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1 Introduction

We are going to propose linear programming formu-
lations of support vector machines (SVMs) for gen-
erating kernel based nonlinear discriminate functions
defined in a feature space F characterized by a ker-
nel function. Unlike the standard SVMs using the
quadratic programs, our approach explores a fairly
small dimensional subspace of F to construct the
nonlinear discriminator, which allows us to employ
a small sized linear programming problem. We will
demonstrate that an orthonormal basis of the sub-
space can be implicitly given by eigenvectors of the
Gram matrix defined by the associated kernel func-
tion, and a linear programming formulation is suc-
cessfully introduced. Moreover, when the number of
given date points is extremely large, the subspace can
be extracted by a number of the randomly selected
data points. Numerical experiments are also included,
which indicate that the subspace generated by less
than 2% of the entire training data points achieves
the reasonable performance for a huge datasets with
60000 data points.

2 Nonlinear Discrimination by
Kernels

Let us first consider the standard Wolfe dual formula-
tion for SVMs below. We assume that data points are
represented by an M x N matrix 4, Q = AAT ,and
Co is a given positive parameter. '

let K(z,z') denote the kernel function which gives
inner product of ¢(z) and ¢(z') in F. The following
quadratic programming problem has been explored
for obtaining nonlinear discriminate functions.

—laTYICYa +eTa

Subject to y ' a =0,
OS a< Coe.

Maximize
(2.1)

B = (BB, Bm)" and let B; = yja;/Co, j =
1,2,..., M, then we write the problem (2.1) equiva-
lently as follows:

In this paper, let us introduce a formulation for the
kernel based nonlinear discriminate functions based
on variants of the dual forms. let us consider the
problem with the square of the 2-norm capacity con-

straint defined below:

Maximize y78
Subject to ||AT |2 < C,
(2.2) T 8=0,
0<Yg<e

Note that the quadratic constraint can be written as
ATl = 67QB < C.

Then, replacing @ in (2.3) with the Gram matrix £
defined by the inner product K(:,-), let us introduce
the following problem:

(2.3)

Maximize . y78

Subject to BTKB < C,
e’ =0,
0<Yg<e

(2.4)

Lemma 2.1 Under o suitable choice of the perame-
ter C, the problem (2.4) generotes any optimel solu-
tions of the problem (2.1) with the parameter Cy.

3 Linear Programming Formu-
lations for Kernel SVM

Let Ay > A2 > --- > Apr > 0 be positive eigen-
values of the matrix K and d}, d}, ..., dj, € RM be
the associated eigenvectors normalized to unit length.
Also, let us define D = [d;,da,...,dpy],where d; =
vad, i=1,2,...,M".

BTKp = | D8], < C.

We will introduce an approximation for this
quadratic constraint. To this end, we consider the
largest S <« M positive eigenvalues Ay > Ay >
--- > As, and the associated column vectors of D.

BTIp ~ pTDsDLB = || DI

the following formulations:

Maximize y7p8
Subject to || D34, < C,
(35) BTﬁ - 0’
0<YB<e,

by the linear programming problem.



The primal form of the linear programming formu-
lation corresponding to the problem (3.5) can be ex-
plicitly described as follows:

Minimize C |jws)l; +eT¢
Subject to Y (Dsws — bge) + € > e,
£20,

(3.6)

where ws € RS and bs € R! are primal vari-
ables. Let us denote an optimal solution of (3.6) as
(ws,bs) = (wg,bs), which implies that we have ob-
tained an optimal linear discriminate function as

f(zs) = wiTzs + b3,

where zs is an S dimensional variables.

3.1 Extracting the Subspace of F

Let dj; denote the j — k elements of the matrix Ds.
Also, associated with the k-th column vector dy =
(dykdok - - dmx )T of Dg, let us define vectors in F
as follows:

> died(AT)

(37) Vie= T ,

k=12,...,S.

Note that each vector Vi can not be expressed since
#(AT) is not described explicity.
The following lemma holds.

Lemma 3.2 The set of vectors { V1, Vs, ..., Vs } sat-
isfies

0 ifk#K,
1 o.w,

(vk,vk'>={

where (-, -) denotes the inner product defined in F.

Therefore, it fbllows from Lemma 3.2 that the set of
vectors

{vvaa"'rvS}

constitutes an orthonormal basis of the S dimensional
subspace of F which will be denoted by Fs.

For any point z € RV, let us denote the S dimen-
sional coordinate vector of the projection of ¢(z) onto
Fs with respect to the basis V = {W}, V5, ..., Vs} as

[z}y, ie.,

(¢(I), vl)
(¢(z), V2)

(¢(I) ) vS )
which can be explicity described.

€ RS,

=]y =

Lemma 3.3 Let V = (W1, V,, ..., Vs} be an or-
thonormal basis defined in (3.7), then

Ds] =[A]],, i=12...,M,

where Ds; denotes the j-th row vector of Ds.
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Recall that the optimal solution (wg,bs) 6( the
problem (3.6) generates the discriminate function.

f(zs) = wtz + b%.

Note that this linear function is defined in the S di-
mensional space. Let us now consider classifying an
arbitrary N dimensional data point by this function.
To this end, we need to calculate the coordinate vec-
tor [z],,. As we have seen above, the k-th element
of the vector [z],, is given by the projection onto Vi,
that is (z, Vi ). Substituting (3.7), we have

Z;}il dxK (z, Agn)
Ak

Here, it should be emphasized that each element of

the vector [z],, is explicitly calculated without know-

ing the vectors Vi, k = 1,2,...,S. Then, one can
classify the point z € RY according to the sign of

(z]y w§ + b5,

which is also calculated, explicitly.

(Z,Vk)=

3.2 Sampling Procedures

Furthermore, when the number of points, M, is ex-
tremely huge, the considerable amount of compu-
tational work would be required for obtaining the
largest S eigenvectors of the M x M matrix K. To
avoid this computational difficulties one can choose
L sample points, where L. « M and extract an or-
thonormal basis of the subspace of 7. Let us assume
that, for simplicity, the L sample points correspond
to the first L rows of the matrix A, and that, asso-
ciated with the sample points, the matrix A and the
Gram matrix K are partitioned as follows:

Ao [ AL K:L K:IT
and K' €

Al K, K"
where AL € RL*N, KL e RLXL

RM-L)xL  Thys, the inequalities corresponding to
the norm constraints in (3.5) and (?7?) should be

||

pt 1"
P
where p is co and 1, respectively.
It is worth noting that in our sample scheme, L
sample points are used only for extracting the basis
of the S dimensional subspace Fg, and that the all

M samples are involved in the linear programs.

(3.8) [
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