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1 Introduction

In [1] and (2], the stochastic traffic engineer-
ing problems have been studied. In [3], we pre-
sented an analysis for the loss rate constraint in
such problems and showed the impact of the loss
rate constraint on the network performance by nu-
merical results. In this paper, we present an anal-
ysis for the model presented in (3] to derive the
optimal bandwidth capacity with a linear penalty
cost. We also analyze the risk of network profit
shortfall by using mean-variance approach.

2 System Model

A Communication Network (CN) should de-
rive its revenue by serving traffic demand including
voice, packet data, image and full-motion vidco.
For unit bandwidth capacity allocated to the CN,
an unit cost will be charged. For unsatisfied unit
traffic demand with the limitation of network band-
width, a linear penalty cost will be added in the
objective function. The objective of this system is
to maximize the CN mean profit.

Uncertain total traffic demand in the CN de-
noted by D > 0 is characterized by a random
distribution with the probability density function

f(z) and the cumulative distribution function F(z).

Let b > 0 denote the amount of bandwidth ca-
pacity provisioned in the CN, r denote the unit
revenue of the CN by serving the traffic demand,
¢ denote the unit cost for unit bandwidth capac-
ity allocated in the CN, and g denote the linear
penalty cost for the unsatisfied unit demand. Let
P(b > 6D) > 1 — ¢ denote the loss rate constraint,
and let Cpe; > 0 denote the maximal capacity
that can be allocated in the CN. To avoid unrcal-
istic cases, we make the following assumptions:
(1) System parameters are: 7 > ¢ > 0,7 > ¢ > 0.
(2) Loss rate constraint parameter is: 0 < § < 1.
(3) Confidence level is: 0 <1 —-€< 1.

3 Optimal Bandwidth Allocation with
Penalty Cost

Let n(b, D) denote the random profit function
by serving traffic demand in the network with the
linear penalty cost, namely,

n(b,D) =r(bAD)—q(D-b% —cb (1)
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where A represents to choose the smaller one be-
tween two components, and T represents to choose
the positive part.

Let II(b, D) denote the mean profit function
with the linear pcnalty cost as follows:

b +00
I(,D) = 'r/o :z:f(x)dx+rb’ f(z)dz

—q/b+°°(r1; —b)f(z)dx —cb. (2)

The objective function of the system is

I = T)ag({n(b7D)}a (3)

subject to P(b>8D) > 1 —€eand b £ Cpgz. II* is
the optimal profit function.

Next, we analyze the property of the mean
profit function II(b, D). The first order derivative
of TI(b, D) with respect to b is given as follows:

dIi(b, D
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The second order derivative of I1(b, D) with re-
spect to b is given as follows:

2
D) - rrasmry<o.

Therefore, we can say that II(b, D) is a concave
function of b. So, the optimal bandwidth capacity
without constraints is F'~! (T—:'—i—;—c-), where F~1(:)
is the inverse function of F'(-).

We define the loss rate as the probability that
the traffic demand can not be served by the CN.
Therefore, the loss ratc constraint is equivalent to
b€ [F1(1 —¢€),+00). If we consider the max-
imal capacity constraint, the optimal bandwidth
capacity for the CN can be given by

[F-l (’—;%) VeF-1(1 - e)] ACoas  (6)
where V represents to choose the larger one be-
tween two components.

We consider a fully distributed network, where
the traffic demand is assumed to follow a uniform
distribution as a spccial example. We give some
numerical results to show the impact of penalty
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cost on the bandwidth capacity (sec Fig. 1). Hor-
izontal axis ¢/r of Fig. 1 corresponds to the in-
crease of penalty cost. Ordinate axis of Fig. 1
corresponds to the percentage difference of the op-
timal bandwidth capacity from the optimal band-
width capacity without penalty. For comparing
with the model of [1], we choose system parame-
ters for two cases as follows: (1) r = 7.5,¢ = 1.5,
and (2) r = 7.5,¢ = 0.5, in the interval [0, 1].
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Figure 1: Impact on bandwidth capacity.

The numerical results shown in Fig. 1, includ-
ing the results presented in [1], reveal a distinct
impact of penalty cost on the CN bandwidth ca-
pacity. With the same penalty cost, the larger the
unit cost c is, the greater the impact on the band-
width capacity is.

4 Risk Analysis with Penalty Cost

Due to the uncertain traffic demand, the profit
is also uncertain, we define the risk as the deviation
from the optimal profit in this paper.

We analyze the risk of profit shortfall by using
the mean-variance approach. The objective func-
tion, which is denoted by ®*, is given as follows:

o = max {II(b, D) — aVar[x(b, D)]} (7

where a (0 < o < 1) is a risk averseness parameter,
7(b, D) is the random profit function given by Eq.
(1), and Var[r(b, D)] is the variance of 7 (b, D).

When the traffic demand distributed in the whole
network is assumed to follow the uniform distribu-
tion, we can obtain the mean function by

+
(b, D) = -6+ (r+q-p-3. (8
The variance function is obtained by
Var[r(b, D)] = —%(q +7)26t 4 (2r% +2¢% + &2

1 1 1
+4qr — 3rc — 3qc)b — (§q2 + —2-(]'r')b2 + 1—2(]2. (9)

Moreover, the objective function $* presented
in Eq. (7) is given by

* _’r+q2 y _ _ 9
® —ril;agc{[ — b+ (r+qg—c)b 2]

—a[—}z(q +7)%" + (2r? + 2¢% + 4gr — 3rc

“Sge-+ - (50* 4 e+ et} (10

With the same system parameters for Fig. 1,
we give some numerical results to show the im-
pact of risk averseness on objective function (see
Fig. 2). Horizontal axis of Fig. 2 corresponds to
the increase of risk averseness. Ordinate axis of
Fig. 2 corresponds to the percentage difference of
the objective function from the objective function
without risk.
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Figure 2: Impact on objective function.

The numerical results shown in Fig. 2, includ-
ing the results presented in [1], reveal a distinct
impact of risk on the CN objective function. With
the same risk averseness, the larger the unit cost ¢
is, the less the impact on the objective function is.

5 Conclusion

In this paper, we presented a stochastic model
for optimizing bandwidth allocation in Communi-
cation Networks (CNs) and derived the optimal
bandwidth capacity with the penalty cost. We
also analyzed the risk averseness in CNs under the
mean-variance framework. Numerical results re-
vealed the impacts of the penalty cost and the risk
averseness on the network performance.
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