結晶性光ファイバの吸収率計算モデル

石渡 裕政

1. はじめに

一般に光ファイバと言えばガラスまたは石英が主材 料として使われるが、炭酸ガスレーザ光のような長波 長(10.6 µm)のレーザ光に対しては吸収率が大きく 導光することができない. 炭酸ガスレーザ光のような 赤外線の光を伝送できる材料は KRS-5 や AgCl など 結晶性の材料に限られており、これらの結晶を適当な 条件で押出してファイバ化する. この光ファイバは押 出し工程の段階で結晶が崩れて多結晶化され、いわゆ る多結晶光ファイバとなる. 多結晶光ファイバは結晶 粒界や結晶欠陥および表面の傷などによる散乱が大き く、散乱を小さくするための押出し条件の探索などを 行うために散乱損失を測定する必要があった。散乱損 失を求める一般的な方法は散乱によって被測定材料か ら出てくる光を積分球を使って直接測定する方法があ るが、この方法を長さの長い光ファイバの全長にわた って適用することは測定精度などの問題があって新し い測定法が求められていた。ここでは光の吸収損失に 伴う光ファイバの熱膨張による長さ変化に着目し、こ れをもとにして散乱損失を測定する方法を研究[1]し た過程で行ったモデル化について報告する.

この光ファイバはエネルギ伝送用が目的で、数10 W程度のレーザ光を数mの長さの光ファイバに入力 してテストする.この時入射されたレーザ光は吸収と 散乱を受けながら伝送され出射端から出射され入力パ ワーと出射パワーが測定できるが、同時に測定中に長 さが若干伸びることが観察される.この長さ変化は光 ファイバ内での光の吸収に基づくもので、これら測定 可能な三つのパラメータと吸収損失および散乱損失と の関係が分かりやすい形で表現できれば実験データを 基にした吸収損失と散乱損失の測定が可能であると考 えた.したがってこれらの間の関係を分かりやすい形 に表現するための単純化がモデル化と言ってもよい.

いしわたり ひろまさ 鈴鹿医療科学大学 〒 510-0293 鈴鹿市岸岡町 1001-1 また単純化またはモデル化には誤差(実際に起こって いることとの相違)がつきまとうが、これらについて も言及する.モデル化を主テーマとして考えると、必 ずしも厳密な式の誘導などは必要ないようにも思うが、 考えの筋道をはっきりさせるためにあえて式の誘導も 含めて述べることとする.

2. 赤外光ファイバの温度分布と長さ変化

赤外光ファイバの吸収損失測定のために 20 W 程度 の炭酸ガスレーザ光を入射すると、光ファイバ内での 吸収によって、目視でも分かる程度の長さの伸びが観 測される。光ファイバは直径 0.4 mm,長さが 1.5 m である。光ファイバの光吸収と長さ変化との関係から 吸収損失を求めるためには、吸収係数と長さ変化との 関係を求めることが必要になる。問題を単純化するた めには半径方向の温度分布を無視できるかどうかが大 きなポイントとなる。そこでモデル化の第1段階とし て半径方向の温度分布を検討した。

2.1 半径方向の温度分布

光ファイバは入出射端面近傍で高い温度を示すが, 端面から離れるにしたがって急速に温度の低下が見ら れ,端面から6mm離れると軸方向の温度分布はほと んどなくなりほぼ一定温度となる.軸方向温度がほぼ 一定になった部分の半径方向温度分布を考える.

光ファイバの表面からは,放射と対流による熱の損 失があるので,定常状態における半径方向の温度は次 式となる.

$$T = \frac{g}{4k} (b^2 - r^2) + \frac{g}{2h} \times b$$
 (1)

ただし、kは光ファイバの熱伝導率、hは熱伝達率、 bは半径、gは単位体積・単位時間当たりの吸収によ る発熱量で半径(r)には無関係とした。入射パワーが 50 W、吸収率が 5%/m(吸収係数=5×10⁻⁴)、熱伝 達率が 0.004(空気の流動が無い状態)とすると、光 ファイバの表面温度は周囲温度に対して 26℃の上昇 を示すが、中心の温度は表面温度に対して 0.25℃程 度の上昇である。光ファイバの半径方向温度分布はこ のように相対的に小さいので,光吸収に伴う軸方向長 さ変化を考える場合には半径方向の温度分布を無視で きるとした.

2.2 軸方向の温度分布

定常状態の軸方向温度分布を求める熱伝導方程式は 次式で表される。

$$\frac{d^2T}{d^2x} - N^2T + \frac{g}{k} = 0$$
 (2)

境界条件は両端面で次式となる.

$$\frac{dT}{dx} - HT = 0 \qquad X = 0, \ t > 0 \tag{3}$$

$$\frac{dx}{dx} + HT = 0 \qquad X = l, \ t > 0 \tag{4}$$

ただし、lは光ファイバの長さ. $N^2=2l/bk$, H=h/kである.式(2)を境界条件(3),(4)の条件で解くと次式と なる.ただし、 $\sigma=\mu_m/l$ 、 $\beta^2=\sigma^2+N^2$ 、固有値 μ_m は 式(6)となる.

$$T = \frac{1}{k} \sum \frac{2\mu_m^2 \{\cos \sigma x + (H/\sigma) \sin \sigma x\}}{\beta^2 \{l(\mu_m^2 + H^2 l^2) + 2Hl^2\}} \times \int_0^l g\{\cos \sigma \lambda + (H/\sigma) \sin \sigma \lambda\} d\lambda$$
(5)

$$\tan \mu_m = 2\mu_m H/l(\sigma^2 - H^2) \tag{6}$$

光ファイバが温度 T °C 上昇する時の熱膨張による 長さ変化 Δl は、線膨張係数と温度との積を積分して 得られ次式となる。

$$\Delta l = \frac{2E_c}{k} \sum \frac{\mu_m l \{\sin \mu_m + (H/\sigma)(1 - \cos \mu_m)\}}{\beta^2 \{l(\mu_m^2 + H^2 l^2) + 2Hl^2\}} \times \int_0^l g\{\cos \sigma \lambda + (H/\sigma)\sin \sigma \lambda\} d\lambda$$
(7)

ただし、 E_c は線膨張係数である.レーザ光の吸収に よる発熱量 gは、端面の研磨変質層による吸収 g_1 (端面吸収と呼ぶ)と内部での吸収 g_2 (内部吸収)と に分けられる、端面吸収は端面から 100 μ m 前後の薄 い層のみに発生し、内部吸収による発熱 g_2 は吸収係 数と伝送される光パワーによって定まるが、光パワー は伝送距離に依存して低下し位置の関数である。しか し本研究においては光ファイバの長さ変化に注目して いるので、 g_2 は長さ方向の位置に依存しない平均値 を当てても実際上問題ない、端面吸収による長さ変化 Δl_1 と内部吸収による長さ変化 Δl_2 はそれぞれ次式と なる。

$$\Delta l_{1} = \frac{2g_{1}E_{c}}{k} \sum \frac{\mu_{m}l\{\sin\mu_{m} + (H/\sigma)(1-\cos\mu_{m})\}}{\beta^{2}\{l(\mu_{m}^{2}+H^{2}l^{2})+2Hl^{2}\}} \times \{1+\cos\mu_{m} + (H/\sigma)\sin\mu_{m}\}$$
(8)
$$\Delta l_{2} = \frac{2g_{2}E_{c}}{k} \sum \frac{\mu_{m}l\{\sin\mu_{m} + (H/\sigma)(1-\cos\mu_{m})^{2}\}}{\beta^{2}\{l(\mu_{m}^{2}+H^{2}l^{2})+2Hl^{2}\}}$$

表1 数値計算に用いた値

項目	数 値	単位(次元)
熱伝導率	0.0054431	W/cm · ℃
密度	7.2	g/cm³
比熱	0.201814	J/g°C
熱膨脹率	58×10^{-6}	1/°C
熱伝達率	0.001~0.01	W/cm²°C
内部吸収	2	%/150cm
端面吸収	0.01	%/面
ファイバの長さ	150	cm
入力パワー	50	W

表2 端面吸収, 内部吸収, モデルによる長さ変化

熱伝達率	長さ変化	長さ変化	長さ変化
h	Δl_1	Δl_2	モデル
[W/cm ^{2°} C]	[µ m]	[µ m]	(µm)
0.002	16.6	1840	1846
0.003	10.8	1225	1230
0.004	8.0	918	923
0.005	6.2	734	738
0.006	5.1	611	615
0.007	4.3	523	527
0.008	3.7	457	461

(9)

表1に示す数値を用いて上式を計算した結果を表2 に示す. $h=0.004 \text{ W/cm}^2 \text{ C} の時,端面吸収による長$ $さ変化は8<math>\mu$ m,内部吸収による長さ変化は918 μ m であり,端面吸収による長さ変化は内部吸収による長 さ変化の1%に満たない.また端面近傍の温度分布を 調べてみると,図1に示すように端面から遠ざかると 急速に減少し,端面から6mm内部では温度勾配がな くなる.このように端面吸収の影響は長さ全体の変化 に対して1%程度であり,また全長を1.5mとする場 合,両端面から6mmを除くと温度勾配がほとんどな い状態であることが分かる.

このようなことから吸収損失と長さ変化を考える第 2の単純化として長さ方向にも温度勾配を持たないと するモデルを考える.こう考えると光ファイバの温度 は次の熱伝導方程式を満足する.

$$\frac{dT}{dt} + \alpha N^2 T = \frac{\alpha}{k}g \tag{10}$$

Tは初期条件 (t=0 で T=0) のもとで解いて次式 を得る.

$$T = \frac{g}{kN^2} (1 - e^{-\alpha N^2 t}) \tag{11}$$

したがって長さ変化は

$$\Delta l = \frac{g l E_c}{k N^2} (1 - e^{-\alpha N^2 t}) \tag{12}$$

となる.表2を求めた時の数値を用いて定常状態にお ける Δ*l* を計算した結果を表2の3列目に示した.本 モデルによる長さ変化と,端面吸収を考慮したモデル による長さ変化の差は0.3%以内であり,本モデルが 誤差の点からも十分評価に耐えるものであることを示 している.

3. 吸収係数

式(12)を見ると長さ変化の時定数は *aN*² であり, Δ*l* の時間応答が実験的に求められれば,これから *N* が 得られる. *N*²=2*h*/*bk* であるから,測定中の光ファイ バが置かれている条件下で熱伝達率 *h* が求められ, したがって吸収損失を得ることができる. 文献等に示 されている熱伝達率 *h* を求めた条件と,本光ファイ バの測定条件とが必ずしも一致していないことを考え ると,このように測定条件下での熱伝達率が求められ ることは精度の良い吸収損失を求めるためには大変重 要なことである.

光ファイバにレーザ光を入射すると、式(12)にしたが って伸びが観測され数秒後には定常状態に落ち着き、 この段階でレーザ光を遮断すると、数秒後には再び元 の長さに戻る.レーザ光を遮断してから後の長さ変化 $\Delta l_{\text{off}}(\tau)$ は式(12)から次のようになる.

$$\Delta l_{\rm off}(\tau) = \frac{g l E_c}{k N^2} \times e^{-a N^2 t} \tag{13}$$

レーザ光を遮断してから τ_1 および τ_2 時間後の長さ変 化を $\Delta l_{off}(\tau_1)$, $\Delta l_{off}(\tau_2)$ とすると, 熱伝達率hが次の ように求められる.

$$h = -\frac{bk}{2} \cdot \frac{1}{\alpha(\tau_1 - \tau_2)} l_n \frac{\Delta l_{\text{off}}(\tau_1)}{\Delta l_{\text{off}}(\tau_2)} \tag{14}$$

α, *b*, *k*は物理常数として既知であるから τ₁, τ₂,

 $\Delta l_{off}(\tau_1)$ および $\Delta l_{off}(\tau_2)$ を実験的に求めればこの式から熱伝達率が得られる.

光ファイバの両端面ではレーザ光が反射するために 内部ではレーザ光が何回も往復しながら吸収と散乱が 繰り返される.このような多重往復光を考慮すると光 ファイバからの出射光は次式のように表せる.

$$P_t = \frac{(1-R)^2 e^{-\beta l}}{1-R^2 e^{-2\beta l}} \cdot P_{\rm in} \tag{14}$$

ただし*R*は光ファイバの反射率 (KRS-5の場合 2.27), β は減衰係数で次式のように吸収係数と散乱 係数の和である.

 $\beta = \beta_a + \beta_s$

この式からβは次式の根として求められる.

$$\frac{P_t}{P_{\rm in}}R^2e^{-2\beta l} + (1-R)^2e^{-\beta l} - \frac{P_t}{P_{\rm in}} = 0 \tag{15}$$

この式にgの平均を求めた式を入れて β_a が次式のように求められる[1].

$$\beta_a = \beta \frac{2\pi bh}{E_c} \cdot \frac{\Delta l_{\text{off}}(0)}{P_{\text{in}}} \cdot \frac{1 - Re^{-\beta t}}{(1 - R)(1 - e^{-\beta t})} \tag{16}$$

 $\Delta l_{off}(0)$ と入射パワー P_{in} とを実験によって求めれば, 先に求めた h および β を用いて吸収係数が得られ, したがって散乱係数 β_s も求められる.

実験データに基づく吸収損失と散乱損 失

ここまで検討してきた結果に実験データを入れて吸 収損失ほかを求めてみる.測定系を細かく書くことは 本特集の主旨ではないので簡単にしておく.測定しな ければならないのは光ファイバへの入出力パワーと光 ファイバの長さの伸びである.入出力パワーはレーザ 用パワーメータを使い,伸びは光ファイバの入射端を 固定し出射端をフリーにして非接触で出射端の位置変 化を測定した.

伝送損失の異なる2本の光ファイバの実測値を表3 に示した.また実測値から算出した伝送損失,吸収損 失,散乱損失を表4に示した.熱伝達率は0.0043お よび0.0044が得られた.文献[2]によれば空気の流動 がない環境に細いワイヤを水平に保つ時の熱伝達率は ほぼ0.004であることを考慮すると,熱伝達率に対す

表3 実測値

光ファイバ	入射パワー	出射パワー	長さの変化
No.	[W]	(W)	[mm]
112	22.6	15.5	0.297
027	21.1	13.7	0.610

(37) 553

表4 実測値に基く吸収損失と散乱損失

光ファイバ	伝送損失	吸収損失	散乱損失
No.	[%/m]	[%/m]	[%/m]
112	2.9	1.1	1.8
027	6.4	2.6	3.9

るこの値は信頼できるものと言えるとともに、このモ デルが妥当であることを示唆している.

伝送損失が約2倍の値を持つ No.27 は吸収損失も 散乱損失も約2倍になっており,伝送損失の増加は吸 収および散乱の両方の増大に起因しているようである. 積分球による Harrington の測定結果では散乱損失が 全体の40~60%,また Sa'ar は散乱損失が吸収損失 の約2倍という結果を出しており,表4の値と比較し た時,本モデルによって得られた値とモデルの信頼性 が高いことを示唆している.

5. おわりに

モデル化を行う場合の重要な課題は、モデルがあま り複雑にならず、出きるだけ単純な形で目的とするも のが表現できていることと同時に、単純にすることに よってモデルと現実との解離が起きないようにするこ とである.ここではモデル化のための単純化をいくつ か行い,最終的には1次元の微分方程式で表現できる モデルに落ち着いたが,その各ステップで単純化によ る誤差の程度を検討し,モデルが現実から解離しない ことを確認しながら行った.

また実験環境における光ファイバの熱伝達率測定法 を新たに提案できたことは、当初子期しなかった成果 である.この新しい測定法によって室温や空気の流動 性および光ファイバの保持法などに影響されない再現 性のよい測定が可能になったのも本モデルの特徴であ る.

本モデルに基づく測定法では損失の半分を占める散 乱が結晶粒界によるものか,表面状態によるものかは 分離できない.それを分離するためには別のモデルの 構築が必要となる.

本稿を執筆する機会を与えていただいた池上敦子氏 に感謝する.

参考文献

- [1] 石渡裕政: 熱膨張を利用した赤外光ファイバの吸収損 失測定法, 電子通信学会, 論文誌 c-1, J 76-c-1, No. 12, pp 101-107, 1993
- [2] 谷下市松編: 熱工学ハンドブック, P164, 山海堂出版