閾値確率制御における双対性

02004906 九州大学 植野 貴之 UENO Takayuki 01003676 九州大学 岩本 誠一 IWAMOTO Seiichi

1 はじめに

本報告では、不確実性の下で多段階にわたる最 小型評価値が所定の基準値以上になる確率をマル コフ政策クラス上で最適化する問題を考える。 以下、記号と用語を記す。

$N \ge 2$	終端時刻
$X = \{s_1, s_2, \ldots, s_p\}$	状態空間
$U = \{a_1, a_2, \ldots, a_k\}$	決定空間
$x_n \in X$	時刻 n での 状態
$u_n \in U$	時刻 n での 決定 🔍
$r_n: X imes U o R^1$	第 n 利得関数
$r_N:X o R^1$	終端利得関数
$p = \{p(\cdot \cdot,\cdot)\}$	マルコフ推移法則
$p(y x,u) \geq 0$	
$\sum_{y \in X} p(y x, u) = 1$	
$c \in R^1$	基準値
$\pi = \{\pi_0, \pi_1, \ldots, \pi_{N-1}\}$	マルコフ政策
$\Pi = \{\pi\}$	マルコフ政策クラス
$\sigma = \{\sigma_0, \sigma_1, \ldots, \sigma_{N-1}\}$	一般政策

2 マルコフ政策クラス問題

本報告での閾値確率最大化問題 $M_0(x_0)$ は

Max
$$P_{x_0}^{\pi}(r_0 \wedge r_1 \wedge \dots \wedge r_{N-1} \wedge r_N \geq c)$$

s.t. (i)_n $X_{n+1} \sim p(\cdot | x_n, u_n)$ (1)
(ii)_n $u_n \in U$ $n = 0, 1, \dots, N-1$

で表される。意志決定者がマルコフ政策 $\pi = \{\pi_0, \ldots, \pi_{N-1}\}$ ($\in \Pi$) を採用すると、最大化問題 (1) の閾値確率は「部分」多重和

$$= \sum_{(x_1, x_2, \dots, x_N) \in (*)}^{\pi} (r_0 \wedge r_1 \wedge \dots \wedge r_{N-1} \wedge r_N \ge c)$$

$$= \sum_{(x_1, x_2, \dots, x_N) \in (*)}^{\pi} p_1 p_2 \cdots p_N$$
(2)

 $(p_n = p(x_n|x_{n-1}, u_{n-1}))$

で表わされる。ただし、多重和をとる領域(*)は

$$r_0 \wedge r_1 \wedge \dots \wedge r_{N-1} \wedge r_N \ge c$$

$$(r_n = r_n(x_n, u_n), r_N = r_N(x_N))$$

を満たす $(x_1, x_2, ..., x_N) \in X \times X \times ... \times X$ 全体である。ここに、式 (2),(3) における決定列 $\{u_0, u_1, ..., u_{N-1}\}$ はマルコフ政策 π の決定関数列を通して定まっている:

$$u_0 = \pi_0(x_0), \ u_1 = \pi_1(x_1), \ \dots,$$
 $u_{N-1} = \pi_{N-1}(x_{N-1}).$

この閾値確率最大化問題に対しては、期待値問題 に変換することなく、閾値確率自身を直接最適化 する。

さて、時刻 n で状態 $x_n (\in X)$ から始まる部分 閾値確率問題

Max
$$P_{x_n}^{\pi}(r_n \wedge \cdots \wedge r_N \geq c)$$

s.t. (i)_m, (ii)_m $n \sim N-1$ (4)

のマルコフ政策 $\pi = \{\pi_n, \pi_{n+1}, \dots, \pi_{N-1}\} \in \Pi(n)$ にわたる最大値を $f_n(x_n)$ とする。ただし

$$f_N(x_N) \stackrel{\triangle}{=} \phi(r_N(x_N)).$$
 (5)

ここに ϕ は区間 $[c,\infty)$ の定義関数である:

$$\phi(y) = \begin{cases} 1 & \text{if } y \geq c \\ 0 & \text{otherwise.} \end{cases}$$

このとき、次の関係式を得る。

補題 2.1 任意のマルコフ政策 $\pi = \{\pi_n, \ldots, \pi_{N-1}\}$ と任意の $x_n \in X$ に対して、

$$P_{x_n}^{\pi}(r_n \wedge \cdots \wedge r_N \geq c)$$

$$= \begin{cases} \sum_{x_{n+1} \in X} P_{x_{n+1}}^{\pi'}(r_{n+1} \wedge \dots \wedge r_N \ge c) p_n \\ if \quad r_n \ge c \\ 0 \quad otherwise \end{cases}$$
(6)

が成り立つ。ここに

$$r_n = r(x_n, u_n), \quad u_n = \pi_n(x_n),$$

 $\pi' = \{\pi_{n+1}, \dots, \pi_{N-1}\}, \ p_{n+1} = p(x_{n+1}|x_n, u_n).$

したがって、上述の補題から後向きの再帰式が 成り立つ:

定理 2.1

$$f_n(x) = \begin{cases} \underset{u; r(x,u) \ge c}{\text{Max}} \sum_{y \in X} f_{n+1}(y) p(y|x, u) \\ \text{if } \exists u ; r(x, u) \ge c \end{cases}$$

$$0 \qquad \text{otherwise}$$

$$x \in X, \quad 0 \le n \le N-1$$

$$x \in X, \quad 0 \le n \le N-1$$
 $f_N(x) = \begin{cases} 1 & \text{if } r(x) \ge c \\ 0 & \text{otherwise} \end{cases}$ $x \in X.$ (8)

さて、式(7)の最大(値に到達する)点の全体 $\epsilon \pi_n^*(x)$ としよう。すなわち、

$$\pi_n^*(x) = \left\{ \begin{array}{ll} \operatorname{Max} \ \text{ if} & \exists \ u \ ; \ r(x,u) \geq c \ \text{の全体} \\ & \text{if} & \exists \ u \ ; \ r(x,u) \geq c \ \ (9) \\ & \forall x \in X, \ \ 0 \leq n \leq N-1. \end{array} \right.$$
 $n = 0,1,\ldots,N, \ \ x \in X.$
$$n = 0,1,\ldots,N, \ \ x \in X.$$

$$n = 0,1,\ldots,N, \ \ x \in X.$$

このようにして得られたマルコフ政策 $\pi^* = \{\pi_0^*, \pi_0^*\}$ $\pi_1^*, \ldots, \pi_{N-1}^*$ は最適である。

3 双対問題

まず、最大化問題 $M_0(x_0)$ に対して最小化問題 $m_0(x_0)$

min
$$P_{x_0}^{\pi}(r_0 \wedge r_1 \wedge \dots \wedge r_{N-1} \wedge r_N \ge c)$$

s.t. (i)_n, (ii)_n $n = 0, 1, \dots, N-1$ (10)

を導入する。次に、「上限 c を閾値とする」確率 最小化問題 $d_0(x_0)$

min
$$P_{x_0}^{\pi}(r_0 \wedge r_1 \wedge \cdots \wedge r_{N-1} \wedge r_N < c)$$

s.t. (i)_n, (ii)_n $n = 0, 1, \dots, N-1$ (11)

および、この最大化問題 $D_0(x_0)$

Max
$$P_{x_0}^{\pi}(r_0 \wedge r_1 \wedge \cdots \wedge r_{N-1} \wedge r_N < c)$$

s.t. (i)_n, (ii)_n $n = 0, 1, \dots, N-1$ (12)

を考える。このとき、 $d_0(x_0)$ を $M_0(x_0)$ の、 $D_0(x_0)$ を $m_0(x_0)$ のそれぞれ双対問題という。

以上、4つの閾値確率最適化問題群に対して次 の双対性が成り立つ。

定理 3.1 (双対定理)

(i) 最大化問題群 $M = \{M_n(x_n)\}$ と最小化問題 群 $d = \{d_n(x_n)\}$ の最適値関数の和は常に 1 で ある:

$$f_n(x) + h_n(x) = 1$$

 $n = 0, 1, ..., N, x \in X.$ (13)

マルコフ政策 π が Μ に対して最適である必要十 分条件は、それが d に対して最適であることで

(ii) 最小化問題群 $\mathbf{m} = \{m_n(x_n)\}$ と最大化問題 群 $D = \{D_n(x_n)\}$ の最適値関数の和は常に 1 で ある:

$$g_n(x) + k_n(x) = 1$$

 $n = 0, 1, ..., N, x \in X.$ (14)

ある。

定理 3.2 (一致定理)

(i) 最大化問題群 M の最適政策 π* は、最小化 問題群 d の最適政策 π̂ に一致している:

$$\pi^* = \hat{\pi}. \tag{15}$$

最小化問題群 m の最適政策 ñ は、最大化 問題群 D の最適政策 π に一致している:

$$\tilde{\pi} = \bar{\pi}.\tag{16}$$

参考文献

- [1] R.E. Bellman and L.A. Zadeh, Decisionmaking in a fuzzy environment, Management Science 17 (1970), B141-B164.
- [2] S. Iwamoto, Maximizing threshold probability through invariant imbedding, Ed. H.F. Wang and U.P. Wen, Proceedings of The Eighth BELLMAN CONTINUUM, Hsinchu, ROC, Dec.2000, pp.17-22.
- [3] 植野貴之・岩本誠一, 最小型評価系の閾値確率 制御、日本 OR 学会秋季研究発表会アブストラ クト集, 2000, pp.124-125.