理講演会論文集, pp.83-90.

[カルマン・フィルター]

- 8) Kalman, R. E. (1960): A New Approach to Linear Filtering and Prediction Problems, *Trans. ASME*, J. Basic Eng., vol. 28, p. 35.
- 9) Jazwinski, A. M. (1970): Stochastic Processes and Filtering Theory, Academic Press.
- 10) 日野幹雄 (1973): Kalman の予測推定理論の平 易な誘導について,東京工大土木工学科研究報告,No. 15,pp.91~99.
- 11) 相良節夫 (1969):同定問題,計測と制御,第8巻,4号.

〔カルマン・フィルターによる洪水予測〕

- 12) Hino, M. (1973): On-line prediction of hydrologic systems, Proc. 15th Conference of IAHR, Istanbul, pp. 121—129.
- 13) 日野幹雄 (1974): 水文流出系へのカルマン・フィルター理論の適用, 土木学会論 文報告集, 第 221 号 pp. 39—47.

- 14) 岩崎敏夫・西田吉男 (1976): カルマン・フィルターおよびGHDHによる流出計算の実際,第31回土 木学会年次講演会概要集,II-89,pp.168~169.
- 15) Hino, M. (1976): Prediction of flood and streamflow by modern control and stochastic theories, Proc. 2 nd International IAHR Symposium on Stochastic Systems, held at Lund, Sweden.
- 16) Todini, E. (1977): A CLS based adaptive model for the river Ombrone in Italy, Tech. Rep. n. 56 Scientific Center of Pisa, IBM.

ひの・みきお

1955年 東大工学部十木工学科卒

1967年 東京工業大学工学部助教授

1973年

教授

数理パズルを楽しもう (1)

フォーラム担当の編集委員から,「パズルについて数 回の連載をかくように」とのお話をいただき,一服の清 涼剤になればと思って,喜んでお引き受けした.

ORでは、問題の提起から定式化までのプロセスに、実に柔軟な考え方が要求されるが〔1〕、バズルを解くにもこの柔軟性は不可欠である。このため、ORを専門とする読者の中には、バズルを得意とする方も少なくないと思われるので、少し骨のある数理的なパズルを古典などから精選してお届けする。なお、パズルの解は次号に掲載するので、ゆっくりと楽しんでいただければ幸いである。

定規とコンパスを用いて作図できる図形は、コンパスだけでも作図できる [2]. ここでは、一定半径の円しか描くことが許されず、しかもお盆による作図であるから円の中心を知ることもできない。これだけの制約が加わると、出題の解は不可能のように思えるが、実は見事な解法がある。本題の出典は次号で紹介する。

ここに、1枚の紙、1個のお盆、1本の鉛筆がありお盆を紙の上に押えて鉛筆で周りをなぞると、正確な円が描けるとします。円周上の1点Pを勝手に指定す

るとき、直径上に向かい合った点Qは、どのようにして求められるでしょうか. ただし、紙を折るなどのペテンは用いず、完全に数学的に求めてください.

- [1] チャーチマン、アコフ、アーノフ、オペレーション ズ・リサーチ入門、上巻、紀伊国屋書店、1960.
- [2] コストフスキー, コンパスによる作図, 東京図書, 数学新書, 1964.

(中村義作 信州大学工学部)