A revising method of unstable data in ANP by Bayes Theorem

01206310 Shizuoka University Kazuyuki SEKITANI 01300450 Professor Emeritus, University of Tsukuba Iwaro TAKAHASHI

# 1. Introduction

We consider the simplest type of ANP that is composed of the set of criteria  $C = \{C_1, \ldots, C_m\}$ , the set of alternatives  $A = \{A_1, \ldots, A_n\}$ , the evaluation matrix U of alternatives by criteria and W of criteria by alternatives. This type of ANP has a so-called supermatrix

$$S = \left[ \begin{array}{cc} 0 & W \\ U & 0 \end{array} \right]. \tag{1}$$

It is often said that the values of elements of W, the evaluation of criteria by alternatives, are unstable. Saaty [2] insists that Bayes Theorem is included in the framework of ANP. This study proposes the new approach of revising W based on this idea and to show no contradiction of the new one.

### 2. Structures of Bayes Theorem and ANP

We illustrate the structures of Bayes Theory and consider a group G of human beings (G may be the whole people of U.S.A.) Some of them have a cancer. Let  $C_1$  be the set of persons of cancer and  $C_2 = G \setminus C_1$  be the set of non-cancer ones. Denoting the percent/100 of  $C_1(C_2)$  by  $p_1(p_2)$ , we have  $p_1 + p_2 = 1$ . Let  $A_1$  be the set of persons who are decided to cancer by the medical checkup. And  $A_2 = G \setminus A_1$  is the set of ones decided to have not cancer. Denoting the percent/100 of  $A_1(A_2)$  by  $q_1(q_2)$ , then we have  $q_1 + q_2 = 1$ . Then we have the following four kinds of conditional probabilities:

$$u_{ji} = \frac{|A_j \cap C_i|}{|C_i|}, i, j = 1, 2.$$
 (2)

All we can know is only the results of the medical check. The (conditional) probability for a person decided to have cancer by the medical check to have really cancer is clearly represented as

$$\frac{|A_1 \cap C_1|}{|A_1|}. (3)$$

By using  $p_i, q_j$  and  $u_{ij}$ , then (3) is  $\frac{u_{11}p_1}{q_1}$ . In Bayes theory this ratio is called a posteriori probability.

This way of expression is based on their idea taking  $C_1$ ,  $C_2$  as causes and  $A_1$ ,  $A_2$  as outcomes. The aposteriori probability  $w_{ij}$  of  $C_i$  on the outcome  $A_j$  is

$$w_{ij} = \frac{u_{ji}p_i}{q_i}. (4)$$

Since  $q_j = \sum_i u_{ji} p_i$ , (4) is equivalent to  $w_{ij} = \frac{u_{ji} p_i}{\sum_k u_{jk} p_k}$ . This is the famous Bayes Theorem. In order to have a linkage between Bayes Theorem

In order to have a linkage between Bayes Theorem and ANP, take the simplest actual example of (1) type of ANP. Consider two fast food companies  $A_1$  and  $A_2$ , and two evaluation criteria  $C_1$  and  $C_2$ .

Now assuming that the whole people G of U.S.A can be decomposed into two groups  $\bar{C}_1$  supporting  $C_1$  and  $\bar{C}_2$  supporting  $C_2$ . The similar decomposition  $\bar{A}_1$  and  $\bar{A}_2$  is considered. Then evaluating weight  $p_i(q_j)$  of  $C_i(A_j)$  can be considered to be near percent/100 of  $\bar{C}_i(\bar{A}_j)$  in G. Similarly evaluating weight  $u_{ji}$  of  $A_j$  by  $C_i$  can be considered to be near to the percent/100 of  $\bar{A}_j$  within  $\bar{C}_i$ . Considering  $p_i \approx |\bar{C}_i|/|G|$  and  $q_i \approx |\bar{A}_j|/|G|$  and some realistic and mild assumptions, Saaty mentions that evaluating weight  $w_{ij}$  of  $C_i$  by  $A_j$  is close to  $\frac{u_j p_i}{q_j}$ ,

$$w_{ij} \approx \frac{u_{ji}p_i}{q_i}. (5)$$

If (5) is valid with exact equality, it completely coincides with Bayes Theorem (4). This is a brief explanation of Saaty's claim "ANP includes Bayes Theorem".

## 3. The revising method of W

Our revising method, Bayes Revising Method(BRM), assumes the relations (5). To describe BRM, we define several symbols as follows:

$$U = \begin{bmatrix} u_{11} & \cdots & u_{1m} \\ \vdots & \ddots & \vdots \\ u_{n1} & \cdots & u_{nm} \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 $W = \begin{bmatrix} w_{11} & \cdots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{m1} & \cdots & w_{mn} \end{bmatrix} = [w_1, \cdots, w_n]$ 

W: initial value of evaluation matrix of criteria by alternatives  $(\boldsymbol{w}_j)$  is an evaluating vector of criteria by  $A_j$ ,  $j = 1, \ldots, n$ .)  $\boldsymbol{p} = [p_1, \ldots, p_m]^\top$ : evaluation vector of criteria by an outer factor

 $q = [q_1, \dots, q_n]^{\top}$ : evaluation vector determined by q = Up.

Here we assume as usual ANP

$$\sum_{i=1}^{n} u_{ij} = 1, \quad \sum_{i=1}^{m} w_{ij} = 1, \quad w_{ij} \ge 0, u_{ij} \ge 0 \quad (6)$$

Writing (5) by matrix-forms, we have

$$W \approx (\Delta \boldsymbol{p}) U^{\top} (\Delta \boldsymbol{q})^{-1}, \tag{7}$$

where 
$$\Delta m{p} = \left[ egin{array}{ccc} p_1 & & m{0} \\ & \ddots & \\ m{0} & & p_n \end{array} 
ight]$$
 . Considering  $m{q} = Um{p},$ 

we can write the right hand-side of (7) as

$$\mathcal{W}[\mathbf{p}] = (\Delta \mathbf{p}) U^{\top} (\Delta (U\mathbf{p}))^{-1}$$
 (8)

which is considered to be a transformation of apriori probability into aposteriori probability  $\mathcal{W}[p]$  by Bayes Theorem. Here we call (8) Bayes transformation.

Now the principle of BRM is to make Bayes transformation  $\mathcal{W}[p]$  of the convex combination  $p = \sum_{j=1}^{n} r_j w_j$  of  $w_1, \ldots, w_n$ , to be nearest to W. That is, the principle of BRM is to find

$$p = \sum_{j=1}^{n} r_j w_j, \sum_{j=1}^{n} r_j = 1 \text{ and } r_j \ge 0$$
 (9)

such that

$$\mathcal{W}[\mathbf{p}] = (\Delta \mathbf{p}) U^{\top} (\Delta (U\mathbf{p}))^{-1}$$
 (10)

is near to W as possible as we can. Then we take W[p] as the revised W.

Here we take the min-max principle as the nearest; that is, the min-max principle is

$$\min \max_{\substack{i=1,\dots,m\\i=1,\dots,n}} \left\{ \frac{u_{ji} \sum_{k=1}^{n} w_{ik} r_k}{w_{ij} \sum_{k=1}^{n} (u_{j} w_{k}) r_k}, \frac{w_{ij} \sum_{k=1}^{n} (u_{j} w_{k}) r_k}{u_{ji} \sum_{k=1}^{n} w_{ik} r_k} \right\}$$

s.t. 
$$\sum_{k=1}^{n} r_k = 1, \ r_k \ge 0, \ k = 1, \dots, n.$$
 (11)

The optimization problem (11) is a typical fractional program and it can be solved by Dinkelbach algorithm [1].

Once we had the revised matrix  $\hat{W}$ , the analysis of ANP are carried out by the revised supermatrix

$$\hat{S} = \begin{bmatrix} 0 & \hat{W} \\ U & 0 \end{bmatrix}. \tag{12}$$

# 4. Some properties of BRM

Main properties of BRM are as follows:

**Theorem 1** The evaluation weight vector of criteria of ANP with the supermatrix (12) is an optimal solution  $p^*$  of (11) and the evaluation weight vector of alternatives is  $Up^*$ .

**Theorem 2** Let S be a supermatrix (1) and let  $p^*$  be an evaluation weight vector of criteria by applying BRM to S. Suppose that W of S satisfies  $w_{1j} > w_{2j} > \cdots > w_{mj}$  for all  $j = 1, \ldots, n$ , then  $p_1^* > p_2^* > \cdots > p_m^*$ . That is, BRM has no contradiction.

**Theorem 3** Let  $\lambda^*$  and  $p^*$  be the optimal value and the optimal solution of

$$\min_{\boldsymbol{p} \in C(W)} \max_{\substack{i=1,\dots,m_i\\i=1,\dots,n}} \left\{ \frac{u_{ji}p_i}{w_{ij}\boldsymbol{u}_j\boldsymbol{p}}, \frac{w_{ij}\boldsymbol{u}_j\boldsymbol{p}}{u_{ji}p_i} \right\}, \tag{13}$$

respectively, where C(W) is the convex hull of  $\{w_1, \dots, w_n\}$ . Let  $\bar{\lambda}$  and  $\underline{\lambda}$  be the optimal value of  $\min_{\boldsymbol{p}>0} \max_{\substack{i=1,\dots,m,\\j=1,\dots,n}} \left\{\frac{w_{ij}u_{j}\boldsymbol{p}}{u_{ji}p_{i}}\right\}$  and that of

 $\max_{\boldsymbol{p}>0} \min_{\substack{i=1,\ldots,m,\\j=1,\ldots,n}} \left\{ \frac{w_{ij}u_{j}\boldsymbol{p}}{u_{ji}p_{i}} \right\}, \text{ respectively. Suppose that}$   $\lambda^{*} = \max \left\{ \underline{\lambda}^{-1}, \overline{\lambda} \right\} \text{ and that the optimal value } \lambda^{*}$ of (13) and any optimal solution  $\boldsymbol{p}^{*}$  of (13) sat-

isfies  $\lambda^* > \max_{i=1,\dots,m} \left\{ \frac{u_{ji}p_i^*}{w_{ij}u_jp^*}, \frac{w_{ij}u_jp^*}{u_{ji}p_i^*} \right\}$  and  $p^* \in C(w_1,\dots,w_{j-1},w_{j+1},\dots,w_n)$ . If a positive vector  $\tilde{w}_j$  satisfies  $\sum_{i=1}^m \tilde{w}_{ij} = 1$  and  $p^*$  satisfies

$$\lambda^* \geq \max_{i=1,...,m} \left\{ \frac{\tilde{w}_{ij} u_{j} p^*}{u_{ji} p^*_i}, \frac{u_{ji} p^*_i}{\tilde{w}_{ij} u_{j} p^*} \right\},$$

then  $p^*$  is also an optimal solution of

$$\min_{\boldsymbol{p} \in C(\tilde{W})} \max \left\{ \begin{array}{l} \max\limits_{i=1,\ldots,m} \left\{ \frac{u_{li}p_i}{w_{il}u_l\boldsymbol{p}}, \frac{w_{il}u_l\boldsymbol{p}}{u_{li}p_i} \right\} \\ \max\limits_{i=1,\ldots,m} \left\{ \frac{u_{ji}p_i}{\tilde{w}_{ij}u_j\boldsymbol{p}}, \frac{\tilde{w}_{ij}u_j\boldsymbol{p}}{u_{ji}p_i} \right\} \end{array} \right\},$$

where  $\tilde{W} = [\boldsymbol{w}_1, \cdots, \boldsymbol{w}_{j-1}, \tilde{\boldsymbol{w}}_j, \boldsymbol{w}_{j+1}, \cdots, \boldsymbol{w}_n].$ 

#### References

- [1] J. Borde and J. P. Crouzeix: Convergence of a Dinkelbach-Type Algorithm in Generalized Fractional Programming, Zeitcshrift für Operations Research, 31(1987) 31-54.
- [2] T.L. Saaty: Analytic Network Process (RWS, Pittsburgh, 2000).