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A parallel algorithm for finding all hinge vertices
of a Circular-Arc graph
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1 Introduction

Given a simple undirected graph G = (V, E) with vertex
set V and edge set E, let G — u be a subgraph induced
by the vertex set V —u. We define the distance dg(z, y)
as the length of the shortest path between vertices z and
y in G. Chang et al. [1] defined that u € V is a hinge
vertez if there exist two vertices z,y € V — {u} such
that dg_u(z,y) > da(z, y)-

There exists a trivial O(n®) sequential algorithm for
finding all hinge vertices of a simple graph by a result
in Ref. {1}, e.g., Theorem 1 in this paper. In general, it
is known that more efficient sequential or parallel algo-
rithms can be developed by restricting classes of graphs.
For instance, Chang et al. presented an O(n + m) time
algorithm for finding all hinge vertices of a strongly
chordal graph [1]. Ho et al. presented a linear time
algorithm for all hinge vertices of a permutation graph
[4]. Recently, we provided a parallel algorithm, which
runs in O(logn) time with O(n) processors, for finding
all hinge vertices of an interval graph [3]. In this pa-
per, we shall propose a parallel algorithm, which runs in
O(logn) time with O(n) processors on CREW PRAM
(Concurrent-Read Exclusive-Write Parallel Random Ac-
cess Machine) for finding all hinge vertices of a circular-
arc graph [5).

2 Preliminaries

We first illustrate the circular-arc model before defin-
ing the circular-arc graph. Suppose that a unit circle
C and a set A of n circular-arcs A;, As, ..., A, along
the circumference of C. Each circular-arc A; has two
endpoints, left endpoint a; and right endpoint b;, such
that a; (resp. b;) is the last point of A; that we en-
counter when walking along A; counterclockwise (resp.
clockwise). We denote circular-arc A; by [a;,b;]. All
left and right endpoints are labeled clockwise with con-
secutive interger values 1, 2, ..., 2n. Without loss of
generality, assume that all endpoints of n circular-arcs

are distinct. We also assume that a circular-arc num-
ber is assigned to each circular-arc in increasing order

of their right endpoints b;’s, i.e., A; < A; if b; < b;.
The geometric representation described above is called
a circular-arc model (CA). Fig. 1 shows a circular-arc
model CA, consisting of eleven circular-arcs.

A graph G = (V,E) is a circular-arc graph if there
exists a circular-arc set A such that there is a one-to-
one correspondence between the vertices 1 € V' and the
circular-arc A; € A in such a way that an edge (3,7) € E
if and only if A; intersects with A; in CA. The circular-
arc graph G, corresponding to the circular-arc model
CA illustrated in Fig. 1, is shown in Fig. 2.

We cut circular-arc CA at endpoint a; and next
open it out flat. This process changes circular-arcs in
CA to real line segments on the horizontal line in the
plane. In particular, a circular-arc A; with a; > b;
is called a feedback circular-arc. Here, if there is the
feedback circular-arc A; = [ai, b;] in CA, we modify it
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Figure 1: Circular-arc model CA
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Figure 2: Circular-arc graph G

to A; = [a; — 2n,b;] and generate an extra circular-
arc Ay = [a;,b; + 2n]. The geometric representation
obtained by applying the procedure described above is
called an extended circular-arc model (ECA). The ECA

constructed from the circular-arc model C A illustrated
in Fig. 1 is shown in Fig. 3.

In the following, we define some terms used in this
paper. We denote by vertex i, throughout the paper, a
vertex in G corresponding to a circular-arc A;. A set of
all vertices adjacent with vertex i is denoted by N(3).

We denote by M(i) the number j of the largest
circular-arc A; (b; > b;) intersecting with A;. Simi-
larly, we denote by SM(7) the number j of the second
largest circular-arc A; (b; > b;) intersecting with A;.
However, let M (i) = i, SM(?) = 1, respectively when
such a circular-arc A; does not exist. Also, D(i) =
{k | bsm@y < k < bpgiy} is defined as a detect set. In

Figure 3: Extended circular-arc model ECA
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Table 1: M (3), SM(3), D(3)

i 1 2 3 4 5 6 7 8 9 10 11 2 3
a T 7 0 5 O ) 5 10 14 V) 70 89
b 3 4 7 8 11 13 15 16 17 19 21 26 29
M 6 6 7 7 8 10 10 10 10 7 X
SM 3 3 6 6 7 8 9 9 9 10 11

D |8.12 8.12 14 14 0 1718 18 18 18 20721,.25 22,25

addition, we define represent vertexr sets (RV'S). Let
u; < up < ... < U, be different values among M (3)’s,
1 € V and we divide V into vertex sets Vi, V,, ..., Vi,
where V; = {i | M (i) = u;} and Vj # (. Next, v; is the
smallest vertex among Vj’s, which is called represent
vertex of V;. We also define RV S as a set consisting of
all vertices vj, 7 =1,2,...,m.

Table 1 shows M (z), SM(i), D(i) for the extended
circular-arc model ECA illustrated in Fig. 3. In this
table, RV'S is {1, 3,5, 6,10}.

3 Some properties of the hinge
vertices in circular-arc graphs

Theorem 1 was due to Chang et al. [1]. It is used to
.identify the hinge vertices of a simple graph. We apply
this theorem for efficiently finding hinge vertices of a
circular-arc graph.

Theorem 1 For a graph G = (V,E), a vertezu € V is
a hinge vertex of G if and only if there exist two nonad-
Jjacent vertices x,y € N(u) such that u is the only vertex
adjacent with both x and y in G. O

Lemma 1 Vertex u is a hinge vertex of a circular-arc
graph G if and only if either of the following two condi-
tions holds in ECA.
Ay < Ay1 A, = AM(z); ay € D(II,)
az + 2n.
(2) Az < Ay, Av = Amyy), az +2n € D(y) ond

bM(;) <ay. O

and bM(y) <

Lemma 2 Assume that z,y are two wvertices of a
cireular-arc graph G = (V,E). We now consider the
vertezr set V,, such that V,, = {v | M(v) = u}. Then
D(z) 2 D(y) forz,y(zx<y) e V,. O

Lemma 3 Let G = (V, E) be a circular-arc graph. As-
sume that z,y € V are two vertices in G with x < y.
Then, either M(z) = M(y) or D(z)ND(y) =0. O

We propose a procedure for finding a hinge vertex.
Before introducing its formal description, we illustrate
it by using the example of Table 1 in detail. We first
compute M (i), SM(i), D(i) for i; 1 < i < n, and next
obtain a represent vertex set RV S. By Lemma 1-(2), if
there exist z and y satisfying Az < Ay, Ay = Ap(y),
az +2n € D(y) and bpyz) < ay, if and only if u is a
hinge vertex of a circular-arc graph. Assume that there
exists k such that k € D(i), « € RV S, and k € D(v),
for v; 1 < v < j. For the example of Table 1, k& = 18,
1=6and j = 9. We find z satisfying a, +2n = 18, that
is, ¢ = 2. Finally, we examine whether there exists y
satisfying bas(z) < ay with 4 <y < j. For the example
of Table 1, M(z) = 6,bpr(z) = 13 < ay when y = 0.
Hence, M(9) = 10 is a hinge vertex of a circular-arc
graph. And by Lemma 2, it sufficies to apply D(i) for
i € RVS. Also by Lemma 3, it is executed in O(n) time.

Algorithm PHV
Input: The left and right end points [a;, b;] in CA.
Output: The set of hinge vertices.
Step 1 (Generation of ECA)
for all 4;, 1 <i < n, in parallel do
If A; = [ai,bi] is a feedback circular-arc then we
change A; into A; := [a; — 2n, b;] and generate an extra
circular-arc A; := [a;, b; + 2n).
Step 2 (Construction of M;, SM;)
for all A;, 1 <i < n, in parallel do
Compute M (i), where M(z) is the largest j(> t)
such that A; intersects with A;.
for all A;, 1 <i < n, in parallel do
Compute SM (i), where SM (%) is the second largest
J(= i) such that A; intersects with A;.
Step 3 (Construction of RV'S, and D(i),i € RV S )
RV S := {1}
for all 7, 2 < i < n, in parallel do
If M(i) > M(i— 1) and then RV S := RVS U {i}.
for all 7, 1 € RVS in parallel do
Compute D(i) = {k I bSM(i) <k< bM(i)}-
i satisfying D(i) = 0 is removed.
Step 4 (Finding all hinge vertices)
for all D(z), z € RV S in parallel do
If there exist z and y satisfying A; < Ay, Ay =
Ani(z), 0y € D(z) and bps(y) < az+2n, then uis a hinge
vertex of the circular-arc graph.
for all D(y), y € RV S in parallel do
If there exist x and y satisfying A; < Ay, Ay =
Api(y), @z +2n € D(y) and bpy(z) < ay, then u is a hinge
vertex of the circular-arc graph.
End of Algorithm

Theorem 2 Given a circular-arc graph G, Algorithm
PHYV finds the set of all hinge vertices of G in O(logn)
time using O(n) processors on CREW PRAM. O
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