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1 Introduction the the network of projects whose process time vary
randomly. It is formulated as follows.

Traditionally PERT/CPM has been used to man-
age large projects. The idea of the critical path still
plays an important part in the scheduling. How- §={L2,...,N}):
ever, most of existing researches and applications : the set of nodes, where N is number of nodes
of PERT tackled the deterministic problem. On aj: arc from node i to node j
the other hand, uncertainty is the most significant : the activity time of arc a;;
aspects of the practical problem, since it can cause j the arrival time of node j
delay of the schedule, increase of the cost, and de- : amount of budget
terioration of the quality of outputs.

Here we formulate a stochastic PERT problem as
a two stage stochastic linear programming model
with recourse (SLP), since it can handle optimiza-
tion problems under uncertainty. It is well known
that SLP can be solved by the decomposition based

A: set of arcs (each arc represents subproject)

<!

m:\! C'I\]

o The node 1 and the node N correspond the
start node and the finish node, respectively.
We index a;; satisfying 7 < j.

o We assume the earliest start.

algorithm [1]. The main difficulty on the compu- o We can reduce the activity time to certain ex-
tation arises from the number of states: it may in- tent by consuming resources (budget).
crease exponentially, consuming a large amount of
memories, even if problem contains a few random z;; : reduced time on arc a;j. It is less than upper
variables. Hence, combination of decomposition al- bound ;.
gorithm and Monte Carlo sampling technique are cij : cost per unit time to reduce
proposed by several authors (e.g. [3]). - w : scenario or sample
In our previous work (JORSJ general meeting, Q : set of scenario
Fall 2002), we showed the efficiency of sampling p* : probability of realization of the scenario w

based algorithm for the stochastic PERT problem.
Also, we suggested the formula of new density on
the importance sampling method, by which we ex- . o(z)

pect to reduce variance of the estimator. Unfortu- ;ntm Z<x ciizi < B (1)
nately the computational experiment were still pre- o aij €A T =

liminary one. In our subsequent research, we con- 0<zyjSwj, Va; €A
ducted more thorough computational experiments. .
We compare two variance reduction method: im- where Q(z) = E[Q(Tn;w)]
portance sampling and control variate. (child problem]:

[master problem]:

Q(Tn;w) =|{min Ty
s.t. T}‘J - T:" > T:; — Tij Vaij
T;=0,T*>0 VYie§

2 formulation

We focus on the stochastic PERT problem with
crashing, where the project manager decide the al-
location of his/her limited resource (budget), given

(2)
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3 L-shaped method using Monte
Carlo sampling

To solve the problem (1), we need to evaluate the
objective function Q(z). Since it is defined as ex-
pected value of the objective in (2), we can eval-
uate it by Monte Carlo sampling. However, crude
sampling is known to be inefficient to ensure the ac-
curacy. Numerous variance reduction methods are
classified to several categories. Even though the-
oretical characteristic of each methods are already
clarified, we need to customize and modify them to
apply to individual problems.

3.1 importance sampling

x : lst stage decision variable

Let A = {a1,0,...,ak}, where K is number of
arcs. o

To, : process time for arc a; (r.v.)

For an arc 1, let us define the following function:

Mo (T, x) = max {Ty + lo,(T,x), Lo, (1, T)},

where Iy, (7,z) = I3 (7,x) - T,, and {3 (7, x) indi-
cates the length of the longest path containing a;
under the base sample 7 and the first stage vari-
able . Also L_,,(7,x) indicates the length of the
longest path among all the path which do not con-
tain arc a;. We select the base sample as the mini-
mum project time.

Let M, (z) = E[M,,(T,,, x)], then we generate
- the samples from the distribution of ps, M,/ M,,.

The above idea can be exploited to the ad-
vanced procedure, in which we consider multiple
arcs aj, as,-..,a, rather than single arc a;.

Ma;,...,ak (T:;;,. .y ﬂk’m)

= max {T;’l + lﬂ] (T,fl!), N + lak(T’m)’

s Lag
L_q,,..—a (1, @)}’

3.2 control variates

The effectiveness of the control variates depends on
the choice of variates. They should be easy to calcu-
late expected values and be highly correlated with
targeted variable, which is complete time of project
in our case.

norm-based control: Higle suggested in [2] two
method to construct the control variate for gen-
eral stochastic linear programs. Here we apply

the norm-based control. Under out notations,
control Z is

Z =) (T - E[Ty)).

a.'jGA

upper bound control: We propose another con-
trol based on the upper bound of completion
time. For a certain realization w, we can cal-
culate a critical path. Of course it may not be
the critical path in other realization of w, but it
provides upper bound of completion time. We
can expect that the upper bound positively cor-
related with true completion time. Moreover,
‘we can immediately calculate expectation value
of upper bound because it is the sum of pro-
cessing time on fixed path.

zZ= Y (T;- E[Ty),
a;;€Pg
where Pg indicates the critical path derived

from the project network with expected pro-
cessing time.

PERT network

o
-t
A}

\

N
o

i .
v//

i

/N

I A--' - 2 3 . LN .

Figure 1: the project network used for the compu-
tational experiments: 26 nodes and 38 arcs
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