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1 Introduction

This study treats a statistical method of estimating mean-
shift for a fraction defective of population. One tradition-
al method for this estimation problem has been known as
a CUSUM (cumulative sumn) method{l, 2], and the CUSUM
provides the mcthod of estimating the occurrence of mean-
shift from the observed data. We assume that the process
has two states, one is good (fraction defective is lomed the
other bad (high), and starts at the good state with\proba-
bility one. We are interested in judging when the state has
moved to the bad state by analyzing the observed data with
a hidden-Markov model.

2 CUSUM method

In this section, we briefly explain the CUSUM method for
estimating the mean-shift occurrence of population fraction
defective (PFD). The CUSUM method has been developed for
doing this and used in several practical situations. Especially,
the CUSUM method is very suitable for online-monitoring of
production processes if mean-shift of PFD occurs as one-way
shift.

First, we assume the conditions of this shift-detcction prob-
lem and the notation as follows:

1. A production process has two states as good and bad in
the sense of PFD.

2. Let Py and Py be the PFDs in good and bad processes,
respectively (0 < Py < ).

3. We denote each product from the production process by
using the symbols 0 and 1. The symbol 0 means that the
process produced a good product and the other syinbol
an unacceptable one. Thus, we obtain the sequence of
these symbols (e.g. {0001001110...}) as a result of one
observation of the production process.

2.1 Estimation procedure of CUSUM

The CUSUM method can statistically indicate the occurrence
of the mean-shift of PFD. If the condition Py < P, can be
assumed in the production process, the estimation procedure

is given as follows:

1. Calculate y; (usunally called score) for the j-th symbol of

the observation sequence (7 =1,2,...) as

where Py is assumed to be given and o is a positive

-y x o for symbol 0

(1 - Py) x v for symbol 1

(1)

constant.

2. Evaluate the following equation for each symbol’s index
n:

()

Sp — min S; >
TR ET

where S; is the cumulative sum of scores, 5; = 325, ¥;,
and 7 is a constant value which can be given empirically.

3. The minimum n which satisfies Eq. (2) gives the (time)
point of the shift-occurrence of PFD.

3 Hidden-Markov Modeling

We propose hidden-Markov modeling for estimating the oc-
currence of mean-shift of PFD in this study. Hidden-Markov
models (HMMs) have been mainly developed in the research
area of speech recognition. A HMM is a doubly stochastic
process with an underlying process that is not observable,
but can only be observed through another set of stochastic
process that produce the sequence of observed symbols (Ra-
binar et al. {3]).

3.1 Model description

We assume the following assumptions:

1. The process has two states (denoted as 1 and 2}, these
represent good and bad conditions of production process,
respectively.

2. Initial state is the state 0 with probability 1.

3. PFDs of the state 0 and 1 are A and g, respectively
(0 <A <1, 0< g < 1), where A is given but p is

unknown.

4. State transition probability from state 0 to 1is P (0 <
P < 1) (sce, Fig. 1).

state 2

Figure 1: Structure of the model.

3.2 Estimation method

Under the assumptions above, it scens to be difficult to es-
timate the parameter I and ;e based on the sequence of the
observed symbols. However, we can apply the Baum-Welch
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re-estimation formulas (Rabinar et al. [3]) to the model for
estimating the unknown model parameters P and p, by ana-
lyzing the data scts.

Notation

M: the model considered in this study

n: shift-occurrence (time) point which would be estimated
T: length of the observed data

N: number of states (N = 2)

O|l,m]: sequence of the symbol observed from time [ to m.
o[i]: i-th observed symbol

q[t]: state at time ¢

vi: observable symbol (0 or 1) at state k (k = 1,2)

a;;: state transition probability between the states denoted

asQ:(lz)P 113)

bjlvg]: probability that vy is observed at state 7, that is,
o) =1-X bi[1] = A 02[0] =1 — u,and bo[l] = p

m: initial state distribution, i.e., # = {m, m} = {1,0}

3.2.1 Forward-backward procedure

First, we evaluate the observation probability of O[1,T] by
the following procedure. The forward-path probability, «;[{],
is introduced here.

Step 1: Calculate ov,{1] (i = 1,2) by
(1} = mbio(1]] = bi[o[1]], 3)
ag(l] = mabyo[l]] = 0. (4)

Step 2: Evaluate the forward-path probability from ¢t = 1 to
t=T-1hy

2
(Zo'i[l.]a.,-|)b|[o[l. +1]],

g [1 + 1] = (5)
i=]
2
wlt+1) = (Y aiftlair)balolt + 1] (6)
i=1
As a result of the above procedures, we have
2
Pr[O[1, T)|A) =) o[, (7
i=1

We also obtain the backward-path probability, /3[1], as
Step 1: f3[T] is always 1 (z = 1,2).

Step 2: Evaluate the backward-path probability /3;{/] from

T-1tolbhy
2
Al = D ajbjlolt + 1]85[t + 1], (8)
j=1
2
Mll] = Y agibjlolt + 1131t + 1). (9)
i=1

3.2.2 Baum-Welch re-estimation formulas

Now we can cstimate the unknown parameters included in
the model, P and j, by using a;[t] and 3;(].

The conditional probability that the state transition from
glt] = 1 to q[t + 1) = 2 occurs at time { under O[1,T), is
denoted by ~;[{] as

Prlq[t] = 1,4t + 1) = §|O[1,T], M]
_ a’i["]aijbj[o[{‘ + ll]ﬂj[l‘ + 1] (10)
Pr[O[1,T], M) ’

Vit

Also, we denote the probability Pr[State is ¢ at time { in M]

by i[t] as

aift] 5= aib{oft + 1}B;[t + 1)
Pr[O[1, T)|M)

iUl
= Pro, M| (11)

Il

2
yilt] = visll]
Jj=1

Thus, we can obtain the re-estimated values of state transi-
tion probability a;; by

o Z;l?‘ij[l] _ i ai{i]?fjbj[0[1-+ 1)8;[t +1]
MR i oi[t)6;1]

We directly have P from Eq. (12) as

» (12)

T~1
- _ i
P=adp= ZLT__IL'“?[ ]
=1 7(t]

(13)
By iterating with renewing the re-estimated values, we can
obtain the eftimated value of unknown parameter 7 = 1/P
asymptotically.
On the other hand, the re-estimated value of bj[ug] is given

by

iz (1= o[t (1]

7. = o3 + 4

(0l S il .
T , .

i}j[ll — M (15)

T
Y=t ')'j[[‘]
Hence, we have the re-estimated value of the parameter g,
say ft, as B
iz o[l
7 .
ZI.:I "1‘2“]

By using these formulas, we can also obtain the estimated

io= Dol = (16)

value f1 as a result of this re-estimation procedure.
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