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Numerical Exploration of Dynamic Behavior of the
Ornstein-Uhlenbeck Process via Ehrenfest Process Approximation
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1 Ornstein-Uhlenbeck Process

The Ornstein-Uhrenbeck (O-U) process is of practical
importance in many application areas such as statis-
tics, meteorology and financial engineering. The O-U
process {Xou(t) : t > 0} is a Markov diffusion pro-
cess on the real continuum —oo < x < oo. Its prob-
ability density function f(z,t) = £P [Xou(t) < z] is
governed by the forward diffusion equation

(1.1)

The O-U process is characterized by its Markov prop-
erty, normal distribution, and exponential covariance
function. A basic function describing this process
is the conditional transition density g¢(zo,z,7) =

£ P[X(t+7) < z|X(t) = o] given by
(x —xzo e")2 }

2(1—e~?7)
(1.2)

2
2 100 = a3 @0 + 5 o f(2,0).

1
o 2.7) = Wexp{‘

with—o0 < z < o0.

While transition probabilities of the O-U process are
readily accessible, quantifying its dynamic behavior is
numerically cumbersome.

2 Convergence of the Ehrenfest
Process to the O-U Process

We consider 2V independent and identical Markov
chains {J;(t) : t > 0}, j = 1,...,2V, in continuous time
on {0,1} governed by transition rates vy, = vi9 = -;—
Let { Nay(t) : t > 0} be defined by

2v
Nav(t) €5 Js(8).

=1
Then { Nav(t) : t > 0} is a birth-death processon N =
{0,1,...,2V'} governed by the upward transition rates
An = %(2V —n) and the downward transition rates

pn =%, n € N. We note that v, EA+pun=V ,ne
N, which is independent of state n. This birth-death

(2.1)
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process is called the Ehrenfest process.
Let { Xv(t) : t > 0} be a stochastic process defined by

Xv(t) ¥ \/g Nay (t) — V2V. (2.2)

We note that { Xv(t) : t >0} has a discrete support
on {7(0),...,7(2V') } where

r(n) = %n—\/2V, n=0,1,.. (2.3)

Clearly r(n+ 1) — r(n) = \/g —0asV — co. When
N,y (0) is chosen appropriately, { Xv(t) :t >0} con-
verges in law to { Xouy(t) : t >0} as V — oo.

It can be shown that the first passage time and the
historical maximum of {Xv(¢t) : t > 0} also converges
in law to those of { Xou(t) : t >0} as V — oco. Hence
the dynamic behavior of { Xouy(t) : t > 0} can be ap-
proximated by that of { Xy (t):t >0}.

3 First Passage Time Structure
of the Ehrenfest Process

Let T (m < n) be the first passage time of a gen-
eral birth-death process with probability density func-
tion Smn(7) and its Laplace transform omn(s). For
notational convenience, we denote T, m+1 by T, and
st (7) and o} (s) are defined similarly. From the con-
sistency relations, one has

v, A n
at(s) = - +"Vn 1/: + V—:a':_l(s)a,f(s) , n>1,
(3.1)

where v, = Ay, + pin.

Let gn(s) be a polynomial of order n defined by
oon(s) = ﬁ;, n > 1, go(s) = 1. From ogn(s) =
oon-1(s) g} _1(s), n >0, one then sees

gn11(8) = 3= (s + ) (s) = imgna(9)], 12,
" (3.2)
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where g—1(s) = 0 and go(s) = 1. It should be noted
that

+lo) gn(s)

o, (s)= , n>0.
) = 2 ()

(3.3)

As shown in Keilson {1}, {gn(s)} are orthogonal polyno-
mials. Consequently, from (3.3), o7 (s) can be written

as
n

L OED P

=0

On+1,j

, 3.4
S+ Qnt1,5 ( )

where —any1,; are the zeros of gny1(s), Tnt1,; =

n
. stan+t1,j _gn(s) > R
s_._l‘c{fl‘“d Gnj  gnt1(s) = 0 and JE:O"'f&ld
ot (0+) = 1.

In case of the Ehrenfest process, this becomes

[+ V)9a(8) = S 9n1(9) ]
(3.5)

2

with g_1(s) = 0 and go(s) = 1.

4 Dynamic Behavior and its Nu-
merical Algorithm

In order to evaluate the first passage times
S$mn(T) (m < n) with corresponding Laplace trans-
forms omn(s) = o4 (s)---0)_1(8) = gm(s)/gn(s), the
zeros of gn(s) are needed. These zeros in turn enables
one to quantify the historical maximum. In princi-
ple, the zero search of g,(s) can be accomplished via
a straightforward bisection approach since the zeros of
gn(8) and gn+1(s) interleave because of the underlying
orthogonality. Let h,(s) = gn(s—V), n >0, then the
recursive formula can be rewritten as

hni1(s) = [s hn(s) — ghn_l(s)] , n>0,
(4.1)
Clearly the zeros of h,(s) are symmetric about 0 while
the zeros of g,(z) are symmetric about —V. Conse-
quently the computational time of the zero search can
be reduced approximately by a factor of 4. More specif-

ically, one can write

2V —n

m
ham(s) = Zw2m,2j s¥, m >0,
rd
m

_ 2j+1
homs1(s) = Zw2m+1,2j+1 s, m2>0.
j=0

Since ham(s) is an even function and hzm,41(s) is an
odd function, it then follows from the recursive formula

for m > 0, that
( w = - 2 m 1 w
2m,0 = 2(V _2m) T 1 2 2m—2,0;

| Wema2i = m {wam—1,25-1

= (m ‘2%)w2m_2,2,-} »J=Lom—1, .

Wom2m = 737~ T W2m-1,2m—1
\ ! 2(V - m) + 1 !
and ,
W2am,25 — M Wam—1,25+1
W2m+1,2j+1 = V —m s
j=0,...,m-1,
_ Wam2m
Wo2m+1,2m+41 = V_m’

where ho(s) = wp o = 1.

For both ham(s) and ham41(s), it suffices to search m
zeros in (0,00). For hn(s) with 1 < n < 4, the zeros
can be obtained explicitly by solving the underlying
equations. For higher values of n, a straightforward
bisection method can be employed by exploiting the
fact that zeros of hn41(s) interleave those of f,(s).
Let &, (0 < j < n—1) be zeros of hn(s) and
—an; (0 < j £ n—1) be zeros of g,(s), one then
has ap; =V —&pj, 0<j<n-—-1

From omn(s) = o5 (s)---o_;(s), one has that

m—1 n—1
(s) H (s+ C!m]‘) H() Qnj

Umn(s) = ggm(s) = Cmn ii(: i Cmn = m——l
" I1 (s + an,;) I1 am;

=0 =0
(4.2)

Since omn(s) is regular apart from singular points
—ap,j, 0 < j<n-—1, this can be rewritten as

m—1 «
= Qnj jl;IO (-a
=0k O
(4.3)

In real domain, this leads to the probability func-
tion smn(7) and its corresponding survival function
el o0 .

Smn(T) = [ $mn(y)dy given as

—

n—

Smn(T) = Amn: .anje—anjr; (4.4)
=0
_ n—1
Sm"(T) = Z Amn.:je_anjr- (45)
j=0
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