Numerical Exploration of Dynamic Behavior of the Ornstein-Uhlenbeck Process via Ehrenfest Process Approximation

01204710 筑波大学 住田 潮 SUMITA Ushio 02103210 筑波大学 後藤順哉 GOTOH Jun-ya 筑波大学 金 輝 *JIN Hui

1 Ornstein-Uhlenbeck Process

The Ornstein-Uhrenbeck (O-U) process is of practical importance in many application areas such as statistics, meteorology and financial engineering. The O-U process $\{X_{\rm OU}(t):t\geq 0\}$ is a Markov diffusion process on the real continuum $-\infty < x < \infty$. Its probability density function $f(x,t) = \frac{\rm d}{{\rm d}x} {\rm P}\left[X_{\rm OU}(t) \leq x\right]$ is governed by the forward diffusion equation

$$\frac{\partial}{\partial t} f(x,t) = \frac{\partial^2}{\partial x^2} f(x,t) + \frac{\partial}{\partial x} \left[x f(x,t) \right]. \tag{1.1}$$

The O-U process is characterized by its Markov property, normal distribution, and exponential covariance function. A basic function describing this process is the conditional transition density $g(x_0, x, \tau) = \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{P}\left[X(t+\tau) \leq x|X(t)=x_0\right]$ given by

$$g(x_0, x, \tau) = \frac{1}{\sqrt{2\pi}\sqrt{1 - e^{-2\tau}}} \exp\left\{-\frac{(x - x_0 e^{-\tau})^2}{2(1 - e^{-2\tau})}\right\},$$
(1.2)

with $-\infty < x < \infty$.

While transition probabilities of the O-U process are readily accessible, quantifying its dynamic behavior is numerically cumbersome.

2 Convergence of the Ehrenfest Process to the O-U Process

We consider 2V independent and identical Markov chains $\{J_j(t): t\geq 0\},\ j=1,...,2V,$ in continuous time on $\{0,1\}$ governed by transition rates $\nu_{01}=\nu_{10}=\frac{1}{2}.$ Let $\{N_{2V}(t): t\geq 0\}$ be defined by

$$N_{2V}(t) \stackrel{\text{def}}{=} \sum_{j=1}^{2V} J_j(t).$$
 (2.1)

Then $\{N_{2V}(t): t \geq 0\}$ is a birth-death process on $\mathcal{N} = \{0, 1, ..., 2V\}$ governed by the upward transition rates $\lambda_n = \frac{1}{2} (2V - n)$ and the downward transition rates $\mu_n = \frac{n}{2}, n \in \mathcal{N}$. We note that $\nu_n \stackrel{\text{def}}{=} \lambda_n + \mu_n = V$, $n \in \mathcal{N}$, which is independent of state n. This birth-death

process is called the Ehrenfest process.

Let $\{X_V(t): t \geq 0\}$ be a stochastic process defined by

$$X_V(t) \stackrel{\text{def}}{=} \sqrt{\frac{2}{V}} N_{2V}(t) - \sqrt{2V}.$$
 (2.2)

We note that $\{X_V(t): t \geq 0\}$ has a discrete support on $\{r(0), ..., r(2V)\}$ where

$$r(n) = \sqrt{\frac{2}{V}} n - \sqrt{2V}, \quad n = 0, 1, ...$$
 (2.3)

Clearly $r(n+1)-r(n)=\sqrt{\frac{2}{V}}\to 0$ as $V\to\infty$. When $N_{2V}(0)$ is chosen appropriately, $\{X_V(t):t\geq 0\}$ converges in law to $\{X_{\mathrm{OU}}(t):t\geq 0\}$ as $V\to\infty$. It can be shown that the first passage time and the historical maximum of $\{X_V(t):t\geq 0\}$ also converges in law to those of $\{X_{\mathrm{OU}}(t):t\geq 0\}$ as $V\to\infty$. Hence the dynamic behavior of $\{X_{\mathrm{OU}}(t):t\geq 0\}$ can be approximated by that of $\{X_V(t):t\geq 0\}$.

3 First Passage Time Structure of the Ehrenfest Process

Let T_{mn} (m < n) be the first passage time of a general birth-death process with probability density function $s_{mn}(\tau)$ and its Laplace transform $\sigma_{mn}(s)$. For notational convenience, we denote $T_{m,m+1}$ by T_m^+ , and $s_m^+(\tau)$ and $\sigma_m^+(s)$ are defined similarly. From the consistency relations, one has

$$\sigma_n^+(s) = \frac{\nu_n}{s + \nu_n} \left[\frac{\lambda_n}{\nu_n} + \frac{\mu_n}{\nu_n} \, \sigma_{n-1}^+(s) \, \sigma_n^+(s) \right], \quad n \ge 1,$$
(3.1)

where $\nu_n = \lambda_n + \mu_n$.

Let $g_n(s)$ be a polynomial of order n defined by $\sigma_{0n}(s)=\frac{1}{g_n(s)}, n\geq 1, g_0(s)=1$. From $\sigma_{0n}(s)=\sigma_{0n-1}(s)\,\sigma_{n-1}^+(s), n\geq 0$, one then sees

$$g_{n+1}(s) = \frac{1}{\lambda_n} \left[(s + \nu_n) g_n(s) - \mu_n g_{n-1}(s) \right], \ n \ge 0,$$
(3.2)

where $g_{-1}(s) = 0$ and $g_0(s) = 1$. It should be noted for $m \ge 0$, that

$$\sigma_n^+(s) = \frac{g_n(s)}{g_{n+1}(s)}, \quad n \ge 0. \tag{3.3}$$

$$\sigma_n^+(s) = \sum_{j=0}^n r_{n+1,j} \frac{\alpha_{n+1,j}}{s + \alpha_{n+1,j}},$$
 (3.4)

where $-\alpha_{n+1,j}$ are the zeros of $g_{n+1}(s)$, $r_{n+1,j} = \lim_{s \to -\alpha_{n+1,j}} \frac{s + \alpha_{n+1,j}}{\alpha_{nj}} \frac{g_n(s)}{g_{n+1}(s)} \ge 0$ and $\sum_{j=0}^n r_{n+1,j} = \sigma^+(0,1) = 1$ $\sigma_n^+(0+)=1.$

In case of the Ehrenfest process, this becomes

$$g_{n+1}(s) = \frac{2}{2V - n} \left[(s + V) g_n(s) - \frac{n}{2} g_{n-1}(s) \right],$$
(3.5)

with $g_{-1}(s) = 0$ and $g_0(s) = 1$.

Dynamic Behavior and its Nu-4 merical Algorithm

In order to evaluate the first passage times $s_{mn}(\tau)$ (m < n) with corresponding Laplace transforms $\sigma_{mn}(s) = \sigma_m^+(s) \cdots \sigma_{n-1}^+(s) = g_m(s)/g_n(s)$, the zeros of $q_n(s)$ are needed. These zeros in turn enables one to quantify the historical maximum. In principle, the zero search of $g_n(s)$ can be accomplished via a straightforward bisection approach since the zeros of $g_n(s)$ and $g_{n+1}(s)$ interleave because of the underlying orthogonality. Let $h_n(s) = g_n(s-V), n \ge 0$, then the recursive formula can be rewritten as

$$h_{n+1}(s) = \frac{2}{2V - n} \left[s h_n(s) - \frac{n}{2} h_{n-1}(s) \right], \quad n \ge 0,$$
(4.1)

Clearly the zeros of $h_n(s)$ are symmetric about 0 while the zeros of $g_n(x)$ are symmetric about -V. Consequently the computational time of the zero search can be reduced approximately by a factor of 4. More specifically, one can write

$$\begin{cases} h_{2m}(s) = \sum_{j=0}^{m} w_{2m,2j} \, s^{2j}, & m \ge 0, \\ h_{2m+1}(s) = \sum_{j=0}^{m} w_{2m+1,2j+1} \, s^{2j+1}, & m \ge 0. \end{cases}$$

Since $h_{2m}(s)$ is an even function and $h_{2m+1}(s)$ is an odd function, it then follows from the recursive formula

that
$$\sigma_n^+(s) = \frac{g_n(s)}{g_{n+1}(s)}, \quad n \ge 0. \tag{3.3}$$
 As shown in Keilson [1], $\{g_n(s)\}$ are orthogonal polynomials. Consequently, from (3.3), $\sigma_n^+(s)$ can be written as
$$\begin{cases} w_{2m,0} = -\frac{2}{2(V-m)+1} \left(m-\frac{1}{2}\right) w_{2m-2,0}, \\ w_{2m,2j} = \frac{2}{2(V-m)+1} \left\{w_{2m-1,2j-1} - \left(m-\frac{1}{2}\right) w_{2m-2,2j}\right\}, \quad j=1,...,m-1, \\ w_{2m,2m} = \frac{2}{2(V-m)+1} w_{2m-1,2m-1}, \end{cases}$$

$$\begin{cases} w_{2m+1,2j+1} = \frac{w_{2m,2j} - m \, w_{2m-1,2j+1}}{V - m}, \\ j = 0, ..., m - 1, \\ w_{2m+1,2m+1} = \frac{w_{2m,2m}}{V - m}, \end{cases}$$

where $h_0(s) = w_{0,0} = 1$.

For both $h_{2m}(s)$ and $h_{2m+1}(s)$, it suffices to search m zeros in $(0, \infty)$. For $h_n(s)$ with $1 \le n \le 4$, the zeros can be obtained explicitly by solving the underlying equations. For higher values of n, a straightforward bisection method can be employed by exploiting the fact that zeros of $h_{n+1}(s)$ interleave those of $h_n(s)$. Let ξ_{nj} $(0 \le j \le n-1)$ be zeros of $h_n(s)$ and $-\alpha_{nj}$ $(0 \le j \le n-1)$ be zeros of $g_n(s)$, one then

has $\alpha_{nj} = V - \xi_{nj}$, $0 \le j \le n - 1$. From $\sigma_{mn}(s) = \sigma_m^+(s) \cdots \sigma_{n-1}^+(s)$, one has that

$$\sigma_{mn}(s) = \frac{g_m(s)}{g_n(s)} = c_{mn} \frac{\prod\limits_{j=0}^{m-1} (s + \alpha_{mj})}{\prod\limits_{j=0}^{n-1} (s + \alpha_{n,j})}; \quad c_{mn} = \frac{\prod\limits_{j=0}^{n-1} \alpha_{nj}}{\prod\limits_{j=0}^{m-1} \alpha_{mj}}.$$

$$(4.2)$$

Since $\sigma_{mn}(s)$ is regular apart from singular points $-\alpha_{n,j}$, $0 \le j \le n-1$, this can be rewritten as

$$\sigma_{mn}(s) = \sum_{j=0}^{n-1} A_{mn:j} \frac{\alpha_{nj}}{s + \alpha_{nj}}; \quad A_{mn:k} = \frac{\prod_{j=0}^{m-1} (1 - \frac{\alpha_{nk}}{\alpha_{mj}})}{\prod_{j=0, j \neq k} (1 - \frac{\alpha_{nk}}{\alpha_{nj}})}.$$
(4.3)

In real domain, this leads to the probability function $s_{mn}(\tau)$ and its corresponding survival function $\overline{S}_{mn}(\tau) = \int_{\tau}^{\infty} s_{mn}(y) dy$ given as

$$s_{mn}(\tau) = \sum_{j=0}^{n-1} A_{mn:j} \cdot \alpha_{nj} e^{-\alpha_{nj}\tau};$$
 (4.4)

$$\overline{S}_{mn}(\tau) = \sum_{j=0}^{n-1} A_{mn:j} e^{-\alpha_{nj}\tau}.$$
 (4.5)

References

[1] Keilson, J. (1979), Markov chain models: rarity and exponentiality, (Applied Mathematical Science Series, 28), Springer, New York.