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Alternative Randomization for Valuing American Options
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1 Introduction

Let (S:):>0 be the stock price governed by the risk-
neutralized diffusion process
@ = (7‘ - 6)dt + O’th,
St
where 7 > 0 is the risk-free interest rate, § > 0 is a con-
tinuous dividend rate, o > 0 is a volatility of the asset
returns, and (W;):>0 is a standard Wiener process on
a filtered probability space (Q, F, (F¢)i>0, P).
We consider an American put option written on
(St)t>0, which has maturity date T and strike price
K. Let

P= P(t,St) = P(tust;K7T’6)1

t>0

0<t<T

denote the value of the American put option at time ¢.

McKean [2] showed that the alive American put
value P and an early exercise boundary (or a critical
stock price) (Bt)tefo,r) can be jointly obtained by solv-
ing a free boundary problem, which is specified by the
Black-Scholes-Merton PDE

10*8?Pss + (r —6)SPs —rP+ P, =0, S> B,
together with the boundary conditions
;:Txglo P(t,8)=0
Sl'ilgc P(t,S)=K - B,

51'11111:_"1e Ps(t,S) = -1

and the terminal condition

P(T,S) = (K - S)*.

2 Randomization Approach

Carr [1] developed a valuing method for the American
put. Carr’s randomization approach consists of the
following steps:

1. Randomize the maturity date by an ezponentially
distributed random variable T' with mean E[T] =
A~1 =T in order to value the so-called Canadian
option.

2. Extend the result to the case that T is distributed
as the n-stage Erlangian distribution with the
same mean E[T]| =T.
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3. Take the limit of the randomized option value by
letting n'— oo to obtain the underlying American
option value.

Actually, the idea of Carr’s randomization is not
new. In the theory of integral transforms, this idea goes
by the name of the Post-Widder inversion formula: For
a continuous function g¢(t) (¢ > 0), define

@) = [ g G R e,

-1 T
Then, we have
lim g7 (T) = g(T).
n—oo

It is sometimes convenient to work with the equa-
tions where the current time ¢ is replaced by the re-
maining time until maturity s = T —¢t. Let P(s,S,) =
P(T — s,57—5) and for A > 0 let

cO
P*=P*(\,S) = / Ae~P(s, S)ds
0

be the Laplace-Carson transform (LCT) of P(s,S).
Then, P*(), S) satisfies the ODE
16282 P2 +(r—8)SPy—(A+1)P* + MK —S)*+ =0,
S>L*

together with the boundary conditions

lim P*(),S) = 0

Sfoo

lim P*(\,8) = K — L*

SiL®

Slir[r}° P3(A,S) = —1.

The early exercise boundary L* = L*(}) is given by
the LCT of Bs = Br_;

L*(\) :/ e~ B,ds,
0

which is a constant due to the memoryless property of
the exponential distribution.

Theorem 1
K-S, S<L*
A K - —>-‘—S+c(S) + b(S) + d(S)
P*()\,S) = At A+4é !
L*<S< K
p(5) +b(S) +d(S), S=>K,



and the parameters 64 are roots of the quadratic equa-
tion

10%0* +(r—6-— 162 - (A+r)=0.

Theorem 2
(i) The early exercise boundary L* of the Canadian-
American put option satisfies the equation

6
L* + th
A (‘}T{—) = 7‘(9+ - 1) - 60+ 7{-
(ii) For the limiting case A — 0, we have

r(0 ~-1) . 62
865 K=

L*(0) = lim B, =

where 03 = limx_o 0+. In addition, if § = 0, then

L. K
L*(0) = 31_13.1033 = i
1 u—
+ 2r

(iii) For the limiting case A — oo, we have
. * - — r
)\ll»n;oL (A\)=Bg=Br= mm(é,l) K.

3 New Randomization Based on Order
Statistics

Let X1,..., Xn1+m be #id random variables with an ez-
ponential distribution with parameter @ (> 0), and let
X(iy denote the i-th smallest of these random variables
(i=1,...,n+m). Then, the pdf of X(,4;) is

f(t) _ (n+m)!!(1 _ ae—mat7

" nl(m-1) o

t>0.

If the modal value of X(541) is equal to 7', i.e.,

_ 1 n+m
M[X(nin)] = arg max fit)= = In —— =

T,

then X(n41) can be another candidate for the random
maturity T, because limp m—oo V[X(n41)] = 0.

For a continuous function g(t) (¢t > 0) and a =
% In 2E™ | define

(n + m)!! /0 g(t)(1 — e~ ) ae™ ™t

9nm(T) = A(m=1)!

Then, we have

Jdim gnm(T) = 9(T).
Theorem 3 The sequence (g;, ,,)n,m>1 Satisfies the
recursion

gm(T) =[5 mae ™g(t)dt

g:z,m(T) = % g:r.~l,m(T) - % g;-l,m-}—l(T)» n 2 1.

For a set of the parameters {t,S, K, T,r,6,0}, if we
have a functional program for computing P*(A, S) for
any A > 0, then the N-th randomized approximation
wn =~ P(t,S) (N > 1) can be obtained by the following

algorithm:

a=z-In2
for m = N to 2N do

98m = P"(ma, 5)
next m
forn=1to N do

for m = N to 2N —n do

* —_ nj;m * m %
Inm = "5 In-1m = n9n-1,m+1
next m
next n
— *
™ = gN,N
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Figure 1: American & European put values
(t=0K =100, =1,7r=0.05,§ = 0,0 = 0.2)
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