ナップサック制約付き最大全域木問題の一解法*

01700900 防衛大学校情報工学科

加入申請中 防衛大学校情報工学科 渡辺宏太郎 WATANABE Kohtaro

山田 武夫[†]

01107880 防衛大学校情報工学科 片岡 靖詞 KATAOKA Seiji

1 はじめに

無向グラフ G=(V,E) において、各枝 $e\in E$ に重量 w(e) と利得 p(e) が付されているとする. G の全域 木 T について、その重量 w(T) と利得 p(T) を、それ ぞれ、T に含まれる枝の重量および利得の和と定義する. 本稿では次のナップサック制約付き最大全域木問題 (KCMST: knapsack constrained maximum spanning tree problem) を考察する.

$$Maximize z := p(T) (1)$$

subject to
$$w(T) \leq C$$
, (2)

以下では重量最小の全域木を T_{\min}^w , 利得最大の全域木を T_{\max}^p と記し、さほど一般性を失うことなく次を仮定する.

 A_1 . C と枝重量、利得はすべて正整数.

 \mathbf{A}_2 . $w(T_{\min}^w) \leq C$.

 $A_3. \ w(T_{max}^p) > C$

このとき、次がいえる.

定理 1 KCMST は NP-困難 [1] である.

2 ラグランジュ緩和

KCMST のラグランジュ緩和問題を

Maximize
$$p(T) + \lambda(C - w(T))$$
 (4)

$$T$$
 は全域木 (5)

とする. この問題は枝 $e \in E$ の重量が $p(e) - \lambda w(e)$ のときの最大全域木問題で容易に解けるが、その最適値 を $L(\lambda)$ 、最適解(の一つ)を T_{λ} とすると、以下が成立 する.

命題 1

(i) 任意の $\lambda \geq 0$ に対し, $L(\lambda)$ は KCMST の上界値を与える.

(ii) $L(\lambda)$ は $\lambda \geq 0$ で下に凸な区分的線形関数.

Yamada Takeo

(iii) $L(\lambda)$ が λ で微分可能ならば、

$$dL(\lambda)/d\lambda = C - w(T_{\lambda}). \tag{6}$$

 $\lambda \geq 0$ で $L(\lambda)$ が最小となる点を λ^* ($\min\{L(\lambda) \mid \lambda \geq 0\} = -\infty$ のときは、 $\lambda^* = \infty$) とすると、 $\bar{z} := L(\lambda^*)$ は最良の上界値を与える。また、 $T^* := T_{\lambda^*}$ 、 $T^+ := T_{\lambda^*+\epsilon}$ とする。ここに、 ϵ は十分に小さい正数である。このとき、次が証明出来る。

命題 2

- (i) $\lambda^* = \infty$ ならば、KCMST は実行不可能である.
- (ii) $T_0(=T_{\max}^p)$ が実行可能 $(w(T_0) \leq C)$ ならば、 $\lambda^* = 0$ で、 T_0 は KCMST の最適解である.
- (iii) T^* において, $w(T^*) = C$ ならば, T^* は KCMST の最適解である.
- (iv) T^+ は実行可能($w(T^+) \le C$)で、 $\underline{z} := p(T^+)$ は KCMST の下界値を与える.

仮定 \mathbf{A}_2 , \mathbf{A}_3 のもとでは, 上の (i), (ii) は生起しない. そこで, $\lambda_0=0$ と $C-w(T_{\lambda_1})\geq 0$ であるような λ_1 を取り, $[\lambda_0,\lambda_1]$ を初期区間として次の2分探索法によって λ^* を求める.

Step 1: $\lambda := (\lambda_0 + \lambda_1)/2$.

Step 2: T_{λ} を求める.

Step 3: $w(T_{\lambda}) \leq C$ なら $\lambda_1 := \lambda$, そうでなければ $\lambda_0 := \lambda$ とする.

Step 4: 区間幅が十分小さくなれば終了, そうでなければ Step 1 へ戻る.

3 近似解

命題 2 より、近似解 T^+ を得たが、これを局所探索法によりさらに改善する事が出来る。一般に、全域木 T に対して T に含まれない枝 e を付加するとサイクルが生じる。そこで、そのサイクルから e 以外の枝 e' を除くと、再び全域木 $T \cup \{e\} \setminus \{e'\}$ を得るが、このようにし

^{*}富山国際会議場 大手町フォーラム, H14.3.27-28

[†]E-mail: yamada@nda.ac.jp

T から一組の枝の交換によって得られる全域木全体 の集合を T の近傍 N(T) という

本稿の局所探索法は、近似解 $T:=T^+$ から出発して、N(T) を探索し、実行可能で T よりも 利得の大きい全域木が見つかり次第、解を更新するという操作を可能な限り反復する、というものである。

4 厳密解法

4.1 分枝限定法

 $F(\subseteq E)$ をサイクルを含まない枝の集合とし、 $R(\subseteq E)$ を F と素な枝集合とする. このとき、Fの枝をすべて含み、Rの枝を全く含まないような全域木を (F,R)-許容な全域木という. KCMST で、条件 (3) を

$$T$$
 は (F,R) -許容な全域木 (7)

に置き換えた問題を部分問題 P(F,R) と呼ぶと、元の問題は、 $P(\emptyset,\emptyset)$ となる.

第2節の議論を部分問題 P(F,R) の場合に修正することは容易で、それにより上界値 $\bar{z}(F,R)$ 、下界値 $\bar{z}(F,R)$ 、近似解 T(F,R) などが得られる. P(F,R) を処理している時点での暫定値を \bar{z} とすると、ここでは以下の処理を行う.

- 1. P(F,R) が実行不可能, または $\bar{z}(F,R) \leq \bar{z}$ の場合, P(F,R) は最適解を含まないので終端する.
- (命題2の(ii), (iii)により) P(F, R) の厳密解が得られた場合,必要なら暫定解(値)を更新して終端。

部分問題 P(F,R) が終端されない場合には、(F,R)-許容な近似解 $T(F,R)=F\cup\{e^1,e^2,\cdots,e^k\}$ を用いて問題を以下のような子問題群に分割する。すなわち、 $i=1,\cdots,k$ に対して $F_i=F\cup\{e^1,e^2,\cdots,e^{i-1}\}$, $R_i=R\cup\{e^i\}$ として k個の部分問題 $P(F_i,R_i)$ を考えると、各子問題の実行可能領域は互いに素で、その和集合は P(F,R) のそれに一致するので、各 $P(F_i,R_i)$ $(i=1,\cdots,k)$ が最適に解ければ、P(F,R) も解けたことになる。

4.2 区間縮小法

分枝限定法では、通常最初の暫定値を $-\infty$ とする. これにより、厳密解が必ず得られるが、暫定値が十分に大きくない初期の段階で(本来なら終端すべき)部分問題が多数生き残ってしまい、膨大な計算時間を要することが多い.

ところで、元問題 $P(\emptyset,\emptyset)$ の上下界値 $\underline{z} := \underline{z}(\emptyset,\emptyset), \overline{z} := \overline{z}(\emptyset,\emptyset)$ が分かっているので、これらの中間の適当な値を

仮想的な暫定値として、分枝限定法を実行することが考えられる.この値は大きいほど生成される部分問題数が少なくなり、計算時間も短くてすむが、最適値 z* より大きい値を指定すると、すべての部分問題を見切ってしまい、最適解を見出すことなく終了してしまう. そこで、次のような区間縮小法を提案する.

- 1. 適当な下界値 z と上界値 z をとる.
- 2. $\hat{z} := \alpha \underline{z} + (1 \alpha) \overline{z}$.
- 3. 2 を仮想暫定値として分枝限定法を実行する. 最適解が得られればそれを表示して終了.
- $4. \overline{z} := \hat{z}$ として、ステップ 2 へ戻る.

5 数值実験

前節の解法について、数値実験によりその性能評価を行っているが、表 1 に完全グラフ K_n で、枝重量と利得が [1,100] 間で一様かつ独立な場合の結果を示す。ナップサック容量はC=20(n-1)で、 $\alpha=0.1$ とした。各行はそれぞれの例題について、100 回の独立な試行の平均値で、最適値 (z^*) 、区間縮小法の反復回数 (#rep.) 、生成された部分問題の総数 (#sub) 、IBM RS/6000 Model 270 での CPU 時間 (Φ) を表す。計算時間は必ずしもn に比例しないが、約 n=200 程度までが数百秒で解けた。

表 1. 実験結果

例題	z*	#rep.	#sub	CPU sec.
K_{20}	1698.6	2.0	69.7	0.0540
K_{40}	3673.3	1.3	187.9	0.8720
K_{60}	5686.3	1.0	179.1	1.8930
K_{80}	7682.7	1.0	352.6	6.5370
K_{100}	9686.5	1.0	376.7	12.4810
K_{120}	11701.9	1.0	468.5	23.6990
K_{140}	13717.3	1.0	832.4	60.9540
K_{160}	15714.3	1.0	9800.1	476.2643
K_{180}	17724.2	1.0	5152.7	636.5428
K_{200}	19733.1	1.0	2356.8	375.2570

6 むすび

今後, 上と異なる分枝ルールとの比較などを含め, さらに本格的な数値実験を行う予定である.

参考文献

[1] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman, 1979.