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1 Introduction

Valuation of American options written on dividend-
paying assets is an important issue in the actual mar-
ket, since they have a much broader range of applica-
tions. However, there have been no closed-form for-
mulas and analytical solutions. Many researchers have
directed their effort to developing accurate and quick
approximations for valuing American options.

An accurate approximation is the randomization
method proposed by .Carr [2], which is based on an
American option with a random maturity. The ran-
dom maturity follows the n-stage Erlangian distribu-
tion with mean equal to the pre-specified maturity.
Although the idea is easy to understand, the pdf of
Erlangian distribution is not suitable for obtaining a
simple formula for the n-th approximation. Actually,
Carr’s formula for the n-th approximation of the Amer-
ican put value is given by a recursion of complex triple
sums. To improve this shortcoming, an alternative
randomization method has been recently developed by
Kimura [3], which used an order statistic for the ran-
dom maturity. Kimura’s randomization not only has
a much simpler expression than Carr’s one, but also
its numerical results have almost the same accuracy
as Carr’'s. However, computational results sometimes
behave unstably under a certain condition. Improving
this inadequacy is a principal goal of our new random-
ization method, which we call a pincer randomization.
The primal focus of this paper is on the American put
option because the call case can be analyzed by put-call
symmetry relations.

2 Preliminaries

Assume that the stock price (Si);>o is a risk-
neutralized process governed by the stochastic differ-
ential equation

95 _ (r — 8)dt + 0d W,
Sy

t>0

where W = (W,);>0 is a standard Brownian motion
process on a filtered probability space (£2, (F:):>0,P)
where (Fi)i>0 is the natural filtration corresponding
to W and the probability measure P is chosen so that
the stock has mean rate of return r. Here, r is the risk-
free rate of interest, ¢ is the dividend rate, and o is the
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volatility coefficient of the asset price. We consider an
American put option written on the stock price process
(St)¢>0, which has maturity date T > 0 and strike
price K > 0. Let P = P(¢,S;) = P(t,St; K,7,6) (0 <
t < T) denote the value of the American put option
at time t. It is sometimes convenient to work with
the equations where the current time t is replaced by
the remaining time until maturity 7 = T — t. Let
P(r,8,) = P(T = 7,58r_,) and for A > 0 let

P*=P*()\,8) = / e P(r, 8)dr
0

be the Laplace-Carson transform (LCT) of P(r,S). A
simple and explicit expression for P* can be obtained
by Kimura [3, Theorem 1].

3 Kimura’s Randomization

Let X;, ..., Xnym be i2d random variables with an ez-
ponential distribution with parameter a (> 0), and let
X(iy denote the i-th smallest of these random variables
(i=1,...,n+m). Then, the pdf of X41) is

(n +m)!

n[(m — 1)] (1 _ e—at)nae—-mat,

fam(t) = t>0,

where « is determined to satisfy either (i) E[X(n41)) =
T or (ii) M[X(n41)) = argmax; fr m(t) = T. The case
(i) is called mean matching, and the case (i) is mode
matching. For a continuous function g(t) (t > 0), define

(D) = Elg(Xs)] = | " 6) Fam(B)dt.

Kimura (3, Proposition 3] showed that the sequence
(9n.m)n,m>1 satisfies the recursion

9.m(T) =[5 mae™mtg(t)dt

g':;,m(T) = HTm g:L—l,m(T) - % g;—l,m+l(T)1 n Z 1)

and that lim,moco g m(T) = g(T). If we set
96.m(T) = P*(ma, S), then the recursion above gen-
erates a sequence of approximations for 15(7, Sr). This

is just mathematical essence of Kimura's randomiza-
tion.
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4 A Pincer Randomization Method

Kimura’s randomization method is not only much sim-
pler than Carr’s one, but also as accurate as Carr’s one.
However, the method shows unstable behavior near the
expiry under certain conditions. The reasons for this
instability are considered as

e the algorithm is sensitive to the precision of num-
bers used in calculations;

e the (n,m)-th approximation g, .(T) cannot ap-
propriately satisfy the value matching condition
in the way of recursion.

Taking account of these points, we propose a new

randomization scheme named a pincer randomization
(PR) method. The PR method is an interpolation ap-
proximation based on a pair of lower and upper bounds
for a true value. This methods reflect some fundamen-
tal properties of the order statistic X(,41) and the op-
tion Greek Theta that the shorter the remaining time
to expiration, the cheaper the option value.
_ Assume that the maturity T is a random variable
T distributed as the order statistic X(541) with mean
E[T] = T. From some numerical experiments, we can
certainly observe that the mean-matching approxima-
tion for the option value always underestimates the
true value when n, m is not large enough, i.e., it gives
a lower bound. Similarly, the mode-matching approxi-
mation gives an upper bound. It should be noted that
each approximation generates an opposite-side bound
for the early exercise boundary. In those experiments,
the arithmetic average of the 1000- and 1001-step CRR
binomial values is used as a benchmark of the true
value. The experiments show that the true values are
appropriately sandwiched in between the bounds, and
that the lower bound derived by the mean matching
is a good approximation. From these observations and
other numerical experiments, we employ three meth-
ods for valuing American put options: (1) arithmetic
average of the bounds; (2) geometric average of the
bounds; and (3) lower bound itself.

5 Computational Results

We can summarize the performance of our randomiza-
tion methods as follows:

e The PR methods (1) and (2) perform very well and
competes with the previous randomization meth-
ods. In addition, both methods are more accurate
than LBA and LUBA developed by Broadie and
Detemple [1], which are also lower-bound and in-
terpolation approximations, respectively.

e The PR methods (1) and (2) become accurate

© as the initial price S increases, because the early

exercise premium relatively constitutes a smaller
portion of the value for such cases.

¢ The PR methods (1) and (2) become accurate as
the remaining time becomes long.

e The lower-bound approximation (3) is less accu-
rate than other approximations, and it performs
well only if 6 = 0, for which P*(ma,S) can be
computed without using Newton’s method. This
implies that the accuracy of the lower-bound (or
mean-matching) approximation would be highly
sensitive to the computational precision.
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Figure 1: Values of put options (K = 100, t = 0,

r =0.05, § = 0.02)
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