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1. Summary

A discrete-time order-replacement model was first con-
sidered by Kaio and Osaki [1]. They reformulated a clas-
sical order-replacement model in discrete-time setting and
characterized the optimal (regular) ordering time which
minimizes the expected cost per unit time in the steady
state. Also, the same authors [2] extended the earlier
model [1] by taking account of the minimal repair. In
this article, we generalize the Kaio and Osaki model [1]
from the different point of view. More precisely, we treat
a generalized order-replacement model with more complex
cost structure and two decision variables {3]. Based on
the discrete probabilistic argument, we derive the optimal
timming to deliver a spare unit preventively by a regular
order, so as to minimize the expected cost per unit time
in the steady state.

2. Model Description

For a discrete time index n = 0,1,2,---, consider a
order-replacement problem for one-unit systems where
each failed unit scrapped and each spare unit is provided,
after a lead time, by an order. Let P(n) be the unit fail-
ure time distribution with p.m.f. p(n) and finite mean
A (> 0). The original unit begins operating at time n = 0.
If the original unit does not fail up to a prespecified time
no € [0,00), the regular order for a spare is made at that
time and the spare is delivered after a lead time L2 with
p-m.f. g2(n) and finite mean 1/u; (> 0). Then, if the
original unit has already failed by n = ng + L2, the de-
livered spare takes over its operation from the delivery
point. In this situation, if the original unit is still oper-
ating, the spare is put into the inventory and the original
one is replaced/exchanged by the spare in the inventory
when it fails/passes an allowable period n;, € [0,00) after
the spare is delivered, whichever occurs first. It is assumed
that the spare in the inventory does not fail or deteriorate
with probability one.

On the other hand, if the original unit fails before the
time no, an expedited order is made immediately at the
failure time point and the spare takes over its operation
just after it is delivered after a lead time L; with p.m.f.
g1(n) and finite mean 1/p; (> 0). In this situation, the

regular order is not made. Define the time interval from
one replacement or exchange of the unit to the following
replacement or exchange as one cycle, where the same cy-
cle repeats itself continually. Let k, (> 0) and k; (> 0)
denote the shortage and inventory holding costs per unit
time, respectively. Also, we define the fixed costs associ-
ated with expedited and regular orders by ¢; (> 0) and
c2 (> 0). Then, the problem is to seek the optimal pair
(ng, n7) minimizing the expected cost per unit time in the
steady state C(ng, ny).
We make the following assumptions:

(A-1) kofir +c1 > ko fp2 + c2,
(A-2) 1/p2 > 1/m,
(A-3) k, > C(no,m) for all no,n; € [0, 00).

3. Analysis & Main Results

The expected cost per unit time in the steady state is

given by
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and in general ¥)(-) = 1 —y(-) denotes the suvivor function.

Define the function g(no) = kiT(no,n1) — V(ne,n1)
which is independent of n;. The following result will be
useful to reduce the underlying two-dimensional optimiza-

np(n)g2(l2)

tion problem to a simple one-dimensional one.

Theorem 1: For an arbitrary regular ordering time ny, if
g(no) < 0 then nj — oo, otherwise n; = 0.

When n; — oo, the expected cost function C(ng,00) =
V(ng,00)/T(no,00) can be easily derived from Eq.(1).
Taking the difference of C(no, 00) with respect to no, we
define the function

eo(n0) = {T(no)[k’s(l/ﬂl - 1/#25 +o - c:]
+(ks + ki) R(no) — k;}T(no, o)

{1/ = 1/ps2)r (o) + R(no) } (o, 00),

(4)

where r(n) = p(n)/P(n) and R(n) = E;’;O{P(n + 1) ~
P(n))gz(l2)/P(n).

Theorem 2: (1) Under the assumptions (A-1)-(A-3), sup-
pose that the function r(n) is a strictly increasing function

of n.

(i) If goo(0) < 0 and goo(00) > 0, there exists (at least one,
at most two) optimal ordering time ng (0 < ng < 00)
satisfying goo(ng — 1) < 0 and goo{ng) > 0. Then the
corresponding minimum expected cost per unit time
in the steady state has the following upper and lower

bounds:
Una(ng = 1) < C(ng,00) < Ueo(n), (5)
where
Uo(m) = {r(m)[k(1/m = 1/m) + e =
(ks + B)R() = ke }/{ (1
~1/ua)r(n) + R(n) }. (6)

(ii) If go(0) < 0, the optimal ordering time is ng = 0

© with C(ng,00) = C(0,00), i.e., it is optimal to order
a new spare unit regularly at time 0.

(iii) If goo(0) 2 0, the optimal ordering time is ng —
00 with C(ng,00) = C(00,00), i.e., it is optimal to
deliver a new spare unit by only an expedited order
‘after the original unit failed.

(2) Under the assumptions (A-1)-(A-3), suppose that the
function r(n) is a decreasing function of n. Then, the
optimal regular ordering time is ng = 0 or ng — oo.

On the other hand, when n; = 0, we can obtain the
expected cost function C(ng,0) = V(no,0)/T(n0,0) from
Eq.(1). Taking the difference of C(ng,0) with respect to
no, we define the function: .

do(no) = {r(no)[k,(;/u, —1/p2) + 1 — Cz] +k
(/11 — 1/ p2)

x7(no) + I}V(no,O). (7)

xR(no)}T(no,O) - {

Theorem 3: (1) Under the assumptions (A-1) and (A-
2), suppose that the function r(n) is a strictly increasing
function of n.

(1) If go(0) < 0 and go(00) > 0, there exists (at least one,
at most two) optimal ordering time ng (0 < ng < 0o)
satisfying go(ng — 1) < 0 and go(ng) > 0. Then the
corresponding minimum expected cost per unit time
in the steady state has the following upper and lower

bounds: .
Uo(ng — 1) < C(nyg,0) < Us(no), (8)
where
Uo(n) = {T(") [ks(l/ul —1/pa)+c1 — cz]

+keRm) } /{1 = 1/p)r(m) + 1}
~ )

(ii) If go(0) < 0, the optimal ordering time is ng = 0 with
C(ng,0) = C(0,0).

(iii) If go(0) > 0, the optimal ordering time is ng — oo
with C(ng,0) = C(00,0).

(2) Under the assumptions (A-1) and (A-2), suppose that

the function r(n) is a decreasing function of n. Then, the

optimal regular ordering time is ng = 0 or ng — oco.
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