(t)u+ pi,2(t)v. (2.11)

We assume that {Ni(t) : t = 0, 1, 2, · · ·} is a temporally inhomogeneous discrete time process
governed by one step transition probability matrix a

i
(t) at time t specified in the following

manner. At time t = 0, no corporation is assumed to be in the market so that one has for
all j ∈ CP

pT
j
(0) = [1, 0, 0]; mj(x, y, 0) = δ{x=y=0} for (x, y) ∈ SM\{j}. (2.12)

Suppose that pT
j
(t) and m

j
(t) are known for all j ∈ CP . Then a

i
(t) is determined by

a
i
(t) =

⎡
⎢⎣ 1− αi(t) αi(t) 0

0 βi(t) 1− βi(t)
0 0 1

⎤
⎥⎦ (2.13)

where
αi(t) =

∑
(x,y)∈SM\{i}

mi(x, y, t)ηi(t|x, y) (2.14)
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and

βi(t) =
∑

(x,y)∈SM\{i}

mi(x− 1, y, t)ξi(t|x, y). (2.15)

Here ηi(t|x, y) is the probability that corporation i enters the market at time t + 1 given
that it is not in the market at time t, X(t) = x and Y (t) = y. Similarly ξi(t|x, y) is the
probability that corporation i remains in the market at time t + 1 given that it is in the
market at time t, X(t) = x and Y (t) = y. More formally, we define;

ηi(t|x, y) = P [Ni(t+ 1) = 1|Ni(t) = 0, X(t) = x, Y (t) = y] (2.16)

and

ξi(t|x, y) = P [Ni(t+ 1) = 1|Ni(t) = 1, X(t) = x, Y (t) = y]. (2.17)

When corporation i is not in the market, both X(t) and Y (t) are contributed by other
corporations. Accordingly αi(t) in (2.14) is expressed as a probability mixture of ηi(t|x, y)
with corresponding weights mi(x, y, t) over (x, y) ∈ SM\{i}. For evaluation of βi(t) in (2.15),
the mixing weights become mi(x− 1, y, t) over (x, y) ∈ SM\{i} since corporation i is already
in the market.

It can be seen that

pT
i
(t+ 1) = pT

i
(t)a

i
(t). (2.18)

Equation (2.18) enables one to specify ϕi(u, v, t + 1) through (2.11) for all i ∈ CP . Once
a

i
(t) of (2.13) is given, under the assumption that X(t) and Y (t) can be approximated by

the independent sum of the individual marginal processes, one has for each i ∈ CP

ψi(u, v, t+ 1) =
∏

j∈CP\{i}
ϕj(u, v, t+ 1). (2.19)

In summary, the state transition diagram
is depicted in Figure 3. Because of dependence
of individual entry and retreat probabilities
on time t, the number of corporations in the
market and the number of corporations which
have retreated from the market, the model en-
ables one to understand how strategic policies
of individual corporations affect the market
state, as we will see in Section 4.

0 1 2
αi(t) 1− βi(t)

βi(t)1− αi(t) 1

Figure 3: State transition diagram

By specifying the coefficients of uxvy of (2.19), one can see that pT
i
(t) and m

i
(t) generate

pT
i
(t+ 1) and m

i
(t+ 1) for all i ∈ CP via (2.13) through (2.19). We note that if we define

P
i
(t) =

t∏
k=0

a
i
(k), (2.20)

then

pT
i
(t+ 1) = pT

i
(0)P

i
(t). (2.21)

Since pT
i
(0) = [1, 0, 0], pT

i
(t+ 1) is actually the first row of P

i
(t).
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3. Spectral Analysis of Market Entry/Retreat Decisions by Individual Corpo-
rations

In this section, we analyze the spectral representation of the stochastic matrices a
i
(t) of

(2.13) and P
i
(t) of (2.20), which in turn enables one to capture the stochastic structure of

market entry/retreat decisions by individual corporations. A few preliminary lemmas are
needed.

For 0 ≤ α, β ≤ 1 with α+ β �= 1, we define

f(α, β) =
α

α+ β − 1
; g(α, β) =

1− β
α+ β − 1

. (3.1)

We also introduce J
1
(α, β), J

2
(α, β) and J

3
(α, β) as follows:

J
1
(α, β) = u1v

T
1 where u1 =

⎡
⎢⎣ 1

1
1

⎤
⎥⎦ and vT

1 =
[

0 0 1
]
; (3.2)

J
2
(α, β) = u2(α, β)vT

2 (3.3)

where u2(α, β) =

⎡
⎢⎣ f(α, β)

1
0

⎤
⎥⎦ and vT

2 =
[

0 1 −1
]
;

and

J
3
(α, β) = u3v

T
3 (α, β) (3.4)

where u3 =

⎡
⎢⎣ 1

0
0

⎤
⎥⎦ and vT

3 (α, β) =
[

1 −f(α, β) g(α, β)
]
.

The case α+β = 1 will be treated separately soon. When no ambiguity is present, we omit
(α, β) and write u2 = u2(α, β), J

i
= J

i
(α, β), etc. The following lemma then holds true.

Lemma 3.1 Suppose 0 ≤ α, β ≤ 1 with α + β �= 1. Then:
a) J

i
(α, β), 1 ≤ i ≤ 3, are dyadic and idempotent, i.e. J2

i
(α, β) = J

i
(α, β), 1 ≤ i ≤ 3.

b) J
i
(α, β), 1 ≤ i ≤ 3, are matrix orthogonal to each other, i.e. J

i
(α, β)J

j
(α, β) = 0 if

i �= j, 1 ≤ i, j ≤ 3.

c) J
1
(α1, β1)Jj

(α2, β2) = J
j
(α1, β1)J1

(α2, β2) = 0 for j = 2, 3.

d) J
2
(α1, β1)J2

(α2, β2) = J
2
(α1, β1).

e) J
3
(α1, β1)J3

(α2, β2) = J
3
(α2, β2).

f) J
2
(α1, β1)J3

(α2, β2) = 0.

g) J
3
(α1, β1)J2

(α2, β2) = {f(α2, β2)− f(α1, β1)}u3v
T
2 .

h) u3v
T
2 J1

= 0.

i) u3v
T
2 J2

(α2, β2) = u3v
T
2 .

j) u3v
T
2 J3

(α2, β2) = 0.

Proof We first note that vT
i ui = 1, 1 ≤ i ≤ 3, while vT

i (α, β)uj(α, β) = δij, where δij = 1
if i = j and δij = 0 otherwise, 1 ≤ i, j ≤ 3. Hence parts a), b), c), f), h),i),j) follow
immediately. For part d), one sees that

J
2
(α1, β1)J2

(α2, β2) = u2(α1, β1)v
T
2 u2(α2, β2)v

T
2

= u2(α1, β1)v
T
2

= J
2
(α1, β1)
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since vT
2 u2(α2, β2) = 1. Part e) follows similarly since vT

3 (α1, β1)u3 = 1. For part g), one
has

J
3
(α1, β1)J2

(α2, β2) = u3v
T
3 (α1, β1)u2(α2, β2)v

T
2

= {f(α2, β2)− f(α1, β1)}u3v
T
2 ,

completing the proof. �

Lemma 3.2 Let b(α, β) be a 3× 3 stochastic matrix given by

b(α, β) =

⎡
⎢⎣ 1− α α 0

0 β 1− β
0 0 1

⎤
⎥⎦ , 0 ≤ α, β ≤ 1, (3.5)

where α+ β �= 1. Let f(α, β) be as in (3.1). Then the following statements hold true.
a) b(α, β) = J

1
+ βJ

2
(α, β) + (1− α)J

3
(α, β).

b) b(α1, β1)b(α2, β2) = J
1
+ β1β2J2

(α1, β1) + (1− α1)(1− α2)J3
(α2, β2)

+ (1− α1)β2{f(α2, β2)− f(α1, β1)}u3v
T
2 .

Proof It can be readily seen that ui and vT
i , 1 ≤ i ≤ 3, are right and left eigenvectors

of b(α, β) associated with eigenvalues 1, β, and (1 − α) respectively and part a) follows
immediately. Part b) can be proven from a) and Lemma 3.1. �

From (2.13) and (3.5), one sees that

a
i
(t) = b(αi(t), βi(t)). (3.6)

Hence if temporal homogeneity is present, i.e. αi(t) = αi(0) and βi(t) = βi(0) for t = 1, 2, · · ·,
one sees from (2.20) and Lemma 3.2 a) that

P
i
(t) = at+1

i
(0)

= J
1
+ βt+1

i (0)J
2
(αi(0), βi(0)) + (1− αi(0))

t+1J
3
(αi(0), βi(0)).

Because of temporal inhomogeneity, however, this simple structure disappears. We overcome
this difficulty by using Lemma 3.2 b), as shown in the main theorem of this section below.
Theorem 3.3 Let f(α, β), J

1
, J

2
(α, β) and J

3
(α, β) be as in (3.1) through (3.4) where

0 ≤ α, β ≤ 1 and α+ β �= 1. Then P
i
(t) in (2.20) is given by

P
i
(t) = J

1
+

t∏
k=0

βi(k)J2
(αi(0), βi(0)) (3.7)

+
t∏

k=0

{1− αi(k)}J3
(αi(t), βi(t)) + Ci(t)u3v

T
2

where αi(k) and βi(k) are as in (2.14) and (2.15) respectively, and

Ci(t) = βi(t)Ci(t− 1) +
t−1∏
k=0

{1− αi(k)}βi(t) (3.8)

×{f(αi(t), βi(t))− f(αi(t− 1), βi(t− 1))}, t = 1, 2, · · ·
starting with Ci(0) = 0.
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Proof The theorem can be proven by induction as follows. For t = 0, one sees from (3.6)
that P

i
(0) = a

i
(0) = b(αi(0), βi(0)) and (3.7) holds true by Lemma 3.2 a). Suppose it is

true for t and consider t+ 1. One sees that

P
i
(t+ 1) = P

i
(t)a

i
(t+ 1) = P

i
(t)b(αi(t+ 1), βi(t+ 1)).

Using the induction hypothesis and Lemmas 3.1 and 3.2, the above equation leads to

P
i
(t+ 1) =

[
J

1
+

t∏
k=0

βi(k)J2
(αi(0), βi(0))

+
t∏

k=0

{1− αi(k)}J3
(αi(t), βi(t)) + Ci(t)u3v

T
2

]

×
[
J

1
+ βi(t+ 1)J

2
(αi(t+ 1), βi(t+ 1))

+{1− αi(t+ 1)}J
3
(αi(t+ 1), βi(t+ 1))

]
and the theorem follows from Lemma 3.1. �

Remark 3.4 When α + β = 1, b(α, β) in (3.5) is reduced to a(α) below having only one
parameter α.

a(α) =

⎡
⎢⎣ 1− α α 0

0 1− α α
0 0 1

⎤
⎥⎦ (3.9)

In this case, a(α) has the eigenvalues 1 of multiplicity 1 and 1 − α of multiplicity 2. Ac-
cordingly, one sees that, for J

1
given in (3.2),

a(α) = J
1
+ Δ(α); Δ(α) = (1− α)

⎡
⎢⎣

1 α
1−α

− 1
1−α

0 1 −1
0 0 0

⎤
⎥⎦ (3.10)

where

J
1
Δ(α) = Δ(α)J

1
= 0. (3.11)

It can be readily seen that, for 0 < αi < 1, i = 1, 2, · · · , t, one has

t∏
i=1

a(αi) = J
1
+

t∏
i=1

(1− αi)

⎡
⎢⎣

1
∑t

i=1
αi

1−αi
− 1

1−αt
−∑t−1

i=1
αi

1−αi

0 1 −1
0 0 0

⎤
⎥⎦ . (3.12)

Furthermore, the followings hold true:

J
2
(α1, β1)Δ(α2) = (1− α2)J2

(α1, β1) (3.13)

Δ(α2)J2
(α1, β1) = (1− α2)J2

(α1, β1) + α2u3v
T
2 (3.14)

J
3
(α1, β1)Δ(α2) = (1− α2)J3

(α1, β1) + α2u3v
T
2 (3.15)

Δ(α2)J3
(α1, β1) = (1− α2)J3

(α1, β1) (3.16)

u3v
T
2 Δ(α) = Δ

2
(α)u3v

T
2 = (1− α2)u3v

T
2 (3.17)

It follows that both b(α1, β1)Δ(α2) and Δ(α2)b(α1, β1) have the spectoral representation in-
volving only J

j
(α1, β1), 1 ≤ j ≤ 3, and u3v

T
2 . Hence, when the case α + β = 1 happens,

Theorem 3.3 can be modified using (3.12) through (3.17). In order to avoid notational
awkwardness, we assume throughout the paper that α+ β �= 1.
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4. Development of Algorithm

In this section, an algorithmic procedure is summarized for computing pT
i
(t), m

i
(t) and

m(t) of (2.4), (2.8) and (2.10) respectively.

[ Input ]

N : the number of corporations

T : the time periods for consideration

Strategies of individual corporations : [ηi(t|x, y)](x,y)∈SM\{i}, 0 ≤ t ≤ T − 1, i ∈ CP
[ξi(t|x, y)](x,y)∈SM\{i}, 0 ≤ t ≤ T − 1, i ∈ CP

[ Output ]

pT
i
(t), m

i
(t), m(t), i ∈ CP , 0 ≤ t ≤ T

[ Algorithm ]

[0] pT
i
(0) = [1, 0, 0] for all i; t← 0.

[1] LOOP: Find ϕi(u, v, t) using (2.11) for all i ∈ CP.

[2] Generate m
i
(t) by identifying the coefficients of ψi(u, v, t) =

∏
j∈CP\{i}

ϕj(u, v, t) for all

i ∈ CP .

[3] Generate m(t) by identifying the coefficients of ψ(u, v, t) =
∏

j∈CP
ϕj(u, v, t).

[4] Compute (αi(t), βi(t)) based on (2.14) and (2.15) for all i ∈ CP.

[5] Compute pT
i
(t+ 1) as the first row of P

i
(t) based on Theorem 3.3.

[6] → (T > t← t+ 1) / LOOP

5. Numerical Results

The purpose of this section is to demonstrate the usefulness of the market lifecycle model
developed in the previous sections through numerical examples. In particular, we will see
that the model enables one to capture how the market growth and decline would be affected
by strategic policies of individual corporations.

For numerical experiments presented in this section, N corporations are decomposed into
three categories, i.e. CP = CP1 ∪ CP2 ∪ CP3, CP i ∩ CP j = ∅ for i �= j where

CP1 : the set of N1 = |CP1| RT(Risk-Taking) corporations; (5.1)

CP2 : the set of N2 = |CP2| RN(Risk-Neutral) corporations; (5.2)

and
CP3 : the set of N3 = |CP3| RA(Risk-Aversive) corporations, (5.3)

where |CP i| denotes the cardinality of CP i, 1 ≤ i ≤ 3. For computational simplicity, we
assume that all corporations within one category have a common strategic policy.

RT corporations tend to enter the market when the market size X(t) is small, but retreat
from the market rather quickly when X(t) becomes large. Since RT corporations play a
key role only in the introduction stage and the growth stage, they are not affected by the
number of corporations retreated from the market Y (t). RN corporations incline to enter
the market when X(t) exceeds a certain level, continue to stay in the market for some time,
and then retreat from the market. Their retreats are accelerated as Y (t) increases, triggering
the decline stage single-handedly. RA corporations do not enter the market easily. Even
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when they decide to enter the market, they do so only after X(t) becomes sufficiently large.
Once they enter, like RN corporations, they continue to stay in the market for some time,
and then retreat from the market. However, they are risk aversive in that their retreats are
accelerated by Y (t) at a level lower than the level that prompts retreats of RN corporations.
In other words, RA corporations tend to enter the market after and retreat from the market
before RN corporations.

Concerning the dependency structure of ηi(t|x, y) and ξi(t|x, y) on t, x and y, for the sake
of simplicity of presentation, we assume that both are independent of time t and depend
only on (x, y) ∈ SM\{i}. Let H(A,B, x) be defined by

H(A,B, x) = e−{A(x−B)}2

. (5.4)

Then it may be appropriate to characterize the three categories RT, RN and RA by making
[ηi(t|x, y)] and [ξi(t|x, y)] of the form H(A,B, x)×H(C,D, y) with different parameter values
A, B, C and D where numbers for x and y are replaced by percentages against the whole
population N = 100. These parameter values are summarized in Table 1 below, and the
corresponding ηi(t|x, y) and ξi(t|x, y) are depicted in Figures 4 through 9.

Table 1: A, B, C and D

A B C D

RT ηi(t|x, y) 4
√

2 0.2 0 -

ξi(t|x, y) 3
√

2 0.2 0 -

RN ηi(t|x, y) 8
√

2 0.4 0 -

ξi(t|x, y) 1.5
√

2 0.4 0.5
√

2 0.4

RA ηi(t|x, y) 8
√

2 0.6 0 -

ξi(t|x, y) 0.5
√

2 0.6
√

2 0.2
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Figure 4: [ηi(t|x, y)] of RT Figure 5: [ξi(t|x, y)] of RT
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Figure 6: [ηi(t|x, y)] of RN Figure 7: [ξi(t|x, y)] of RN
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Figure 8: [ηi(t|x, y)] of RA Figure 9: [ξi(t|x, y)] of RA

In order to observe the characteristics of RT, RN and RA separately, we first consider
three cases where corporations from only one category overwhelms corporations from other
categories. Figures 10 through 12 exhibit E[X(t)] = ∂

∂u
ψ(u, v, t)|u=1,v=1 for the three cases

(N1, N2, N3) = (80, 10, 10), (10, 80, 10) and (10, 10, 80) where ψ(u, v, t) is as given in (2.5).
We observe that when RT corporations dominate, the market grows and declines very rapidly
without having the maturity stage at all. On the other hand, when RN or RA corporations
are present as the overwhelming majority, the market can hardly be formed.

Figure 10: E[X(t)] for (N1, N2, N3) = (80, 10, 10)
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Figure 11: E[X(t)] for (N1, N2, N3) = (10, 80, 10)

Figure 12: E[X(t)] for (N1, N2, N3) = (10, 10, 80)

Figure 13 demonstrates the case (N1, N2, N3) = (30, 40, 30). It should be noted that
the market lifecycle with four stages is clearly present. One can see that RT corporations
trigger the first market growth, and then retreat from the market rather quickly, as the
market growth is picked up next by RN corporations. Some of RA corporations then start
to join the market. Both RN and RA corporations sustain the maturity stage. While
RA corporations retreat from the market gradually, RN corporations tend to stay on and
then begin to retreat rapidly. Consequently the decline stage is present largely due to RN
corporations. As we saw in Figures 10 through 12, any category of corporations alone is
incapable of creating the market lifecycle of this sort. It is remarkable to observe that
interactions among the three categories change the market behavior so drastically.
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Figure 13: E[X(t)] for (N1, N2, N3) = (30, 40, 30)

We next conduct numerical experiments to understand the effect of interactions among the
three categories in further detail. The total population N = 100 is fixed. In Figure 14, E[X]
is exhibited for (N1, N2, N3) = (80, 10, 10), (70, 15, 15), (60, 20, 20), (50, 25, 25), (40, 30, 30),
(30, 40, 30). It can be seen that the maturity stage starts to appear and becomes longer
as N1 decreases and two other classes increase from (50, 25, 25) to (30, 40, 30). However,
beyond N1 = 60 or more, the market rapidly loses its sustaining power after the peak.
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Figure 14: E[X] for (N1, N2, N3) = (80, 10, 10), (70, 15, 15), (60, 20, 20), (50, 25, 25), (40, 30, 30), (30, 40, 30)

In Figure 15, E[X] is exhibied for (N1, N2, N3) = (10, 80, 10), (15, 70, 15), (20, 60, 20),
(25, 50, 25), (30, 40, 30). It can be observed that the market lifecycle is clearly present
for N2 = 50 or less. However, at N2 = 60, the market loses its growth momentum and
almost disappears as N2 increases further. Similar graphs are depicted in Figure 16 for
(N1, N2, N3) = (10, 10, 80), (15, 15, 70), (20, 20, 60), (25, 25, 50), (30, 30, 40), (30, 40, 30). As
in Figure 15, one can observe that the market lifecycle is clearly present for N3 = 50 or less.
The market loses its growth momentum at N3 = 60, and almost disappears as N3 increases
further.
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Figure 15: E[X] for (N1, N2, N3) = (10, 80, 10), (15, 70, 15), (20, 60, 20), (25, 50, 25), (30, 40, 30)
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Figure 16: E[X] for (N1, N2, N3) = (10, 10, 80), (15, 15, 70), (20, 20, 60), (25, 25, 50), (30, 30, 40), (30, 40, 30)

6. Concluding Remarks

In this paper, an analytical model is developed for understanding the market lifecycle
through strategic policies of individual corporations potentially interested in entering into
the market. Strategic policies of individual corporations are expressed in terms of condi-
tional probabilities of entry into and retreat from the market, which may depend on time t,
the number of corporations in the market at time t, X(t), and the number of corporations
which have retreated from the market, Y (t). Accordingly, each corporation is modelled as
a temporally inhomogeneous discrete time margimnal process, and {{X(t), Y (t)} : t ≥ 0} is
approximated by the independent sum of such marginal processes. Through spectral analy-
sis of the underlying temporally inhomogeneous marginal process combined with a bivariate
generating function approach, a numerical algorithm is developed for computing the joint
probability distribution of {X(t), Y (t)} for t = 1, 2, · · ·, capturing the characteristics of the
market lifecycle in terms of E[X(t)].

Corporations are classified into three groups: RT(Risk-Taking), RN(Risk-Neutral), and
RA(Risk-Aversive), where these groups are characterized by specifying the transition prob-
abilities of the underlying marginal processes. It is numerically observed that:
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A) No category alone can constitute a typical market lifecycle with distinguishable four
stages.

B) RT corporations trigger the creation of the market, motivating RN and RA corporations
to join the market.

C) RN corporations play a major role in the growth stage and the maturity stage, stabilizing
the market state, but take a leading role in initializing the decline stage.

D) RA corporations also contribute to form the maturity stage but only after the market
reaches beyond a certain level.

In summary, the model developed in this paper enables one to understand how strategic
policies of individual corporations collectively form the market lifecycle with four stages.
While individual corporations make their own decisions separately, the market as a whole
may emerge in a way that cannot be explained in terms of the characteristics of individual
categories. Constructing this mechanism through an analytical model is the major contri-
bution of this paper. The model proposed here is limited in that the market lifecycle is
captured only through the number of corporations in the market, ignoring the total sales
and other important market features. However, the numerical tractability of this model
opens a new path toward development of more sophisticated market growth-decline models
by incorporating additional features in the construction of the transition probabilities of the
underlying temporally inhomogeneous marginal processes.
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Appendix

In this appendix, we analyze the case of two corporations, i.e. N=2, rigorously and
compare the numerical results with those obtained by following the approximation procedure
discussed in the paper.

For N=2, there are 32 = 9 states {(m,n) : m,n = 0, 1, 2}. As in the paper, we assume
that the strategic desicion parameters of two corporations are independent of time t and
dependent only on {X(t), Y (t)}. For i = 1, 2, these parameters are denoted by ηi(x, y)
and ξi(x, y) when X(t) = x and Y (t) = y. Clearly the joint process {N1(t), N2(t)} can be
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16 U. Sumita, T. Ise & K. Yonezawa

expressed as a temporally homogenuous Markov chain on {(m,n) : m,n = 0, 1, 2} governed
by the transition probability matrix P given in Figure 17. We note that states (m,n) outside
the matrix should not be confused with states (x, y) in the arguments of ηi and ξi.

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
(0,0) 1-η1(0,0) 1-η1(0,0) 0 η1(0,0) η1(0,0) 0 0 0 0

× × × ×
1-η2(0,0) η2(0,0) 1-η2(0,0) η2(0,0)

(0,1) 0 1-η1(1,0) 1-η1(1,0) 0 η1(1,0) η1(1,0) 0 0 0
× × × ×

ξ2(1, 0) 1-ξ2(1,0) ξ2(1,0) 1-ξ2(1,0)
(0,2) 0 0 1-η1(0,1) 0 0 η1(0,1) 0 0 0

(1,0) 0 0 0 ξ1(1,0) ξ1(1,0) 0 1-ξ1(1,0) 1-ξ1(1,0) 0
× × × ×

1-η2(1,0) η2(1,0) 1-η2(1,0) η2(1,0)
(1,1) 0 0 0 0 ξ1(2,0) ξ1(2,0) 0 1-ξ1(2,0) 1-ξ1(2,0)

× × × ×
ξ2(2,0) 1-ξ2(2,0) ξ2(2,0) 1-ξ2(2,0)

(1,2) 0 0 0 0 0 ξ1(1,1) 0 0 1-ξ1(1,1)

(2,0) 0 0 0 0 0 0 1-η2(0,1) η2(0,1) 0

(2,1) 0 0 0 0 0 0 0 ξ2(1,1) 1-ξ2(1,1)

(2,2) 0 0 0 0 0 0 0 0 1

Figure 17：Transition probability matrix P

The state probability vector p(t)T at time t is given by

p(t)T = p(0)TP t (A.1)

where p(0)T = [1, 0, 0, 0, 0, 0, 0, 0, 0]. The joint probability generating function of {X(t), Y (t)}
at time t is then obtained as

ψ(u, v, t) = E[uX(t)vY (t)] (A.2)

= p(t : 0, 0) + {p(t : 0, 1) + p(t : 1, 0)}u+ {p(t : 0, 2) + p(t : 2, 0)}v
+p(t : 1, 1)u2 + p(t : 2, 2)v2 + {p(t : 1, 2) + p(t : 2, 1)}uv.

This in turn yields the exact value

E[X(t)] =
∂

∂u
ψ(u, v, t)|u=1,v=1 (A.3)

= p(t : 1, 0) + p(t : 0, 1) + p(t : 1, 2) + p(t : 2, 1) + 2p(t : 1, 1)

where p(t : m,n) are obtained from (A.1).
The approximation procedure discussed in the paper for N = 2 can be summarized as

follows. Perform the procedure below for t = 0, 1, · · ·, starting with pT
1
(0) = pT

2
(0) = [1, 0, 0].

1.

αi(t) = p3−i,0(t)ηi(0, 0) + p3−i,1(t)ηi(1, 0) + p3−i,2(t)ηi(0, 1); (A.4)

βi(t) = p3−i,0(t)ξi(1, 0) + p3−i,1(t)ξi(2, 0) + p3−i,2(t)ξi(1, 1), i = 1, 2 (A.5)
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2.

a
i
(t) =

⎡
⎢⎣

1− αi(t) αi(t) 0
0 βi(t) 1− βi(t)
0 0 1

⎤
⎥⎦ , i = 1, 2 (A.6)

3.

pT
i
(t+ 1) = pT

i
(t)a

i
(t), i = 1, 2 (A.7)

4.

ϕi(u, v, t) = E[uXi(t)vYi(t)] = p3−i,0(t) + p3−i,1(t)u+ p3−i,2(t)v, i = 1, 2

ψ(u, v, t) =
2∏

i=1

ϕi(u, v, t)

= p1,0(t)p2,0(t) + {p1,0(t)p2,1(t) + p1,1(t)p2,0(t)}u
+{p1,0(t)p2,2(t) + p1,2(t)p2,0(t)}v
+p1,1(t)p2,1(t)u

2 + p1,2(t)p2,2(t)v
2

+{p1,1(t)p2,2(t) + p1,2(t)p2,1(t)}uv

5.

E[X(t)] =
∂

∂u
ψ(u, v, t)|u=1,v=1 (A.8)

= p1,1(t)p2,0(t) + p1,0(t)p2,1(t) + p1,2(t)p2,1(t)

+p1,1(t)p2,2(t) + 2p1,1(t)p2,1(t)

By setting the values of ηi and ξi as in Section 4, the exact values of E[X(t)] computed via
(A.3) are compared with the approximated values obtained from (A.8) in Table 2 for 1 ≤ t ≤
30. One sees that when two corporations are of the same type, (RT,RT), the approximation
is excellent with relative errors contained within 1.6%. For the case of (RT,RN), the relative
errors are within 6.0%, and they are within 1.3% for (RT,RA).
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Table 2：Ralative errors of E[X(t)]: exact values vs. approximated values

(Company 1, Company 2)=(RT,RT)

t 1 2 3 4 5 6 7 8 9 10
Exact 0.556 0.392 0.311 0.261 0.214 0.170 0.131 0.099 0.074 0.055
Approximated 0.556 0.392 0.328 0.264 0.209 0.163 0.125 0.095 0.071 0.053
Relative Error 0.0％ 0.0％ 1.6％ 0.3％ 0.5％ 0.7％ 0.6％ 0.4％ 0.2％ 0.1％
t 11 12 13 14 15 16 17 18 19 20
Exact 0.040 0.029 0.021 0.015 0.011 0.008 0.006 0.004 0.003 0.002
Approximated 0.039 0.029 0.021 0.015 0.011 0.008 0.006 0.004 0.003 0.002
Relative Error 0.1％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％
t 21 22 23 24 25 26 27 28 29 30
Exact 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Approximated 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Relative Error 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％

(Company 1, Company 2)=(RT,RN)

t 1 2 3 4 5 6 7 8 9 10
Exact 0.278 0.333 0.321 0.302 0.284 0.268 0.253 0.239 0.226 0.215
Approximated 0.278 0.333 0.304 0.267 0.238 0.214 0.195 0.180 0.166 0.155
Relative Error 0.0％ 0.0％ 1.7％ 3.5％ 4.6％ 5.3％ 5.7％ 6.0％ 6.0％ 6.0％
t 11 12 13 14 15 16 17 18 19 20
Exact 0.204 0.193 0.184 0.175 0.166 0.158 0.150 0.143 0.136 0.129
Approximated 0.144 0.135 0.127 0.120 0.113 0.107 0.102 0.096 0.092 0.087
Relative Error 5.9％ 5.8％ 5.6％ 5.5％ 5.2％ 5.0％ 4.8％ 4.6％ 4.4％ 4.2％
t 21 22 23 24 25 26 27 28 29 30
Exact 0.123 0.117 0.111 0.106 0.100 0.096 0.091 0.086 0.082 0.078
Approximated 0.083 0.078 0.075 0.071 0.067 0.064 0.061 0.058 0.055 0.052
Relative Error 4.0％ 3.8％ 3.6％ 3.5％ 3.3％ 3.1％ 3.0％ 2.8％ 2.7％ 2.6％

(Company 1, Company 2)=(RT,RA)

t 1 2 3 4 5 6 7 8 9 10
Exact 0.278 0.333 0.324 0.299 0.270 0.240 0.210 0.183 0.158 0.135
Approximated 0.278 0.333 0.316 0.287 0.257 0.229 0.203 0.178 0.155 0.134
Relative Error 0.0％ 0.0％ 0.7％ 1.3％ 1.3％ 1.0％ 0.8％ 0.5％ 0.3％ 0.2％
t 11 12 13 14 15 16 17 18 19 20
Exact 0.115 0.098 0.083 0.070 0.059 0.050 0.042 0.035 0.029 0.025
Approximated 0.115 0.098 0.083 0.071 0.060 0.050 0.042 0.036 0.030 0.025
Relative Error 0.1％ 0.0％ 0.0％ 0.0％ 0.1％ 0.1％ 0.1％ 0.1％ 0.0％ 0.0％
t 21 22 23 24 25 26 27 28 29 30
Exact 0.020 0.017 0.014 0.012 0.010 0.008 0.007 0.006 0.005 0.004
Approximated 0.021 0.017 0.015 0.012 0.010 0.008 0.007 0.006 0.005 0.004
Relative Error 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％ 0.0％
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