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1 Introduction

Support vector machine (SVM) (3] has come to be
very popular in machine learning and data mining
communities. Input data from real world prob-
lems is often endowed with discrete structures.
Recently Kondor and Lafferty [2] introduced dif-
fusion kernels, which are discrete kernels defined
on vertices of graphs.

We propose a novel class of discrete kernels,
named electric network kernel, on vertices of an
undirected graph. SVM with this kernel admits
physical interpretations in terms of resistive elec-
tric networks; in particular, the SVM decision
function corresponds to an electric potential. Pre-
liminary computational results are also reported.

2 Support Vector Machines

Let X be an input data space and K : X x X —
R be a kernel on X. Given a labeled training
set {(zi,m)}izl,'_,,m' C X x {£1}, SVM classifier
is obtained by solving the optimization problem
[SVM]

1 m m
min 3 E;l uiu; K (i, T5) — ;Z;muz-

m
s.t. Eui=0, 0<nu<C (@#=1,...

=1

,™),

where C is a penalty parameter that is a positive
real number or +o00. Let u* € R™ be an optimal
solution of the problem [SVM] and b* € R be the
Lagrange multiplier of the equality constraint at
u*. Then the decision function f : X = R is
given as :

m
fl@)=> uK(z,z)+b" (z€X). (1)
=1
We classify a given data = according to the sign of
f(z). A data z; with p;u] > 0 is called a support
vector.
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3 FElectric Network Kernel

Let (V, E,r) be a resistive electric network with
vertex set V, edge set F, and resistors on edges
with the resistances represented by r : E — Rg.
Let D be a distance function on V defined as

D(z,y) = resistance between z and y

for z,y € V. Fix some vertex zo € V as a root,
and define an electric network kernel K on V as

K(.’I),y) = {D(.’ll,xo) +D(y,x0) - D(x1y)}/2

forz,ye V.

We give physical interpretations to the prob-
lem [SVM] on (V, E,r) with the aid of nonlinear
network theory (see [1, Chapter IV]). Suppose
that we are given an electric network (V,E,r)
and labeled training data set {(zi,7:)}i=1,...m C

V x{£1}. We connect voltage sources to (V, E, )
as follows:

For each z; with 1 < 7 < m, connect to
the earth a voltage source whose electric
potential is 7; and the current fiowing
into z; is restricted to [0,C] if n; = 1
and [—C,0] if n; = —1.

By using voltage sources, current sources and
diodes, this network can be realized as in Fig-
ure 1.
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Figure 1: Physical interpretation
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The following theorem indicates the relation-
ship between SVM problem and this electric net-
work.

Theorem 1. Let u* be the optimal solution of
[SVM] on (V,E,r). Then u} coincides with the
electric current flowing into z; for i = 1,...,m.
Moreover, the decision function f of (1) for
[SVM] is an electric potential.

Hence, the following correspondence holds.

SVM
positive label data
negative label data

optimal solution
decision function

| electric network
+1 voltage sources
—1 voltage sources
current
potential

4 SVM on Tensor Product of
Complete Graphs

We consider the case where (V| E) is an N-tensor
product of k-complete graphs defined as

v = {0,1 k— 1},
E = {:cy|:v,y€V, dH( 7y)=1}7

where dy : V x V — R is the Hamming distance

defined as
du(z,y) ={i€{l,...,N}|z* # ¢},

where z* denotes the ith component of z € V.
Exploiting symmetry of this graph, the resistance
D between two vertex pair is given as follows.

Theorem 2. The resistance D of an N-tensor
product of k-complete graphs (V, E) is given by

Dwy) .
z()( Nk
u=0

if k=2,
S ESOEC

2—sk—N+s+t+u 1 1\¢! 1\ %
ke +itu (i“z) (1‘2)

{ ‘ if k>3,
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Table 1: Experimental results

HK DK ENK
Data set SVs Acc SVs Acc SVs Acc
Hepat 60 79.1 60 79.8 106 77.7
Votes 36 96.0 53 96.0 274 84.5
LED2-3 386 89.6 392 89.7 388 89.8
Cancer 152 97.3 242 970 463 81.7

where d = du(z,y).

The theorem implies, in particular, that each
element of kernel X can be computed with O(N*4)
arithmetic operations. This makes it possible to
apply the electric network kermel to large-scale
practical problems on this class of graphs.

5 Experimental Results

Here, we describe preliminary experiments with
our electric network kernels on tensor products of
complete graphs. Table 1 shows the experimen-
tal results with Hamming kernel (HK), diffusion
kernel (DK), and electric network kernel (ENK)
for benchmark data sets taken from UCI Machine
Learning Repository, where Acc means the ratio
of correct answers and SVs is the number of sup-
port vectors.

The above results indicate that our electric net-
work kernel works well as an SVM kernel. How-
ever comprehensive computational study is left as
a future research topic.
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