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In this abstract, we prove a previously proposed
conjecture about the break minimization problem,
which is a problem in the area of sports scheduling.

We consider a round-robin tournament that sat-
isfies the following properties:

o the number of teams is 2n and that of slots is 2n—1;

o each team plays one game in each slot;

o each team plays every other team once;

o each team has its home and each game is held at
the home of one of the playing two teams.

Figure 1 is a schedule of a tournament satisfying
these properties. In the figure, each game with ‘@’
means that the game is held at the home of the
opponent; without ‘@’ means that the game is held
at the home of the team corresponding to the row.
For example, team 4 plays team 2 at the home of
team 2 in slot 3.

If a team plays either both at home or both at
away in slots s and s + 1, it is said that the team
has a break at slot s + 1. In a schedule, a break
is expressed as an underline at a slot where a break
occurs. For example, in Fig. 1, team 3 plays at home
in slots 1 and 2, and we say that team 3 has a break
at slot 2. In total, the schedule has six breaks.

Given a schedule without a home-away assign-
ment, an organizer of the tournament should decide a
home-away assignment, which the number of breaks
depends on. For a practical reason, an organizer gen-
erally prefers a home-away assignment in which the
number of breaks is small. In this context, the break
minimization problem is defined as follows.

Break Minimization Problem

Input: A schedule without a home-away assign-
ment.

QOutput: A home-away assignment consistent to
the given input and in which the number of
breaks is minimized.

The schedule without a home-away assignment of
Fig. 2 is an input for the break minimization prob-
lem. Although the schedule of Fig. 1 shows a feasible
home-away assignment for the input, it is subopti-
mal. The schedule of Fig. 2 is an optimal solution,
whose optimal value is four.

There are some previous results on the break
minimization problem. Régin solved up to 20 teams
instances with constraint programming [5]. Trick
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1 2 3 4 5 (slot)
1 @ @3 @5 2 o4
2 @5 6 4 @ 3
3 4 1 @6 5 @2
4 @3 5 @2 6 1
) 2 @ 1 @3 @6
6 1 @2 3 @ 5
(team)

Figure 1. A schedule with six breaks

proposed integer programming formulations and
solved instances up to 22 teams [6]. Elf, Jiinger and
Rinaldi formulated this problem as MAX CUT, and
solved instances up to 26 teams {3]. The authors for-
mulated this problem as MAX RES CUT, and pro-
posed an algorithm based on positive semidefinite
programming relaxation [4].

There are some open problems about the break
minimization problem. Although it is conjectured
that the break minimization problem is NP-hard,
the complexity status of this problem is not yet
determined. Concerning the complexity, EIf et al.
reported the following result [3]: their instances of
the break minimization problem were solved very
quickly with their method when the instances had
the optimal value 2n — 2. (The value 2n - 2 is a
lower bound of the objective value for any instance of
2n teams, because a schedule of 2n teams has at least
2n — 2 breaks [2].) According to their experience,
they conjectured that the break minimization prob-
lem is solvable in polynomial time if a given instance
of 2n teams has the optimal value 2n — 2.

We prove their conjecture affirmatively by show-
ing that the following problem P1 can be solved in
polynomial time.

Problem P1

Input: A schedule of 2n teams and without a
home-away assignment.

Output: A home-away assignment with 2n — 2
breaks, if exists; else infeasible.

In the following, we show that Problem P1 is solvable
in O(n3) steps. For Problem P1, we define Subprob-
lem P1(k) as follows (k € T, where T is a set of
teams, i.e. {1,2,...,2n}). It is not difficult to see
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1 2 3 4 5
1 6 3 5 2 4
2 5 6 4 1 3
3 4 1 6 5 2
4 3 5 2 6 1
5 2 4 1 3 6
6 1 2 3 4 5
1 2 3 4 5
1 @ 3 @5 2 o4
2 @ 6 4 @ 3
3 4 @ @ 5 @2
4 @ 5 @ 6 1
5 2 @ 1 @ @6
6 1 @ 3 @ 5

Figure 2. A schedule without a home-away assign-
ment and an optimal assignment.

that Problem P1 is feasible if and only if at least one
of P1(1), P1(2), ..., and P1(2n) is feasible.

Subproblem P1(k)
Input: The same input as that of Problem P1.

Output: A home-away assignment with 2n — 2
breaks and in which team k£ has no break and
plays at home in slot 1, if exists; else infeasible.

The feasibility of Subproblem P1(k) is equivalent
to that of Subproblem P1/(k) defined below. In addi-
tion, a feasible home-away assignment of P1(k) can
be constructed from that of P1’(k), by alternating
home with away in all even slots. (More generally,
the following statement holds: by the above men-
tioned alternation, an optimal solution of the break
minimization problem is obtained from that of the
break maximization problem and vice versa.)

Subproblem P1'(k) _
Input: The same input as that of Problem P1.

Output: A home-away assignment with 2n(2n —
2) — (2n — 2) breaks and in which team k has
2n — 2 breaks and plays at home in slot 1, if
exists; else infeasible. (In other words, team k
plays only at home and every other team has at
most one “non-break.”)

Now we formulate Subproblem P1'(k) (k € T) as
2SAT. Let S be a set of slots, i.e. {1,2,...,2n —1}.
We define a Boolean variable z;, (t € T, s € §)
as follows: a variable z;, is FALSE if and only if
team ¢ plays at home in slot s. Then, an instance of
Subproblem P1/(k) can be transformed as follows.

Find &, € {TRUE, FALSE} (VteT,Vs€S)
s.t. &y, =FALSE (Vs€ 8),
Tt # Tr(t,s),s (Vt €T, Vs e S),
s V Ty 541 (Vt € T\ {k},
Vs €S, s < Skt),
Tpg—1V Ty s (Vt € T\ {k},

Vs €S, s> skt),
Zt1 V Ty 2n-1 (Vt € T'\ {k}),
where
7(t,8): the team which team ¢ plays at slot s in
the input of P1'(k);
Skt the slot at which team k plays team ¢ in the
input of P1'(k).

Each of the constraints can be represented as
clause(s) with two literals; the number of variables
and that of clauses with two literals are both O(n?).
Since 2SAT with p literals and g clauses is solvable
in O(p + q) steps [1], Problem P1’(k) can be solved
in O(n?) steps, and hence Problem P1 is solvable in
O(n®) steps.
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