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Mean Waiting Times in Markovian Polling Systems
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1. Introduction.

Polling systems with various polling orders have been studied extensively. Deterministic polling orders are considered
in [1]. Random polling systems are the systems with the random polling orders [3]. Markovian polling systems with the
Markovian polling orders are investigated in [2, 4]. We make another approach to the analysis of the Markovian polling
systems with infinite buffer capacities and obtain the mean waiting times.

2. Model description.

A single server serves J classes of customers at J stations. Customers arrive at station ¢ from outside the system
(called i-customers) according to a Poisson process with rate \i (i = 1,...,J; A = Z;’zl Ai). Service times S; of
i-customers are independently, identically and arbitrarily distributed with mean 5; and second moment ;f— The server
serves customers according to a predetermined scheduling algorithm where i-customers are admitted into the service
facility in either a gated fashion (i € Ilg) or an ezhaustive fashion (i € I1g). The other customers should wait for service
in the waiting rooms. The server utilizations are defined by p; = A;5; and p = Z:zl pi. After completing services of
all customers in the service facility at station i, the server selects station j with probability pi;; (3,5 = 1,...,J). Let
P = (py:4,7=1,...,J). An arbitrarily distributed switchover time S;; with mean g and second moment s is
incurred at every time when the server switches from station i to station j.

Let IT and TI® be the sets of service periods and of switchover periods, respectively. For any time t, let x(t) € ITUII®
denote the period, and let 7(t) denote a remaining service time of a customer being served if «(t) € II, or a remaining
length of a switchover period if x(t) € II®. The number of i-customers in the service facility (who are not being
served) is denoted by g:(t), and the number of i-customers in the waiting room is denoted by ni(t) (¢ =1,...,J). Let
g(t) = (q1(t), ..., gs(t)) and n(t) = (n1(t),...,ns(t)). The other informations at time ¢ are accumulated in L(t). Then
we define the stochastic process Q = {Y(t) = (k(t),7(£), g(t),n(t), L(t)) : t > 0} with state space £. The e** customer
(c®) arrives from outside the system at epoch 7§ (e = 1,2,...). Then let 7§ be the time epoch just when the server visits
a station for the k** time counting from c®’s arrival epoch (k = 1,2,...). Let Z°(t) denote his station staying at time t.

The performance measures.
Fort>0andi=1,...,J, let Cg,;(t) = 1if c® stays in the waiting room at station i at time t, or = 0 otherwise;
and let Cg;(t) = 1 if ¢® waits for service in the service facility as an i-customer at time ¢, or = 0 otherwise. Let
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forY €&4,5=1,...,J;k0 €NUII* and [ = 0,1,2, ... where A}(Y,j) = {Y(77) =Y, Z%(rf) = j}. The performance
measure H;(-) denotes the conditional expected waiting time of cutomers in the waiting room of station i, and Fi(-)
denotes the conditional expected waiting time of cutomers in the service facility of station i. Then it can be shown that

HY(Y,j,e,1,k0) + E[Hi(Y (1f11), 5y, L+ L, )Y () = Y, Z°(77) = 5],
Hi(Y,j,e,l,No) = if (K'#J) or (K:jJ:OijHG)r (3)
0, if(k=751=0,7€lg)or (k=351>0,j€llgUllg).

3. Expressions of the performance measures.
The expressions of the above two performance measures are given by
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forY = (k,r,g,n, L)€ &;5=1,...,J;1=0,1,2,... and ko € T UTI®. Further the expected numbers of customers in
the system at a beginning epoch of a service period conditioned on the system state at its previous epoch are given by
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for Y = (x,m,g,n,L) € £ and j,k € II where A{(Y,j) = {Y(77) = Y,Z°(7f) = j}. The coefficients in the above
expressions (4), (5) and (6) can be calculated from the known quantities given in the last section.
Then for any Y = (k,7,g,n,L) € E;5=1,...,J;1=0,1,2,... and ko € IIUTI®, we define

r. . — ’I‘(p(li,j, K0)+(g,ﬂ)hoo(ﬂ,j,lﬁo)+h01(l€,j,l€0), I=0,
Hil¥,del,m0) = { (9,m)ha0(K, 5, ko) + har (K, 5, ko), 1> 0. @)

The constants hoo(+), h1o(-) € R*'*? and ¢(-), ho1(-), h11(-) € R are obtained by solving J sets of linear equations with
O(J?) unknowns whose coefficients consist of the constants given in (4) and (6).
Proposition 1. H; (j=1,...,J) defined in (7) satisfy the equation (3) for i = j. O

Since uniqueness of the solution can be shown under some assumptions, the functions ﬂj defined in (7) become the
performance measures H; in (1) (j = 1,...,J). We further note that these performance measures are linear functions
of components 7 and (g, n) of the system state Y = (x,7,9,n,L) € €.

4. Steady state values.

In this section, we obtain the mean waiting times D; for all classes of customers (j = 1,...,J). Now let
Hj(x, ko) = limn—co(1/N) Y.L, E[H; (r0)1{x(r§) = r}|Z°(r§) = j], : (8)
Fj () = limn—oo(1/N) 3., EUFS 1{s(76) = K}|2°(6) = 4], (€T K ko €TIUTE),  (9)

be the average values of the performance measures. Further we define the average values of the system state:
= (kq",7*,§", 4%, L") = limeoo (1/) [ E[Y (5)1{x(s) = s}|ds,  (x € TUTI"), (10)
Let # = (m1,...,ms) be the steady state probability vector of a Markov chain generated by the transition probability

matrix P. Then we have §° = A3x and 7 = A.s2/2 for k € II, and §*) = (1 - p)mp,Js "/5° and #09) =

(1- p)mp.,s 2 /(28°) for (i,5) € II°, where S° = Z._ Z, L Tipijs%;. From the generalized version of the Little’s
formula, the PASTA property, and the expressions (5) and (7), we have a set of equations:

;% = A Z Hj(k,k0) = A; Z {7 p(k, 3, ko) + (3", 2" )hoo(k, J, ko) + §*ho1(k, J, o)} , (11)
xenuIs reIUIs

G o= N oy, F=Xx ) {#ek5)+E5A (x5}, (12)
kETIUITS xeIIUIl?

for j € Il and ko € ITUTII®. (§F = g5 if K = j € 11, or g§ = 0 otherwise.)

Proposition 2. The mean waiting times are given by

D; = nganZE Ff+ > H nolZ(To)—J] (g,+ > @ ) =1,...,J. O (13)
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Note: Although the above equations (11) and (12) have O(J®) unknowns, we can easily reduce them O(J?) unknowns
by defining 7% = 3 koeTl Atko*1) and by arranging these equations. O

References
[1] O.J. Boxma, H. Levy and J.A. Weststrate, Efficient Visit Frequencies for Polling Tables: Minimization of Waiting
Cost, Queueing Systems 9 (1991) 133-162.

[2] H. Chung, C.K. Un and W.Y. Jung, Performance Analysis of Markovian Polling Systems with Single Buffers,
Performance Evaluation 19 (1994) 303-315.

[3] L. Kleinrock and H. Levy, The Analysis of Random Polling Systems, Operations Research 36 (1988) 716-732.
[4) M.M. Srinivasan, Nondeterministic Polling Systems, Management Science 37 (1991) 667-681.

— 221 —





