A Dynamic Decision Making Model with an Objective Function based on Fuzzy Preferences

北九州市立大学 *吉田祐治 01702986 YOSHIDA Yuii 千葉大学 安田正實 01701690 YASUDA Masami 千葉大学 01401530 中神溜一 NAKAGAMI Jun-ichi 千葉大学 01101550 蔵野正美 KURANO Masami

This talk presents a mathematical model for dynamic decision making with an objective function induced from fuzzy preferences. This model is related to decision making in artificial intelligence.

Let a state space S be a σ -compact convex subset of some Banach space, and the states are represented by elements of S. The attributes of the states/objects can be represented as the d-dimensional coordinates when the Banach space is taken by d-dimensional Euclidean space \mathbb{R}^d . Let S be a subset of S such that S has finite elements. A map $\mu: S \times S \mapsto [0,1]$ is called a fuzzy relation on S. Fuzzy preferences are introduced by fuzzy relations on S.

Definition. A fuzzy relation μ on S is called a fuzzy preference relation if it satisfies the following conditions (a) - (b):

- (a) $\mu(a, a) = 1$ for all $a \in \mathcal{S}$. (reflexive)
- (b) $\mu(a,c) \ge \min\{\mu(a,b), \mu(b,c)\}\$ for all $a,b,c \in \mathcal{S}$. (transitive)
- (c) $\mu(a,b) + \mu(b,a) \ge 1$ for all $a,b \in \mathcal{S}$. (connected)

Here, $\mu(a,b)$ means the degree that the decision maker likes a than b. We introduce a ranking method of states, which is called a score ranking function.

Definition. For a fuzzy preference relation μ on S, the following map r on S is called a score ranking function of states induced by the fuzzy preference relation μ :

$$r(a) = \sum_{b \in \mathcal{S}: b \neq a} \{\mu(a, b) - \mu(b, a)\}, \quad a \in \mathcal{S}.$$

$$(1)$$

We discuss a dynamic decision making model with fuzzy references and a time space $\{0, 1, \dots, T\}$. Let S_0 be a subset of S such that $S_0 := \{c^i | i = 1, 2, \dots, n\}$ has n elements and a partial order \succeq . S_0 is called an *initial state space* and it is given as a training set in a learning model. Let μ_0 be a fuzzy preference relation on S_0 . Let $t(=0,1,2,\cdots,T)$ be a current time. An action space A_t at time t(<T) is given by a compact set of some Banach space. At time t, a current state is denoted by s_t , and an initial state s_0 is given by an element in S_0 . Define a family of states until time t by $S_t := \{c^1, c^2, \cdots, c^n, s_1, s_2, \cdots, s_t\}$. $u_t(\in A_t)$ means an action at time t, and $h_t = (s_0, u_0, s_1, u_1, \cdots, s_{t-1}, u_{t-1}, s_t)$ means a history with states s_0, s_1, \cdots, s_t and actions $u_0, u_1, \cdots, u_{t-1}$. Then, a strategy is a map $\pi_t : \{h_t\} \mapsto A_t$ which is represented as $\pi_t(h_t) = u_t$ for some $u_t \in A_t$. A sequence $\pi = \{\pi_t\}_{t=1}^{T-1}$ of strategies is called a policy.

Let $\{\bar{\rho}_t\}_{t=1}^T$ be a sequence of nonnegative numbers. We deal with the case where a current state s_t is represented by a linear combination of the initial states c^1, c^2, \dots, c^n and the past states s_1, s_2, \dots, s_{t-1} :

$$s_t = \sum_{i=1}^n \bar{w}_t^i c^i + \sum_{j=1}^{t-1} \bar{w}_t^{n+j} s_j,$$
 (2)

for some weight vector $(\bar{w}_t^1, \bar{w}_t^2, \cdots, \bar{w}_t^{n+t-1}) \in \mathbb{R}^{n+t-1}$ satisfying $-\bar{\rho}_t \leq \bar{w}_t^i \leq 1 + \bar{\rho}_t$ $(i = 1, 2, \cdots, n + t-1)$ and $\sum_{i=1}^{n+t} \bar{w}_t^i = 1$, where $\sum_{j=1}^0 := 0$ and

$$\bar{w}_0^i := \begin{cases} 1 & \text{if } s_0 = c^i \\ 0 & \text{if } s_0 \neq c^i \end{cases} \quad \text{for } i = 1, 2, \dots, n.$$
 (3)

The equation (2) means that the current state s_t is cognizable from the knowledge of the past states $S_{t-1} = \{c^1, c^2, \cdots, c^n, s_1, s_2, \cdots, s_{t-1}\}$, which we call an experience set. Then, $\bar{\rho}_t$ is called a capacity factor regarding the range of cognizable states. The range becomes bigger as the positive constant $\bar{\rho}_t$ is taken greater in this model. If $\bar{\rho}_t = 0$ for all $t = 1, 2, \cdots, T$, the decision maker is conservative and the range of cognizable states at any time t is the same as the initial cognizable scope, which is the convex full of $S_0 = \{c^1, c^2, \cdots, c^n\}$. For $i = 1, 2, \cdots, n$, we define a sequence of weights $\{w_t^i\}_{t=0}^T$ inductively by

$$w_0^i := \bar{w}_0^i$$
 and $w_t^i := \bar{w}_t^i + \sum_{j=1}^{t-1} \bar{w}_t^{n+j} w_j^i$ $(t = 1, 2, \dots, T).$ (4)

Then it holds that $\sum_{i=1}^n w_t^i = 1$ and $s_t = \sum_{i=1}^n w_t^i c^i$. Let $t = 1, 2, \dots, T$ be a current time. We define a fuzzy relation μ_t on \mathcal{S}_t by induction on t as follows: $\mu_t := \mu_{t-1}$ on $\mathcal{S}_{t-1} \times \mathcal{S}_{t-1}$, $\mu_t(s_t, s_t) := 1$,

$$\mu_t(s_t, a) := \sum_{i=1}^n \bar{w}_t^i \mu_t(c^i, a) + \sum_{j=1}^{t-1} \bar{w}_t^{n+j} \mu_t(s_j, a) \text{ and } \mu_t(a, s_t) := \sum_{i=1}^n \bar{w}_t^i \mu_t(a, c^i) + \sum_{j=1}^{t-1} \bar{w}_t^{n+j} \mu_t(a, s_j)$$

for $a \in \mathcal{S}_{t-1}$.

Lemma. Define a sequence of capacities $\{\rho_t\}_{t=1}^T$ by $\rho_1 := \bar{\rho}_1$ and $\rho_{t+1} := \rho_t + \bar{\rho}_{t+1}(1+t+t\rho_t)$ for $t=1,2,\cdots,T-1$. Then, it holds that $-\rho_t \leq w_t^i \leq 1+\rho_t$ for $i=1,2,\cdots,n; t=1,2,\cdots,T$.

Let (Ω, P) be a probability space. Let π be a policy and let $t = 0, 1, 2, \dots, T$ be a current time. Then, maps $X_t^{\pi}: \Omega \mapsto \mathbb{S}$ denote random variables taking values in states. We put the transition probability from a current state s_t to a next state s_{t+1} by $P_{h_t}(X_{t+1}^{\pi} = s_{t+1})$ when a history $h_t = (s_0, u_0, s_1, u_1, \dots, s_{t-1}, u_{t-1}, s_t)$ is given. For $t = 1, 2, \dots, T$, we define a scaling function

$$\varphi_t(x) := \frac{x}{2K(n,t)} + \frac{1}{2},\tag{5}$$

where $K(n,t) := (n+1)(n+t-2+(n+1)\sum_{m=1}^{t-1}\rho_m)$. Then, the scaling function φ_t is a map $\varphi_t : [-K(n,t),K(n,t)] \mapsto [0,1]$. Here, we deal with only strategies such that the random variable X_t^{π} is represented by

$$X_t^{\pi} = \sum_{i=1}^n \bar{W}_t^i c^i + \sum_{j=1}^{t-1} \bar{W}_t^{n+j} s_j, \tag{6}$$

for some sequence of real random variables $\{\bar{W}^i_t\}_{i=1}^{n+t-1}$ satisfying $-\bar{\rho}_t \leq \bar{W}^i_t \leq 1 + \bar{\rho}_t$ $(i=1,2,\cdots,n+t-1)$ and $\sum_{i=1}^{n+t-1} \bar{W}^i_t = 1$, where $\bar{W}^i_0 := 1_{\{X^\pi_0 = c^i\}}$ for $i=1,2,\cdots,n$. Let $t(=0,1,2,\cdots,T)$ be a current time. We introduce total values $V^\pi_t(h_t)$ at time t by

$$V_t^{\pi}(h_t) := E_{h_t} \left[\sum_{m=t}^T \varphi_m(r_m(X_m^{\pi})) \right], \tag{7}$$

where $E_{h_t}[\cdot]$ denotes the expectation with respect to paths with a history h_t and

$$r_t(X_t^{\pi}) := \sum_{a \in S_t} \{ \mu_t(X_t^{\pi}, a) - \mu_t(a, X_t^{\pi}) \}.$$
 (8)

Qwing to the scaling function (5), we can take a balance among the scores $\varphi_t(r_t(X_t^{\pi}))$ $(t = 0, 1, \dots, T)$. The optimal total values $V_t(h_t)$ is defined by $V_t(h_t) := \sup_{\pi} V_t^{\pi}(h_t)$.

Theorem. (The optimality equation). Let a history $h_t = (s_0, u_0, s_1, u_1, \dots, s_{t-1}, u_{t-1}, s_t)$ for $t = 0, 1, 2, \dots, T-1$. Then, it holds that

$$V_t(h_t) = \sup_{-} E_{h_t}[\varphi_t(r_t(s_t)) + V_{t+1}((h_t, u_t, X_{t+1}^{\pi}))]$$
(9)

for $t = 0, 1, 2, \dots, T - 1$, and $V_T(h_T) = \varphi_T(r_T(s_T))$ at terminal time T.