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In this study, first the sequential survival times and the sequential repair times of an engine were modelled using a
decreasing arithmetic process and an increasing arithmetic process respectively. Secondly the values of model
parameters were estimated by applying special statistical methods. Finally the means of the sequential survival times
and the means of the sequential repair times of an engine were estimated, and the optimum policy for the replacement
of the engine was determined.

Significance: The performance of an engine decreases because of ageing and accumulated wear. The effects of ageing
and accumulated wear are assumed to be irreversible, so that after a repair an engine will not work as
well as it did when new. Consequently the survival time of an engine becomes shorter and shorter and
the repair time of the engine becomes longer and longer. After a certain number of failures, an engine
can still work but is no longer maintainable in a cost effective way. At this epoch, the engine should be
replaced with a new one.
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1. INTRODUCTION

The Kowloon Motor Bus (KMB) Company Limited employs different types of bus for the provision of public transport
within Hong Kong. An engine is one of the main components of a bus. Every time an engine fails, KMB will repair it.
Since the operation quality of an engine deteriorates under ageing and accumulated wear, the survival time decreases
and the repair time increases. Eventually, it is no longer worthwhile to repair a fatigued engine and it becomes far
efficient to replace it with a new one.

The perfect repair model and the minimal repair model are popular models used in resolving maintenance problems
[1,2]. The perfect repair model assumes that a failed system will work as well as a new one after repair. The minimal
repair model assumes that a failed system will function, after repair, with the same rate of failure and the same
effective age as at the instant of the last failure. Neither inodel is, however, particularly relevant to the modelling of the
engine maintenance problems that we encounter here because the repair time in these two models is negligible. In this
study, we use two different arithmetic processes [3,4] to model the failure and repair processes of an engine.

Condition 1. Given a sequence of random variables X;,X;,X;,..., if for some real number a, {X;+(i-1)a, i =1,2,3,...}
forms a renewal process, {X;, i = 1,2,3,...} is an arithmetic process. a is called the common difference of the arithmetic

process.

Condition 2. If a E(O, —ﬂx—'l} , where i = 2,3,4,... and x4, is the mean of the first random variable X|, then the
l —

arithmetic process is called a decreasing arithmetic process. If a < 0, then the arithmetic process is called an increasing
arithmetic process. If a = 0, then the arithmetic process reduces to a renewal process.

The upper bound of a in Condition 2 can be obatined as follows: By Condition 1, the expression for the general term
of an arithmetic process is given by X, =X, - (i—1)a. Taking expectations on both sides of this expression, and

remembering that X; is a non-negative random variable and hence E(X,)=x, 20 fori= 1,2,3,...; we obtain, after

transposition, the upper bound of a given by /I—X‘l fori=2734,...
l —

If the sequential survival times of an engine decrease arithmetically with a common difference, we can model these
times using a decreasing arithmetic process. Furthermore, if the sequential repair times of an engine increase
arithmetically with a common difference, we can model them using an increasing arithmetic process.
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2. OBJECTIVES

The objectives of this study are to determine the following:

(1) the common difference of the decreasing arithmetic process for the sequential survival times of each type of
engine.

(2) the common difference of the increasing arithmetic process for the sequential repair times of each type of engine.

(3) the means of the sequential survival times of each type of engine.

(4) the means of the sequential repair times of each type of engine.

(5) the mean lifetime of each type of engine.

(6) the optimal replacement policy that should be adopted for each type of engine based on the minimisation of the

long-run average cost per day.

3. ASSUMPTIONS

Model assumptions are as follows:

(1) Initially a new engine is used.

(2) Whenever an engine fails, we can repair it.

(3) Let X, be the survival time after the (i—1)th repair. Then {X;, i = 1,2,3,...} forms a decreasing arithmetic process

with a common difference a € [0,' —;—lx—'l] , where i=23,...and y, is the mean of the first survival time X, .
-

(4) Let Y, be the repair time after the ith failure. Then {Y;, i = 1,2,3,...} forms an increasing arithmetic process with a

common difference b <0.
(5) The failure process {X;, i = 1,2,3,...} and the repair process {Y;, i =1,2,3,...} are independent.
(6) All the engines work under nearly identical conditions.

4. METHODOLOGY

4.1 Notation for Variables

E(X)) =y, = s> 0and V(X)) = 0';. = o'} are the mean and variance of X, respectively.

E(Y)) = gy, =y 2 0 (14y = 0 means that the repair time is negligible) and V(Y,) = aﬁl = o, are the mean and variance
of Y, respectively.

¢, is the average cost of a repair per day.

c, is the average cost of a replacement.

4.2 Testing for an Arithmetic Process

4.2.1 Testing the Existence of a Trend in the Data

For ease of manipulation and interpretation, the Laplace test is used [1].
Null hypothesis, H, . X/'s are identically distributed.
Alternative hypothesis, H, . X/'s are not identically distributed, i.e. there is a trend.

n-|
.. T.
The test statistic : Z i T
: v=| 2 L i | L (1)
n-1 2 12(n-1)

i
where T, =3 X,

i=l
is approximately distributed as the standard normal for n > 3 at the 0.05
: level of significance.
The decision rule : Reject Hyif U > 1.96 or U < —1.96, i.e. the data set exhibits an upward
trend or a downward trend respectively..

4.2.2 Testing Whether the Data Come from an Arithmetic Process [4]

First, we plot X; against (i~1) to see whether there is a linear relationship between them. If so, a simple ‘linear

regression model can be written as follows:
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X, =-a(i-1)+ a+ g ()
where E(g) = 0and V(g) = o?.

Secondly, we estimate the parameters a and a using the least-square criterion. The least-square estimators for a and &
are as follows:

. 2 " a
a= e [3(n - 1)§ X, -eg € —l)X‘.] 3)
and
. 2 " .
e [(2,1 - 1); X, —3§ (i- l)X‘J “4)

Thirdly, we calculate the mean square error o7 for the simple linear regression model using the following estimator.

2
Z":sz ‘l(i/\’.) -&[MiX, _i(i_l)Xi:l
& = iel n\i= 2 = i=l (5)
p = -

Finally, we distinguish a renewal process from an arithmetic process using the following hypothesis testing at the
0.05 level of significance.
Null hypothesis, Hy: a=0.
Alternative hypothesis, H, : a # 0.

—aJ-Dn(n+1)
V126,

1s approximately distributed as a student ¢ with (n—2) degrees of freedom.

The decision rule: Reject H, if || > the critical value.
We can apply the same procedure, i.e. use equations (1) to (6) to a set of sequential repair times {Y;, i =1,2,3,...} to
check whether the data come from an arithmetic process. :

(6)

The test statistic: ¢ =

4.3 Estimating the Means and Variances ef X, and ¥,
E(X)), V(X)), E(Y)) and V(Y,) are determined by estimating the parameters sy, o} , 4y and o} respectively [4]. These
parameters are estimated using the relevant estimators listed in Table 1 [S].

Table 1. Estimators for 4, o}, 4y and o}

a b
Ay 6% Hy 632
=0 n n - n n —_
X _ T, -X%)? Y, (¥, -7)?
2 =X i=1 Ho =y i=1
n n-1 n n-1
<0 & s as) & o (5]
g-(82) $2-,(32)
n-1 n-1
where where
Z,=X,+(i-0a Z, =Y, +(@i-Db
>0 AR ANAREE
In _/1% -5 -={=0 As above lﬂ(@)‘ H—~— =0 As above
a 2 iy «@ a 2\ «

4.4 Determining the Means and Variances of X; and ¥;

The mean and variance of the survival time and the repair time of each type of engine are estimated respectively using

the following equations.

~ S

iy = fiy ~(i-1)a, 6% =%, &y, =, —({-1)b and &7 =357
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4.5 Determining the Optimum Replacement Policy

The optimum replacement policy is determined by minimising the (expected) long-run average cost per unit time.
the expected cost incured in a cycle

The (expected) long-run average cost per unit time =
the expected length of a cycle

where a cycle is the time between two successive replacements.
The following steps show how to determine the optimum replacement policy [3].
(1) Calculate the long-run average cost per day c(i) for i=1,2,3,... using the following equation.

¢, {—;—‘ s, - G- 2,>b]} +e,
®)

c(i) = ; —

2y == Dal —=[2, - (- 28]

(2) Plot the long-run average cost per day c(i) against i. Then the optimum replacement epoch, shown by the
minimum point of the curve, is determined.

S. ANALYSIS AND FINDINGS

The Depot Manager provided us with a total of 1,503 repair records for three different types of engine, namely engine
types: 407H, 6L.XB, 6LXCT. Table 2 shows an example of the raw repair records. We sorted the repair records by
engine type and next by engine number. In addition, we only analysed those engines which had more than one repair
record.

Table 2. An Example of the Raw Repair Records

BUS_NO ENG_NO E_TYPE V_TYPE DEPOT R_DATE RET_DATE INS_DATE
DG2612 028879 407H BENZ ™ 8/1/93 7/30/93 7/19/93
DG5362 028849 407H BENZ ™ 8/9/93 8/1/93 . 10/23/89
DF8962 046787 407H BENZ ™ 8/28/93 8/1/93 11/23/89
DF6548 029344 407H BENZ ™ 4/1/94 . 3/28/94 6/9/90
DG2612 028827 407H BENZ ™ 4/9/94 4/1/94 7/31/93
DF9740 028920 407H BENZ ™ 4/21/94 4/1/94 9/21/90
DG4756 028900 407H - BENZ ™ 6/8/94 6/1/94 10/11/90
DF9705 028901 407H BENZ . ™ 9/3/94 9/1/94 10/10/89
DF6700 028874 407H BENZ ™ 9/21/94 9/1/94 " 12/6/88

The INS _DATE is when the repaired engine reinstalled in a bus. The RET_DATE is when the damaged engine is
transported to the maintenance depot. The R_DATE is when the engine repair is completed. Each survival time (X)) is
determined by the difference between the INS_DATE and the RET _DATE. Each repair time (Y;) is determined by the
difference between the RET_DATE and the R_DATE.

Since calculation of the parameter values for the three different types of engine is time-consuming, equations (1) to
(8) and the relevant estimators listed in Table 1 were computed using EXCEL.

We verified that the sequential survival times and the sequential repair times come from two different arithmetic
processes. The mean survival time and the mean repair time were estimated, and are included in Table 3. The mean
survival time, the mean repair time and the long-run average cost per day versus the number of failures are plotted in

Figures 1, 2 and 3 respectively.

Table 3. The Mean Survival Time and the Mean Repair Time

Engine Type iy, = iy —(i-1a (days) ity = j1, —(i—1)b (days)
407H 1426.07 — (i-1)730 14.11 - (i-1)(-0.33)
6LXB 1241.32 - (i-1)584 8.86 — (i-1)(-12.17)

6LXCT 1629.64 — (i-1)752 39.03 — (i~1)(~6.13)
— 159 —



Mean survival time (days)

Mean survival time against number of failures

—&—407H
—@#—6LXB
—&—G6LXCT

Number of failures
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Figure 2. The Mean Repair Time /4, in Days Versus the Number of Failures i
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Long-run average cost per day versus number of failures
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Figure 3. The Long-run Average Cost Per Day c(i) Versus the Number of Failures i

6. CONCLUSION

A summary of the parameter values for each of the three different types of engine is shown in Table 4.

Table 4. Parameter Values

Survival Times Repair Times
Engine Type a A, (years) b A, (days)
407H 2.00 3.91 -0.33 14.11
6LXB 1.60 3.40 -12.17 8.86
6LXCT 2.06 4.46 —6.13 39.03

From Table 4 we can see that all the values of a are greater than zero. This implies that the sequential survival times
of each type of engine form a decreasing arithmetic process. The study's findings show that an engine deteriorates over
time in general. An engine's lifetime is finite because it cannot be constantly repaired so that it can function forever.
From Table 4 we can also see that all the values of b are smaller than zero. This implies that the sequential repair times
of each type of engine form an increasing arithmetic process. Since the effects of ageing and wear become more
serious as the number of failures increases, the time needed to make repairs increases correspondingly. The repair time
becomes longer and longer. The engine thus becomes unrepairable.

Table 5 shows the mean lifetimes of the three different types of engine, and indicates that the 6LXCT engine type has

the longest mean lifetime.

Table 5. The Mean Lifetimes

2 ~ -~
Mean Lifetime =~ Z[/IX -(i- l)a] (years)
i=l

Engine Type
407H 5.82
6LXB 5.20
6LXCT 6.86
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Table 6 shows the optimum replacement policies for the three different types of engine.

Table 6. The Optimum Replacement Policies Based on the Minimum Cost

Optimal Replacement Policy

Engine Type Based on Minimum Cost
407H Replace after the 2nd failure
6LXB Replace after the 2nd failure
6LXCT Replace after the 2nd failure

Although Table 6 shows that almost all optimum replacement epoches come after the 2nd failure, the survival time of
an engine after the 2nd failure is very short. As such, it is neither practical nor cost effective to continue to make
repairs after this point.

The parameter values of a and xy are highly over- and under-estimated respectively owing, in part, to the violation of
the assumption that all the engines operate under identical environments. Since different engine types are installed in
different buses and are used for different routes, each engine operates in a significantly different environment. The
performance of each engine is therefore affected by this factor.

From previous meetings with the Depot Manager, we know that the mean lifetimes of the three types of engine are far
longer than the findings indicated in Table 5. The difference is due to data shortage, as KMB only keeps repair records
for a few years. The consequence of this is that the value of x; is under-estimated, and the values of a, b and x4 are
over-estimated. As a result, the mean lifetime of each type of engine was further under-estimated.

Although the findings cannot fully reflect the operating characteristics of the engines, we can regard this application
as a pilot study on the modelling of engine maintenance problems using arithmetic processes.
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