A Discrete-Time Consumption and Wealth Model with Uncertainty

01702986 北九州市立大学 *吉田祐治 YOSHIDA Yuji 千葉大学 安田正実 01701690 YASUDA Masami 千葉大学 中神潤一 01401530 NAKAGAMI Jun-ichi 千葉大学 蔵野正美 01101550 KURANO Masami

In this talk, we present a portfolio model on the basis of a sequence of fuzzy-valued random variables discussed at the annual meeting of OR Society Japan in 1998.

We consider a portfolio model with a bond and n stocks, where there is no arbitrage opportunities under uncertainty of stock prices. Let $\mathbb{T}:=\{0,1,2,\cdots,T\}$, and \mathbb{R} denotes the set of all real numbers. Let (Ω,\mathcal{M},P) be a probability space, where \mathcal{M} is a σ -field of Ω and P is a non-atomic probability measure. Take a probability space $\Omega:=(\mathbb{R}^{n+1})^{T+1}$. Let a positive number r_t be an interest rate of a bond price at time $t(=1,2,\cdots,T)$, and put a bond price process $\{S_t^0\}_{t=0}^T$ by $S_0^0=1$ and $S_t^0:=\prod_{s=1}^t (1+r_s)$ for $t=1,2,\cdots,T$. We define stock price processes $\{S_t^i\}_{t=0}^T$ for $i=1,2,\cdots,n$ as follows: An initial stock price S_0^i is a positive constant and stock prices at positive time t are given by $S_t^i:=S_0^i\prod_{s=1}^t (1+Y_s^i)$ for $t=1,2,\cdots,T$, where $\{Y_t^i\}_{t=1}^T$ is a uniform integrable sequence of i.i.d. real random variables on $(-\infty,r_t+1]$ such that $E(Y_t^i)=r_t$ for all $t=1,2,\cdots,T$. A sequence of σ -fields $\{\mathcal{M}_t\}_{t=0}^T$ on Ω is given by $\mathcal{M}_0=\sigma\{\emptyset,\Omega\}$ and $\mathcal{M}_t=\sigma\{Y_s^i\mid i=1,2,\cdots,n; s=1,2,\cdots,t\}$ for $t=1,2,\cdots,T$.

Let $i=1,2,\cdots,n$, and let $\{\delta_t^i\}_{t=0}^T$ be a stochastic process such that $0<\delta_t^i\leq S_t^i$. We give a fuzzy stochastic process $\{\tilde{S}_t^i\}_{t=0}^T$ of the stock prices by fuzzy random variables

$$\hat{S}_t^i(\omega)(x) := L((x - S_t^i(\omega))/\delta_t^i(\omega)), \quad x \in \mathbb{R} \quad \text{for } t \in \mathbb{T}, \ \omega \in \Omega,$$

where $L(\cdot) := \max\{1 - |\cdot|, 0\}$ is the triangle type shape function. Hence, $\delta_t^i(\omega)$ is a spread of triangular fuzzy numbers $\tilde{S}_t^i(\omega)$ and corresponds to the amount of fuzziness in the stock price process $\{S_t^i\}_{t=0}^T$.

Assumption S. Let $i = 1, 2, \dots, n$. The stochastic process $\{\delta_t^i\}_{t=0}^T$ is represented by $\delta_t^i(\omega) := \eta^i S_t^i(\omega)$, for $t \in \mathbb{T}$ and $\omega \in \Omega$, where η^i is a constant satisfying $0 < \eta^i < 1$.

We also represent the bond price process $\{\tilde{S}^0_t\}_{t=0}^T$ by the crisp number $\tilde{S}^0_t(x) := 1_{\{S^0_t\}}(x)$ for $t \in \mathbb{T}$ and $x \in \mathbb{R}$, where $1_{\{\cdot\}}$ denotes the characteristic function of a set. We consider a case where their short sales are allowed. A trading strategy $\pi = \{\pi_t\}_{t=0}^T = \{(\pi^0_t, \pi^1_t, \cdots, \pi^n_t)\}_{t=0}^T$ is a \mathbb{R}^{n+1} -valued \mathcal{M}_t -predictable process such that $\sum_{t=0}^T E(|\pi^0_t|) < \infty$, $\sum_{t=0}^T E(|\pi^1_t|S^i_t) < \infty$ and $\sum_{t=0}^{T-1} E(|\pi^1_{t+1}|S^i_t) < \infty$ for all $i=0,1,\cdots,n$. Here π^0_t means the amount of the bond \tilde{S}^0_t and π^1_t means the amount of the stock \tilde{S}^1_t . Define a fuzzy wealth process $\{\tilde{V}_t\}_{t=0}^T$ and consumption process $\{\tilde{C}_t\}_{t=0}^{T-1}$ by fuzzy random variables

$$\tilde{V}_t := \pi_t^0 \tilde{S}_t^0 + \sum_{i=1}^n \pi_t^i \tilde{S}_t^i \ (t \in \mathbb{T}), \quad \tilde{C}_t := (\pi_t^0 - \pi_{t+1}^0) \tilde{S}_t^0 + \sum_{i=1}^n (\pi_t^i - \pi_{t+1}^i) \tilde{S}_t^i \ (0 \le t \le T - 1). \tag{2}$$

Let γ be an \mathcal{M}_T -adapted real random variable which is independent to \mathcal{M}_{T-1} . Then we put a crisp random variable $\tilde{C}_T(\omega) := 1_{\{\gamma(\omega)\}}$ for $\omega \in \Omega$, and it is called a terminal consumption. A trading strategy π is called admissible if $\tilde{C}_t(\omega) \succeq \tilde{0}$ for all $t \in \mathbb{T}$ and $\omega \in \Omega$, where $\tilde{0} = 1_{\{0\}}$ is the crisp number zero and \succ is the fuzzy max order.

Hence we consider utility estimation of consumption and wealth in the portfolio model. Let $\overline{\mathbb{R}}:=[-\infty,\infty)$. A map $U_1:\mathbb{T}\times\mathbb{R}\mapsto\overline{\mathbb{R}}$ is called a consumption utility function if $U_1(t,\cdot)$ is continuous, increasing and strictly concave on $(0,\infty)$ such that $\lim_{c\to\infty}U_1(t,c)=\infty$, $\lim_{c\downarrow 0}U_1(t,c)=-\infty$ and $U_1(t,c)=-\infty$ if $c\leq 0$ for all $t\in\mathbb{T}$. A map $U_2:\mathbb{R}\mapsto\overline{\mathbb{R}}$ is also called a time-invariant wealth utility function if it is satisfies the same conditions. Since the consumption process \tilde{C}_t and the fuzzy wealth process \tilde{V}_t take fuzzy values, we introduce their fuzzy utilities $\tilde{U}_1(t,\cdot):\mathcal{R}\mapsto\mathcal{R}$ and $\tilde{U}_2:\mathcal{R}\mapsto\mathcal{R}$ by

$$\tilde{U}_1(t, \tilde{a})(y) := \sup_{x: U_1(t, x) = y} \tilde{a}(x) \text{ and } \tilde{U}_2(\tilde{a})(y) := \sup_{x: U_2(x) = y} \tilde{a}(x),$$
 (3)

 $y \in \overline{\mathbb{R}}$ for $t \in \mathbb{T}$ and $\tilde{a} \in \mathcal{R}$. Let $\pi = (\pi^1, \pi^2, \cdots, \pi^n)$ be an admissible trading strategy satisfying $\sum_{i=0}^n x^i \pi_0^i = w$ for initial securities prices $x = (x^0, x^1, \cdots, x^n)$ and initial wealth w such that $x^i > 0$ $(i = 0, 1, \cdots, n)$ and w > 0. Then, for a consumption \tilde{C}_T satisfying $\tilde{C}_T \preceq \tilde{W}_T$, the mean value of the total expected utilities of the consumption process $\{\tilde{C}_t\}_{t=0}^T$ and the terminal wealth \tilde{W}_T is given by

$$J(x, w, \pi, \tilde{C}_T) := \tilde{E}\left(E_{x, w}\left(\sum_{t=0}^T \tilde{U}_1(t, \tilde{C}_t) + \tilde{U}_2(\tilde{W}_T)\right)\right),\tag{4}$$

where $E_{x,w}(\cdot)$ is the expectation with a trading strategy π satisfying $\sum_{i=0}^n x^i \pi_0^i = w$ for initial securities prices x and an initial wealth w, and the mean value of a fuzzy number $\tilde{a} \in \mathcal{R}$ is given by $\tilde{E}(\tilde{a}) := \int_0^1 g(\tilde{a}_{\alpha}) \, \mathrm{d}\alpha$ with a map g such that $g([x,y]) := \lambda x + (1-\lambda)y$ for bounded closed intervals [x,y] and a constant λ ($0 \le \lambda \le 1$). Hence, g is called a λ -weighting function, and λ is called a pessimistic-optimistic index in the investor's decision making. Define the optimal total expected utility by $J(x,w) := \sup_{\pi,\tilde{C}_T} J(x,w,\pi,\tilde{C}_T)$ for an initial securities price x and an initial wealth w, where π and \tilde{C}_T are taken over admissible trading strategies and admissible terminal consumptions satisfying the initial condition $\sum_{i=0}^n x^i \pi_0^i = w$. An optimal consumption and wealth problem is given as follows.

Problem P. Let $\lambda \in [0, 1]$ and let x be initial securities prices. Maximize the total expected utility $J(x, w, \pi, \tilde{C}_T)$ by admissible trading strategies π and admissible terminal consumptions \tilde{C}_T .

Let $t \in \mathbb{T}$. Now we define the optimal total expected utility after time t by

$$v_t(\boldsymbol{x}, \boldsymbol{u}) := \max_{(\pi_t, \dots, \pi_T, \tilde{C}_T) \in \mathcal{A}(t)} E_{t, \boldsymbol{x}, \boldsymbol{u}, \pi} \left(\sum_{s=t}^T \int_0^1 g(\tilde{U}_1(s, \tilde{C}_s)_{\alpha}) d\alpha + \int_0^1 g(\tilde{U}_2(\tilde{W}_s)_{\alpha}) d\alpha \right)$$
(5)

for securities prices x, current initial trading strategies $u=(u^0,u^1,\cdots,u^n)\in\mathbb{R}^{n+1}$, an admissible trading strategy $\pi=(\pi^0,\pi^1,\cdots,\pi^n)$, an admissible terminal consumption C_T such that $\pi^i_t=u^i$ for $i=0,1,\cdots,n$ holds at time t, where $E_{t,x,u,\pi}(\cdot)$ is the expectation with a trading strategy π satisfying $\pi^i_t=u^i$ $(i=0,1,\cdots,n)$.

Theorem 1 (Optimality equation). The optimal total expected utility is a solution of the following recursive equation:

$$v_t(x, u) = \max_{\pi_{t+1}} E_{t,x,u,\pi}(C_t + v_{t+1}(Z_{t+1}, \pi_{t+1}))$$
(6)

for $t = 0, 1, \dots, T - 1$, securities prices $x = (x^0, x^1, \dots, x^n)$ and current initial trading strategies u; and at the terminal time T it holds that

$$v_T(\boldsymbol{x}, \boldsymbol{u}) = \max_{C_T} E_{\boldsymbol{x}, \boldsymbol{u}}(C_T + R_T), \tag{7}$$

where Z_{t+1} is given by $Z_{t+1} := (x^0(1+r_{t+1}), x^1(1+Y_{t+1}^1), \cdots, x^n(1+Y_{t+1}^n))$. Let π^* and \tilde{C}_T^* be an admissible trading strategy and an admissible consumption attaining the maxima in (6) and (7). Then π^* and \tilde{C}_T^* are optimal for Problem P: For an initial securities price $\mathbf{x} = (x^0, x^1, \cdots, x^n)$ and an initial wealth w, it holds that

$$J(\boldsymbol{x}, w) = \max_{\boldsymbol{u}: \boldsymbol{x} \boldsymbol{u}' = w} v_0(\boldsymbol{x}, \boldsymbol{u}), \tag{8}$$

where $xu' = \sum_{i=0}^{n} x^{i}u^{i} = w$ with the transpose u' of $u = (u^{0}, u^{1}, \dots, u^{n})$.

Reference.

吉田祐治, On Optimal Stopping of a Sequence of Random Variables with Fuzziness (1998.10), 日本OR 学会アプストラクト.

Y. Yoshida, M. Yasuda, J. Nakagami and M. Kurano, Optimal stopping problems in a stochastic and fuzzy system, *J. Math. Analy. Appl.* **246** (2000) 135-149.

Y. Yoshida, The valuation of European options in uncertain environment, Europ. J. Oper. Res. to appear.