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A Homogeneous Model for Py and P, Complementarity Problems
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1 Introduction

The homogeneous model for linear programs provides
a most simple and firm theory in interior point algo-
rithms. Andersen and Ye generalized this model to
monotone complementarity problems {CPs) and showed
that most of desirable properties can be inherited as
long as the problem has the monotonicity[1]. Unfortu-
nately, much dependence on the monotonicity prevents
us from extending the model to more general problems,
e.g., Po CPs or P, CPs. In this article, we propose a
new homogeneous model and its associated algorithm
which have the following features: (a) The model pre-
serves the Py (P.) property if the original problem is
a Py (P.) CP. (b) The algorithm can be applied to Py
CPs starting at a positive point near the central tra-
jectory, and it does not need to use any big-AM penalty
parameter. (c) It generates a sequence that approaches
feasibility and optimality simultaneously for any P, CP
having a complementarity solution, and (d) solves the
P. CP having a strictly feasible point.

2 Complementarity problems

The standard complementarity problem (CP) is given
by
(CP) Find (z,s) € ®*"

s.t. s= f(z), (z,8) >0, z;5; =0 (1 € N)
where f is a continuously differentiable function from
R :={z€R": >0} toR" and N :={1,2,...,n}.

A CP is said to be (asymptotically) feasible if and
only if there is a bounded sequence {(z¥, s*)} € ®%", :=
{(z,s) € ®*™ : (z,s) > 0} such that limy_,o, s* —
f(z*) = 0, where any limit point (%, §) of the sequence
is called an (asymptotically) feasible point for the CP.
In particular, an (asymptotically) feasible point (%, §)
satisfying (£,5) > (0,0) is called an interior feasible
point or a strictly feasible point.

Definition 2.1 Let K be a subset of R and k > 0.

(i) f: K — R" is said to be a Py function if and only
if for any ! # z2 € K, there exists at least one
index it € N such that

(@i —z})(fi(=") - fi(z?)) 2 0.

(ii) f: K — R is said to be a P.(k) function if and
only if
(1+4x) E (zi - 2)(fi(z') - fi(z?))
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+ 3 (2} - 2 (fila?) - fi(z?)) 20
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for any x',2% € KC, where I, :=TI,(z) and Z_ :=
I_(x) are a couple of index sets given by

Ti(z) = {i € N : (z; — z{)(filz") - fi(z*)) 2 0},
I_(z) = {i € N : (zi - z)(filz") - fu(=?)) < 0}.

(iif) f: K — R" is said to be a monotone function if
and only if it is a P,(0) function.

We say that the CP is monotone (respectively, P. (k)
or Py) if f is monotone (respectively, P. (k) or Pg). See
the comprehensive books [2] for more details concerning
CPs and algorithms.

3 A new homogeneous model

Andersen and Ye[1] provide the homogeneous monotone
model (HMCP) related to (CP):

(HMCP) Find (z,T,s,&) € R2("+1)
8 7f(z/T)
. = b(z,7) = ’
S (n> ¢(IE T) (—-fo(:I:/T))
(z,7,8,6) >0, i85, =0 (i € N), 75 = 0.

The map ¢ is monotone on the set é‘Rﬁf if f is monotone
on R7% . However, this fact does not necessarily hold for
general cases. We introduce a new homogeneous model:

(HCP) Find (z,t,s,u) € R4"
st (s) = Yz, t) = ( Tf(T—lx)) ’
u -Xf(T'x)
(z,t,8,u) >0, z;5; =0, t;u; =0 (i € N)

where X := diagzi(i € N) and T := diagti(i € N).
Let us define z := (z,t) € R?", 2N := {1,2,...,2n},
and

e sup {2 i€ N}
¢ tx,tzgc min{t}t? : i € N}

for every nonempty subset C of R7% _ .

Lemma 3.1 (i) If f: R} — R” is a Py function then
YR x RT, — N2 ds a Py function.

(ii) Let C be a subset of R}, with 0 < 7¢ < oco. If
f is a P.(k) function for some k > 0, then 9 is
a P.(kc) function from R} x C to R®™ where ko
satisfies 1 + 4xc = 1c(1 + 4K).



The following lemma. gives a validity of solving (HCP)
instead of (CP).

Lemma 3.2 (i) (HCP) is (asymptotically) feasible
and every (asymptotically) feasible solution is a
complementarity solution.

(ii) Let (z*,t*,s*,u*) be a complementarity solution of
(HCP). If t* > 0, then (T 'z*, T, 's*) is a com-
plementarity solution for (CP).

(iii) Let (£,8) be a complementarity solution of (CP).
Then, for every t* > 0, we can construct
an (asymptotically) feasible solution (z*,t*,s*,u*)
i.e., a complementarity solution of (HCP) using
(Z,38).

4 Main results

We summarize the main results obtained for (HCP).

Assumption 4.1 (i) The original problem (CP) has
a complementarity solution (%, §).

(ii) f is a P.(k) function from R} to R™.

Theorem 4.2 Suppose that Assumption 4.1 holds. Let
(@,b) € R4, and T := {6(a,b) : 0 >0}. Then

vY(T)
= {(z,w) € 9‘2‘}_’; : U(z,w) = 0(a,b), 0 € (0, 1}}

forms a trajectory.

Assumption 4.3 There exists an open subset C for
which ¢ has a finite positive value and

UHT) C T, x C x R,

Theorem 4.4 Suppose that Assumptions 4.1 and 4.3
are satisfied.

(i) The trajectory ¥—2(T) is bounded.

(ii) Every limit point (z*,w*) = (z*,t*,s*,u*) of
U~YT) is a complementarity solution of (HCP)
with t* > 0.

Assumption 4.5 (i) The original problem (CP) has
a strictly feasible point (Z,5).

(ii) f is a P.(k) function from R} to R™.

Theorem 4.6 Suppose that Assumption 4.5 holds.
Then

(i) the trajectory ¥=1(T) is bounded, and
(ii) every limit point (2*,w*) = (z*,t*, s*,u*) of

U-Y(T) is a complementarity solution of (HCP)
with t* > 0.

We provide an algorithm for tracing the trajectory.
Let 2° = e, w® = 2max;en{|¥;(2°)|}e. Then, for
every B € (0,1), (2°,w°) satisfies 0 := w® — ¢(2°) > 0
and || Z%° — uP€|| < Bu® where p0 := (2°)Tw?/2n. At
each iteration k with (2%, w¥) := (2%, t¥, s*, u*), we set
¢ 1= wk — (2*) and p* := (2F)Tw*/2n and calculate
a direction (Az*, Aw*) by solving

Aw® — V() A2k = —npr¥,
ZyAwk + Wi AZF = ypke — Zw®

where 1 € (0,1) and 7 € (0,1). Define
9" (@) = (¥ (a)) — ¥(z*) ~ aVy(F)AZ*
and
*(a) := 2* + aAZF, w*(a) = w* + aAu* + ¢*(a).

By applying an inexact line search procedure, find
an appropriate & > 0 and set (zFt! w*+l) =
(2*(@), w*(&)).

Theorem 4.7 Suppose that Assumption 4.5 is satis-
fied.

(i) The algorithm is well defined and the generated se-
quence {(z*,w*)} is bounded.

(ii) Every limit point (z*,w*) = (z*,t*,s*,u*) of
{(z*,w*)} is a solution of (HCP) with t* > 0.

(iv) For every limit point (2*,w*) = (z*,t*, s*,u*) of
{(zF,wk)}, (T2, To's*) is a complementarity
solution of the original problem (CP).

5 Concluding remarks

While numerous studies have been conducted on com-
plementarity problems over cones in the last decade,
there still remain several issues to be addressed: Ex-
tensions of the concepts of Py and P, to the problems,
developments of homogeneous algorithms for the prob-
lems, etc. A pioneer work can be seen in [3].

References

[1] E. Andersen and Y. Ye. On a homogeneous algo-
rithm for the monotone complementarity problems.
Mathematical Programming, 84:375-400, 1999.

[2] F. Facchinei and J.-S. Pang. Finite-Dimensional
Variational Inequalities and Complementarity Prob-

lems Volume I, II. Springer-Verlag, 2003.

M. S. Gowda, R. Sznajder and J. Tao. Some P-
properties for linear transformations on Euclidean
Jordan algebras. Technical Report TRGOW03-02,
Department of Mathematics and Statistics, Univer-
sity of Maryland, 2003.





